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Microbiology 

Coronavirus subgenomic minus-strand RNAs and the potential for 
mRNA replicons 

(kinetics of RNA synthesis/mRNA replication) 

PHIROZE B. SETHNA, SHAN-LING HUNG*, AND DAVID A. BRIANt 

Departmcnt of Microbiology, University of Tennessee, Knoxville, TN 379960845 

Communicated by Dorothy M. Horstmann, April 24, 1989 (received for review February 28, 1989) 

ABSTRACT The genome of the porcine transmissible gas- 
troenteritis coronavirus is a plus-strand, polyadenylylated, 
infectious RNA molecule of %20 kilobases. During virus rep- 
lication, seven subgenomic mRNAs are generated by what is 
thought to be a leader-priming mechanism to form a 3'- 
coterminal nested set. By using radiolabeled, strand-specific, 
synthetic oligodeoxynucleotide probes in RNA blot hybridiza- 
tion analyses, we have found a minus-strand counterpart for 
the genome and for each subgenomic mRNA species in the 
cytoplasm of infected cells. Subgenomic minus strands were 
found to be components of double-stranded replicative forms 
and in numbers that surpass full-length antigenome. We pro- 
pose that subgenomic mRNA replication, in addition to leader- 
primed transcription, is a significant mechanism of mRNA 
synthesis and that it functions to amplify mRNAs. It is a 
mechanism of amplification that has not been described for any 
other group of RNA viruses. Subgenomic replicons may also 
function in a manner similar to genomes of defective interfering 
viruses to lead to the establishment of persistent infections, a 
universal property of coronaviruses. 

The polyadenylylated plus-strand RNA genome of the por- 
cine transmissible gastroenteritis coronavirus (TGEV) (1), 
like that of the avian infectious bronchitis coronavirus (2) and 
the mouse hepatitis coronavirus (MHV) (3), is infectious. It 
is therefore presumed that a single molecule of genomic RNA 
is sufficient for initiating infection, and much evidence now 
supports the hypothesis that genome replication occurs 
through a full-length minus-strand antigenome that also 
serves as the template for leader-primed transcription of 
subgenomic mRNA molecules (4-6). Since leader priming 
initiates at specific internal sites on the minus-strand antige- 
nome and proceeds though to the 5' end of the molecule, 
mRNAs are made that form a 3'-coterminal nested set. 
Except for the smallest species, coronavirus mRNAs are 
structurally polycistronic but function primarily as monocis- 
tronic molecules with usually only the 5'-terminal open 
reading frame being translated (7-10). The subgenomic 
mRNAs of coronaviruses, if made by the leader-priming 
mechanism, would therefore be expected to have a 5' un- 
translated leader sequence of -80 bases that is identical to 
the 5' end of the genome and a 3' noncoding terminus of "300 
bases that is identical to the 3' end of the genome (Fig. 1). This 
indeed seems to be the case from sequence data (11-14). 

Since the promoter for synthesis of the minus-strand 
antigenome by the TGEV RNA-dependent RNA polymerase 
(15) presumably resides within the 276-base noncoding region 
at the 3' end of the plus-strand genome (16), and the promoter 
for genome synthesis presumably resides within the 80-base 
antileader sequence (an estimated length) at the 3' end of the 
minus-strand antigenome, it is natural to ask whether sub- 
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FIG. 1. Structural relationships among the genome, mRNA tran- 
scripts, and synthetic oligodeoxynucleotide probes. The seven open 
reading frames (ORFS) deduced from primary sequence of the 3' end 
of the TGEV genome are drawn to scale. They are identified as P for 
peplomer protein, M for matrix protein, N for nucleocapsid protein, 
HP for hydrophobic protein, and 7.7k, 27.7k, and 9.2k for potential 
nonstructural proteins of 7.7, 27.7, and 9.2 kDa, respectