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Introduction 

The Coronaviridae is a monogeneric family comprising 11 viruses which infect vertebrates. 
Members of the group are responsible for diseases of clinical and economic importance, in 
particular respiratory and gastrointestinal disorders (Table 1). The group was originally 
recognized on the basis of a characteristic virion morphology (Tyrrell et al., 1968), but can now 
be defined by biological and molecular criteria. Various aspects of coronavirus biology have 
been dealt with in recent reviews (Robb & Bond, 1979; Siddell et al., 1982; Wege et al., 1982). 

Structure 

Morphology 

Coronavirions are pleomorphic, although generally spherical, 60 to 220 nm in diameter and 
bear widely spaced, club-shaped surface projections about 20 nm in length. Complete virions 
have a density in sucrose of about 1.18 g/ml. In thin sections the virion envelope may be 
visualized as inner and outer shells separated by a translucent space. In negatively stained 
preparations of avian infectious bronchitis virus (IBV) an inner tongue-shaped membrane is 
visible (Bingham & Almeida, 1977; Fig. 1). The internal ribonucleoprotein (RNP) component 
of coronavirions has been visualized as a long strand of 1 to 2 nm diameter (Davies et al., 1981) 
or as a helical RNP condensed into coiled structures of varying diameter, normally 10 to 20 nm 
(Caul et aL, 1979; Macnaughton et al., 1978; Massalski et al., 1982). Presumably, the different 
forms seen represent different states of RNP relaxation. After disruption of virions with 
detergent, nucleocapsid structures with a density of 1.27 to 1.28 g/ml in sucrose can be isolated. 

Genome RNA 

The coronavirus genome is a linear molecule of single-stranded RNA which is polyadenylated 
and infectious. The murine hepatitis virus (MHV) genome has also been shown to be capped. 
The genome RNA has a mol. wt. of 5 × 106 to 7 × 10 6, corresponding to about 15000 to 20000 
nucleotides. Ta-resistant oligonucleotide fingerprinting of genome RNA and intracellular viral 
mRNA (see Coronavirus-directed R N A  synthesis) confirms the positive polarity of the genome 
and indicates that it does not have extensive sequence reiteration (Brian et al., 1980; Clewley et 
al., 1981 ; King & Brian, 1982; Lai & Stohlman, 1978, 1981a; Lai et al., 1981 ; Leibowitz et al., 
1981; Macnaughton, 1978; Macnaughton & Madge, 1978; Spaan et al., 1981, 1982; Stern & 
Kennedy, 1980a, b; Wege et al., 1978, 1981a, b; Weiss & Leibowitz, 1981). 

Virion proteins 

In addition to RNA the coronavirion nucleocapsid contains a non-glycosylated protein of 
50000 to 60000 mol. wt. This protein is phosphorylated and purified MHV virions have been 
shown to contain a protein kinase activity. Coronavirions contain two major envelope proteins. 
The matrix protein is a transmembrane glycoprotein of 20000 to 35000mol. wt., the 
carbohydrate moiety of which is known for MHV and bovine coronavirus (BCV) to be O- 
glycosydically linked. The glycosylated region of the protein is exterior to the virion envelope 
and in many cases matrix proteins with different degrees of glycosylation are incorporated into 
virions. Glycosylation is most likely to be at the N-terminus of the polypeptide. The second 
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Table 1. Coronav i ruses  

Virus member Natural host 
Infectious bronchitis virus (IBV) Chicken 
Murine hepatitis virus (MHV) Mouse 

BQvine coronavirus (BCV) Cattle 
Human coronavirus* (HCV) Man 
Transmissible gastroenteritis virus (TGEV) Pig 
Haemagglutinating encephalomyelitis Pig 

virus (HEY) 

Probable virus member 
Canine coronavirus (CCV) Dog 
Feline infectious peritonitis virus (FIPV) Cat 

Possible virus member 
Rat coronavirus, sialodacryoadenitis virus t Rat 

(RCV, SDAV) 
Turkey coronavirus (TCV) Turkey 
Porcine epidemic diarrhoea virus$ (PEDV) Pig 

Disease 
Respiratory disease, nephritis, gonaditis 
Hepatitis, encephalomyelitis, enteritis, 

vasculitis 
Enteritis 
Respiratory disease 
Enteritis 
Vomiting and wasting disease, 

encephalomyelitis 

Enteritis 
Peritonitis, granulomatous inflammations 

in many organs 

Respiratory disease, adenitis 

Enteritis 
Enteritis 

* Human enteric coronaviruses (HECV) have also been reported (Robb & Bond, 1979; see also Vaucher et al., 
1982) but there is insufficient evidence to justify their inclusion in the group (Macnaughton & Davies, 1981). 
Coronavirus-like agents reported from foals (Bass & Sharpee, 1975), non-human primates (Smith et al., 1982), 
rabbits (Small et al., 1979; Lapierre et al., 1980) and other animals (see Macnaughton & Davies, 1981) require 
further identification, as do isolates recovered from mouse tissues after inoculation with material from human 
brain (Burks et al., 1980) or shearwaters (Nuttall & Harrap, 1982). Earlier reports of coronavirus isolates from 
parrot and ticks.are probably incorrect (Hirai et al., 1982; Wege et al., 1982). 

t Maru & Sato (1982). 
$ Pensaert (1981). 

coronavirion envelope protein, which constitutes the surface peplomer, is responsible for 
eliciting neutralizing antibodies during infection (Collins e t  al . ,  1982; Hasony & Macnaughton,  
1981, 1982; Schmidt & Kenny, 1981, 1982). In many cases different molecular weight forms 
(80000 to 200000 mol. wt.) of  the protein are incorporated into virions. The protein is acylated 
and complex and mannose-rich carbohydrate side-chains are N-glycosydically linked to the 
polypeptide. Virions grown in cells treated with tunicamycin lack the peplomer protein and are 
unable to attach to cells or initiate infection. There are indications that for some coronaviruses 
proteolytic processing of  the peplomer protein during morphogenesis may be involved in 
activating functions such as virus-induced cell fusion (Dea et  al. ,  1980; Otsuki & Tsubokura, 
1981; Storz et  al. ,  1981b). 

In addition to these characteristic proteins, others which do not appear to fit into any 
consistent pattern have been described, notably a 14000 mol. wt. protein described for IBV and 
MHV, and glycoproteins of about 60000 to 70000 mol. wt. described for MHV, BCV and 
porcine haemagglutinating encephalitis virus (HEV). IBV, human coronavirus (HCV) and 
porcine transmissible gastroenteritis virus (TGEV) virions have been shown to lack R N A  
polymerase activity. Fig. 2 shows a schematic model of  the MHV coronavirion and the 
relationship of its R N A  and protein components (Callebaut & Pensaert, 1980; Cavanagh, 1981 ; 
Dennis & Brian, 1982; Garwes & Reynolds, 1981 ; Holmes et  al . ,  1981 ; King & Brian, 1982; Lai 
& Stohlman, 1981 b; Laporte & Bobulesco, 1981 ; Lomniczi & Morser, 1981 ; Niemann & Klenk, 
1981a; Obert et  al. ,  1981; Rottier et  al . ,  1981a, b; Schmidt, 1982; Schmidt & Kenny, 1982; 
Schochetman et  al.,  1977; Siddell, 1982; Siddell et  al.,  1981 a, b; Stern et  al. ,  1982; Stohlman & 
Lai, 1979; Storz et  al.,  1981a; Sturman et  al. ,  1980; Tannock & Hierholzer, 1978). 

Lip ids  

The lipid envelope of TGEV has been studied in detail. The virion envelope contains 
phospholipids, glycolipids, cholesterol, di- and triglycerides and free fatty acids in proportions 
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Fig. 1. Coronavirion morphology. A negatively stained preparation of infectious bronchitis virus 
(courtesy of J. Almeida). Bar marker represents 200 nm 

approximately corresponding to those in the cell membrane. Cholesteryl and fatty acid esters 
present in cell membranes are selectively depleted in the virion membrane. When grown in 
different cell types the virion envelope reflects the lipid content of the host cell membrane (Pike 
& Garwes, 1977). 

Relationships between coronaviruses 

(i) Molecular. The relationships between coronaviruses have been studied by molecular and 
immunological methods but the data is fragmentary. Molecular hybridization using cDNA 
representative of the majority of the MHV genome or the 3' end of the genome (which represents 
the nucleocapsid protein gene; see Coronavirus-directed protein synthesis) indicates extensive 
sequence homology amongst MHV strains (Cheley et al., 1981 b; Weiss & Leibowitz, 1982). This 
homology is reflected in Tl-resistant oligonucleotide fingerprints of MHV genomes (Lai & 
Stohlman, 1981b) or chymotryptic peptide fingerprinting of MHV nucleocapsid proteins 
(Chele~¢ et al., 1981b). In contrast, Tl-resistant oligonucleotide fingerprinting of the genome 
RNA of 13 isolates of IBV (Clewley et al., 1981) produced l 1 quite distinct fingerprints. 

(ii) Antigenic. Coronavirions contain three major antigens each corresponding to one of the 
three types of virion protein. The antigens may be distinguished by antibodies against virion 
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",N 

RNA 

Fig. 2. A schematic model of coronavirion structure. Genome (RNA), nucleocapsid protein (N), 
matrix protein (El) and peplomer protein (E2) are shown (courtesy of L. Sturman). 

Mammalian 

Avian 

Table 2. Antigenic relationships o f  coronaviruses* 

Group 1 
HCV 229E and other isolates 
TGEV (1 serotype) 
CCV (1 serotype) 
FIPV (1 serotype) 

IBV (at least 8 serotypes) 

* PEDV remains unclassified. 

Group 2 
HCV OC43 and other isolates 
MHV (many serotypes) 
RCV (SDAV) (1 serotype) 
BCV (1 serotype) 
HEV (1 serotype) 

TCV (1 serotype) 

subcomponents (Collins et al., 1982; Hasony & Macnaughton,  1981, 1982; Schmidt  & Kenny,  
1981, 1982; Yaseen & Johnson-Lussenburg, 1981). Studies on the antigenic relat ionships of  
coronaviruses present a complex pattern,  but the da ta  suggest that  the family can be divided into 
four dist inct  groups, and these are shown in Table 2 (Gerna et al., 1981 ; Horzinek et al., 1982; 
Macnaughton,  1981; Macnaughton et al., 1981; Maru & Sato, 1982; Pedersen et al., 1978; 
Pensaert  et al., 1981; Reynolds et al., 1980; Schmidt  & Kenny,  1981). 

Replication 

Early events 

Infection of tissue culture cells with coronaviruses is ini t iated with one-hit  kinetics and the 
one-step growth curve at 37 °C is about 10 to 12 h. Infection is often accompanied  by cellular 
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RNA 
No. Size 

(X 10 -6) 

1 6.0 

2 3.7 

3 2.9 

4 1.4 

5 1.2 

6 0'9 

7 0.6 

Size 
(× I0 -3) 
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B 
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C 
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D 
I I aa 
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I I I I I I I I m 

Fig. 3. The structure and expression of the murine hepatitis virus genome. 

Protein 
Designation 

(Polymerase) 

Peplomer 

Matrix 

Nucleocapsid 

cytopathic changes, in some cases syncytium formation but most frequently vacuolation 
followed by disintegration. There are very few data on the early events associated with 
coronavirus infection. Patterson & Macnaughton (1981) have shown that on HCV 229E- 
infected cell monolayers, virions initially attach over the whole cell surface but are then rapidly 
redistributed away from the cell periphery by an energy-requiring process. The reason for this 
redistribution is unknown. Krzystyniak & Dupuy (1981) have shown that MHV3 uptake into 
ceils is rapid and temperature-dependent. Uptake is not related to the phagocytic capacity of the 
cells and may therefore involve a mechanism such as receptor-mediated endocytosis, as has been 
reported for other systems (Helenius et al., 1980). 

Coronavirus-directed R N A  synthesis 

The synthesis of coronavirus RNA within the first few hours of infection is not easily 
detected. Brayton et al. (1982) have, however, recently shown that in cells treated with 
actinomycin D prior to infection with MHV A59, a small but reproducible synthesis of RNA 
can be demonstrated (see also Cheley et al., 1981a). This synthesis presumably reflects the 
translation of the incoming genome RNA to produce proteins which then produce negative- 
stranded template. This assumption seems to be correct since pulse labelling of coronavirus- 
infected cells with [3H]uridine in the presence of actinomycin D after the initial phase of 
infection reveals the synthesis of positive-stranded viral RNA. It is characteristic of 
coronaviruses that genomic-sized and multiple (4 to 6) subgenomic positive-stranded RNAs are 
synthesized in infected cells. These RNAs are synthesized in non-equimolar amounts but in 
relatively constant proportions and their synthesis is dependent on continued protein synthesis 
throughout infection. They range in size from 0-6 x 106 to genomic size (the largest RNA is 
termed RNA 1 and smaller RNAs are numbered accordingly, see Fig. 3) and form a 3' co- 
terminal nested set extending towards the 5' end of the genome. The RNAs are polyadenylated 
and aii subgenomic and a proportion of the genomic-sized RNA molecules are associated with 
polysomes throughout infection. For MHV, the messenger function of these positive-stranded 
RNA species has been demonstrated in vitro (see Coronavirus-directed protein synthesis). No 
structural difference between the genome RNA and genome-sized intracellular m R N A  has 
been described (Brayton et al., 1982; Cheley et al., 1981 a; Dennis & Brian, 1982; Jacobs et al., 
1981 ; Lai et al., 1981, 1982a; Leibowitz et al., 1981 ; Mahy et al., 1983 ; Spaan et al., 1981, 1982; 
Stern & Kennedy, 1980a, b; Wege et al., 1981b, c; Weiss & Leibowitz, 1982). 

The 5' ends of all MHV A59 mRNAs share a common sequence (5'-cap-N-UAAG) and a 
more extensive 5' sequence homology is probable (Lai et al., 1982a; Spaan et al., 1982). It is 
unlikely, however, that this 'leader' sequence is produced by a conventional splicing 
mechanism. The replication of MHV is not impaired in cells treated with actinomycin D or c~- 
amanitin (Brayton et al., 1981; Lai et al., 1981; Mahy et al., 1983; Spaan et al., 1981) and 
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replication has been reported in enucleated cells (Brayton et al.,  1981 ; Wilhelmsen et  al.,  1981). 
Also, the synthesis of each mRNA is inactivated by u.v. irradiation in proportion to its own 
length (Jacobs et  al., 1981 ; this is also true for IBV mRNAs, Stern & Sefton, 1981). Thus, the 
subgenomic mRNAs are not apparently produced by the processing of a larger RNA. Lai et al. 
(1982b) have recently demonstrated that the negative-stranded template from which MHV 
mRNAs are copied is of genome size. 

In contrast to MHV, oligonucleotide fingerprinting of the genome and mRNAs of IBV gives 
no evidence of leader sequences, although short 5' homologies cannot be excluded (Stern & 
Kennedy, 1980a, b). Also, it has been reported that the replication of IBV is impaired in 
enucleated, u.v.-irradiated or ~-amanitin-treated BHK-21 cells (Evans & Simpson, 1980). 
Whether these results indicate that there are significant differences in the replication of avian 
and murine coronaviruses remains to be seen. 

Coronavirus-directed protein synthesis  

Shortly after the onset of subgenomic mRNA production in the infected cell the synthesis of 
intraceUular precursors to the virion peplomer, nucleocapsid and matrix proteins can be 
detected. The major intracellular viral polypeptide synthesized is the phosphorylated 
nucleocapsid precursor of 50000 to 60000 mol. wt. Kinetic experiments indicate that a large 
intracellular pool of this polypeptide is built up during infection, probably corresponding to the 
nucleocapsid structures which accumulate in some cells. For MHV, the matrix precursor 
polypeptide is synthesized in a non-glycosylated form (20000 to 25000 mol. wt.) and then 
undergoes post-translational glycosylation (in some cases to differing degrees) at the Golgi 
complex. In contrast, the peplomer precursor (150000mol. wt.) is co-translationally 
glycosylated at the rough endoplasmic reticulum and subsequently modified to yield virion 
proteins by oligosaccharide processing, elongation and proteolytic cleavage during transfer 
through the Golgi apparatus. The coronavirus envelope proteins will provide useful models for 
the investigation of synthesis, glycosylation and intracellular transport of both N- and O-linked 
glycoproteins (Anderson et al., 1979; Bond et  al.,  1981 ; Cheley & Anderson, 1981 ; Collins et al.,  
1982; Gerdes et al., 198l ; Holmes et al., 1981 ; Niemann & Klenk, 198 lb; Niemann et  al., 1982; 
Rottier e t a l . ,  1981a, b; Siddell, 1982; Siddell et al., 1980, 1981a, b, 1982; Stern et al., 1981). 

A number of other polypeptides synthesized in coronavirus-infected cells have been identified 
as virus-specific. In MHV-infected cells treated with tunicamycin the non-glycosylated 
polypeptide core (120000 mol. wt.) of the peplomer protein has been identified (Niemann & 
Klenk, 1981b; Rottier et al., 1981b; Siddell, 1983). MHV-specific polypeptides of 14000 to 
17000 mol. wt. and 30000 mol. wt. which are virus-coded (see below) have also been detected 
(Siddell et al., 1981b). 

In addition to the proteins described above, virus-specific RNA polymerase activities have 
been isolated from coronavirus-infected cells, although their polypeptide components have not 
been identified either in vivo or in vitro (Brayton et  al., 1982; Dennis & Brian, 1982; Mahy et  al.,  
1983). Usually, these activities have been isolated late in infection and their membrane location 
and association with replicative intermediate RNA has been demonstrated. In one case, a virus- 
specific polymerase activity has been isolated from MHV-infected cells before the onset of 
mRNA production and it was found to have different ion and pH requirements compared to late 
polymerase activity (Brayton et al., 1982). Lai et  al. (1982b) have suggested that these two 
different activities are responsible for negative- and positive-strand RNA synthesis respectively 
but it is not known how the polarity of RNA synthesis is dictated or if different or modified 
enzymes are involved. Interestingly, Leibowitz et al. (1982a) and Koolen et al. (1983) have found 
that the majority of MHV temperature-sensitive (ts) mutants have a mRNA- phenotype and 
these mutants can be divided into five or six non-overlapping complementation groups. 
Whether these groups represent different polymerase components, presumably encoded within 
the unique sequences at the 5' end of genome RNA (and RNA 1, see below), or other viral gene 
products in addition, is not known. 

The finding of multiple subgenomic positive-stranded RNAs and a corresponding number of 
virus-specific polypeptides in infected cells, immediately suggests that each RNA has a mRNA 
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function and encodes one viral protein. In the case of MHV this supposition has now been 
confirmed. In MHV-infected cells the synthesis of each viral polypeptide is initiated 
independently (Cheley & Anderson, 1981; Siddell, 1983) and polyadenylated RNA isolated 
from infected cells directs the synthesis in vitro, or in oocytes, of viral polypeptides. The 
translational activities encoding these polypeptides can be fractionated by sedimentation or 
electrophoresis and each corresponds to one of the subgenomic viral RNAs. The smallest RNA, 
RNA 7, encodes the intracellular nucleocapsid polypeptide (60000 mol. wt.). The next smallest, 
RNA 6, encodes the matrix protein polypeptide (23000 mol. wt.) in vitro, or its glycosylated 
counterpart (25 000 mol. wt.) in oocytes and the third major intracellular RNA, RNA 3, encodes 
the peplomer protein core (120000 mol. wt.) in vitro or the co-translationally glycosylated 
peplomer precursor (150 000 mol. wt.) in oocytes (Cheley et al., 1981 a; Leibowitz et al., 1982 b; 
Rottier et al., 1981 a; Siddell, 1983; S iddell et al., 1980). The translation products of two further 
MHV RNAs, RNA 2 and RNA 4/5, have been identified as corresponding to 30000 and 14000 
to 17000 mol. wt. intracellular viral polypeptides respectively (Leibowitz et al., 1982b; Siddell, 
1983). 

The in vitro translation of the coronavirus intracellular genome-sized m R N A  1 has not yet 
been reported. However, in the case of MHV, its virion counterpart, the genome RNA, has been 
translated in vitro to produce a group of polypeptides of greater than 200000 mol. wt. (Leibowitz 
et al., 1982b). The identity of these products is not yet known but it seems reasonable to assume 
that they are related to the components of the virus-specific RNA polymerase found in infected 
cells. In vitro translation studies with other coronaviruses are preliminary. It has been reported 
that the smallest IBV-specific intracellular RNA encodes the IBV nucleocapsid protein (Stern et 
al., 1982) but many more data will be needed before the conclusions reached for MHV can be 
extended to other coronaviruses. 

Replication strategy 

The results described in the previous two sections lead to a model for the replication strategy 
of coronaviruses. This model is depicted for MHV in Fig. 3. The essential features are: (i) the 
expression of coronavirus information in the cell is mediated through multiple subgenomic 
mRNAs which form a 3' co-terminal nested set; (ii) each mRNA directs the translation of only 
one protein; (iii) the size of the translation product for each RNA corresponds approximately to 
the coding potential of the 5' sequences which are absent from the next smallest RNA. Although 
it has not been proven, these features and the inability of ribosomes to initiate translation at 
internal sites on eukaryotic mRNA (Kozak, 1981) suggest that only the 5' sequences of each 
mRNA (depicted as genes A, B, C, etc. in Fig. 3) are translated into protein. This strategy has 
many obvious parallels with the strategies of other positive-stranded RNA viruses. For example, 
it appears that in general subgenomic mRNAs extend inwards from the 3' end of genomes (see 
also K~ri~iinen & S6derlund, 1978; Davies & Hull, 1982). Also, the coronavirus strategy 
appears to be a flexible one, allowing for the control of viral protein synthesis at the levels of both 
transcription and translation. 

Virion assembly 

Morphogenetic studies on the maturation of coronaviruses have revealed that assembly is 
restricted to the cytoplasm where progeny virions are formed by a budding process from 
membranes of the rough endoplasmic reticulum. The virions acquire their lipid envelope from 
the cells, excluding host cell proteins in the process, and are subsequently transported through 
and accumulate in the Golgi complex and smooth walled vesicles. There is an absence of 
budding from the plasmalemma (Beesley & Hitchcock, 1982; Ducatelle et al., 1981 ; Holmes et 
al., 1981 ; M assalski et al., 1981, 1982). The mechanism of virus release has not been elucidated. 

Pathogenesis 

Transmission 

Coronaviruses are probably distributed worldwide. In many cases they replicate in the 
respiratory tract and transmission of the virus is usually from this site, although virus is also shed 
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with the faeces. The diseases associated with coronaviruses are shown in Table 1. Most 
coronaviruses cause clinical disease in the species from which they were isolated but natural and 
experimental transmission to other species is possible. Human and avian viruses are 
transmissible to mice by the intracerebral route and TGEV can replicate in dogs, foxes and cats. 
Feline and canine coronaviruses are also infectious for pigs. Transmission to other hosts often 
leads to inapparent infections or diseases which do not occur under natural conditions (Wege et 
al., 1982). 

Acute  infections 

Coronaviruses primarily infect the respiratory system [HCV, IBV, MHV and rat coronavirus 
(RCV)] or the gastrointestinal tract [BCV, canine coronavirus (CCV), TGEV, turkey 
coronavirus (TCV) and some MHV strains]. Also, many strains of MHV cause hepatitis or 
encephalomyelitis. These infections are generally acute and it is likely that a lyric infection 
which destroys the host cell is the basic pathogenetic mechanism involved. Respiratory 
infection is usually confined to the ciliary epithelium of the trachea, nasal mucosa and alveolar 
cells of the lungs. A local immune response resulting in secretion of IgA is normally sufficient to 
overcome the acute phase of disease and the development of a systemic humoral immunity 
hinders a severe involvement of other organs. The enteropathogenic coronaviruses selectively 
infect absorptive cells and crypt cells of the intestinal mucosa resulting in atrophy of the villi. 
Virus strains differ in their predilection for a particular site (small or large intestines, colon) and 
cell type (absorptive epithelium and/or crypt cells) and the severity of disease varies from mild, 
transient enteritis to a rapidly progressing fatal diarrhoea. As with respiratory infection, the 
local immune response provides the most important line of defence against enteric infection. 
Maternal antibodies and lymph cells provide some protection to immunologically immature 
animals (Bhatt & Jacoby, 1977; Carthew & Sparrow, 1981 ; Chhabra & Goel, 1980; Doughri & 
Storz, 1977; Frederick & Bohl, 1976; Gonder et al., 1976; Hierholzer et al., 1979; Klobasa & 
Werhahn, 1981 ; Pensaert et al., 1970; Purcell & McFerran, 1972; Shepherd et al., 1979; Shimizu 
& Shimizu, 1979; Stone et al., 1976; Taguchi et al., 1976). 

In one case, the pathogenic mechanism of an acute coronavirus infection appears to be quite 
different. The infection of pigs by haemagglutinating encephalomyelitis virus results in a disease 
which is characterized by vomiting, sometimes accompanied by encephalomyelitis. The disease 
is initiated by an inapparent infection of the respiratory tract, tonsils and intestines, which 
spreads along nerve tracts to peripheral ganglia and the central nervous system. Subsequently, 
the infection of neurons which regulate peristaltic functions of the intestinal tract results in 
disease and young animals in particular may die of starvation (Andries & Pensaert, 1980a, b; 
Andries et al., 1978). 

Chronic infections 

Coronaviruses readily establish persistent infection in animals, often leading to diseases of a 
subacute or chronic nature. They also readily establish persistent infections in tissue culture 
(Chaloner-Larsson & Johnson-Lussenburg, 1981 ; Lucas et al., 1977, 1978; Stohlman et al., 1979 i 
Yoshikura & Tejima, 1981). Very little is known of the mechanisms governing persistent 
infections m vivo or in vitro, but some factors which influence the outcome of the infection in 
animals have been identified. 

(i) Murine  hepatitis virus. Inbred mouse strains interact differently with different MHV strains 
and factors which are important in determining the outcome of both acute and persistent 
infections have been widely investigated in this system. Resistance of mice to acute infection is 
inherited by recessive genetic traits involving one gene for MHV2 and MHV3 and possibly two 
genes for MHV JHM. These genes are not H-2-1inked. In contrast, chronic infection with 
MHV3 is additionally regulated by a gene which is associated with the H-2 region responsible 
for T cell functions. The expression of genetic resistance is manifested at the level of the mature 
macrophage, and since these cells are found at the sites of primary virus replication their 
interaction with the virus strongly determines the outcome of infection. Basically, virus 
replication in macrophages from resistant mice is restricted whereas virus replicates well in 
macrophages from susceptible mice. Additionally, genetic resistance can be expressed at the 
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level of the target cell type, for example, neuronal cells during MHV JHM infection or 
hepatocytes during MHV3 infection. Infections can also be modulated by lymphokines and 
interferons secreted from T lymphocytes and by corticosteroid hormones. Also macrophages 
secrete interferon, complement, chemotactic substances and prostaglandins, all of which 
influence viral replication, and these functions can be impaired or enhanced during chronic 
infections (Arnheiter et al., 1982; Bang & Warwick, 1960; Dupuy et al., 1975; Knobler et  al., 
1981 b; Krzystyniak & Dupuy, 1981 ; Lahmy & Virelizier, 1981 ; Levy-Leblond & Dupuy, 1977; 
Levy-Leblond et al., 1979; Sheets et al., 1978; Shif & Bang, 1970; Stohlman & Frelinger, 1978; 
Stohlman et al., !980; Taguchi et  al., 1976; Tardieu et al., 1980; Taylor et al., 1981 ; Virelizier & 
Allison, 1976; Virelizier & Gresser, 1978; Virelizier et al., 1976; Weiser & Bang, 1976, 1977; 
Weiser et al., 1976). 

The disease processes which result from persistent infection by murine coronaviruses are also 
of interest pathologically. Infection of C3H/He or A2G mice with MHV3 leads to a persistent 
infection of the central nervous system accompanied by a chronic neurological disease. After the 
acute stage of infection the majority of animals survive but later develop clinical signs of 
incoordination and paralysis. Neuropathologically, a chronic chorioependymitis and hydroce- 
phalus (A2G mice) or a diffuse vasculitis in kidney, liver, spleen, brain and spinal cord (C3H/He 
mice) is found. Perivascular infiltrations by polymorphonuclear lymphocytes and fibrinoid 
necrosis develop around blood vessels and these changes are accompanied by destruction of 
myelin and neuronal axons. Viral antigens have never been demonstrated in neuronal cells, but 
only in the endothelial cells of affected veins or arteries (Le Prevost et  al., 1975a, b; Virelizier et 
al., 1975). 

The neurotropic MHV JHM strain also induces persistent infections of the central nervous 
system in rodents, especially if attenuated (ts) virus is used. In mice, there is an absence of 
clinical disease after the acute phase of infection but mild lesions of demyelination in the brain 
are detectable by electron microscopy. Viral antigens are detectable only in oligodendroglia 
cells, in contrast to an acute encephalomyelitis where there is a destruction of neurons and glia 
cells. If rats are infected with MHV JHM, a subacute to chronic demyelinating encephalomyeli- 
tis can develop after an incubation period of several weeks to months. Typically, plaques of 
primary demyelination develop after the acute phase and in chronically diseased rats both fresh 
and old lesions are detectable. Infectious virus can be reisolated from the brain tissue of overtly 
diseased animals. These infections are of interest as experimental models for virus-induced 
demyelinating diseases (Haspel et al., 1978; Knobler et al., 1981a, b, 1982; Nagashima et  al., 
1978, 1979; Sorensen et al., 1980; Stohlman & Weiner, 1981; Wege et al., 1983). 

(ii) Feline infectious peritonitis virus. FIP virus infects a high percentage of cats causing mild 
respiratory and intestinal disorders. However, a small percentage of animals develop a fatal 
disease after an incubation period of several weeks to months. The disease starts with symptoms 
such as loss of appetite and elevated temperature and may be accompanied by swelling of the 
abdomen and dehydration. The infection involves many organs, especially the peritoneum, 
lungs, lymphoid tissue, liver and kidneys. Histologically, a severe peritonitis and pleuritis is seen 
and affected organs may reveal severe focal necrosis and granulomatous inflammation. FIP 
virus can be recovered throughout the clinical course from affected organs and a persistent 
infection is established in macrophages and cells of the reticuloendothelial system. 

Experimental results strongly suggest that the pathological changes during this chronic 
coronavirus infection are due to an immune-complex disease. The disease develops faster in 
animals with high antiviral antibody titres than in seronegative kittens. In seropositive kittens 
organ lesions contain viral antigen bound to IgG, free viral antigen and complement. Deposits 
of immunoglobulins and complement, especially C3, are detectable in renal glomeruli and the 
kinetics of antiviral antibody formation, circulating immune complexes and complement 
concentration correlate with the stage of disease. Also, the passive transfer of antiviral 
immunoglobulin or vaccination with inactivated FIP virus results in a marked aggravation of 
the disease upon subsequent challenge with live virus (Horzinek & Osterhaus, 1979; Hoshino & 
Scott, 1978; Jacobse-Geels et al., 1980, 1982; Loeffler et al., 1978; Pedersen, 1976; Pedersen & 
Boyle, 1980; Weiss et al., 1980; Weiss & Scott, 1981). 

The persistence of FIP virus in the presence of high antibody levels has parallels in other 
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coronavirus infections. For example, chickens inoculated with certain vaccine strains of  IBV 
can recover from a transient mild respiratory distress but several months later develop a rapidly 
progressing fatal disease. In these animals the virus persists, especially in the caecal lymph 
nodes, and a high titre of antiviral antibodies and severe kidney lesions are found (Alexander & 
Gough, 1977; Alexander et al., 1978). 

To many virologists coronaviruses will be of  interest because they provide models for the 
study of chronic disease processes. Some of the major factors which determine the outcome of 
these processes are related to virus replication, for example virulence and tropism, whilst others 
are determined by the host, for example the immune response. This review testifies to the 
progress made in understanding the basic molecular features of  coronavirus replication, 
although there remain obvious gaps in our knowledge. In particular, information on the 
molecular aspects of  persistent coronavirus infections is rudimentary. Hopefully, the use of  virus 
mutants, monoclonal antibodies and the techniques of genetic engineering will allow us to 
identify and study in detail the viral genes and gene products associated with pathogenesis. 
Some preliminary experiments in this direction have already been reported (Stohlman et al.,  
1982). With regard to factors determined by the animal clearly the immune response plays a 
crucial role in determining both the nature of the infection, and thereby the ensuing disease 
process, or as is seen in the FIP virus model the response itself can be the pathogenetic 
mechanism from which disease develops. The molecular details and genetic basis of  this 
response in these different situations are clearly of great interest. 

The authors acknowledge financial support from the Deutsche Forschungsgemeinschaf t  and thank Helga 
Kriesinger for typing the manuscript.  

Note added in proof Stern & Sefton (J. Virol. 44, 794-803; 44, 804-812) have recently shown that  O-linked 
oligosaccharides are not a universal feature of  the small coronavirus membrane  proteins. The IBV, p23 family of 
proteins contains both simple and complex type oligosaccharrides which are N-glycosidically linked and most  
likely attached to the nascent  polypeptide. The same authors have also shown that  the IBV peplomer protein is 
comprised of two polypeptide chains derived from a common intracellular precursor. Interestingly, one 
polypeptide chain is selectively lost from the IBV virion; whilst the second has  a marked tendency to form 
aggregates. The number  of  molecules comprising the morphological peplomar structure remains  unknown. 
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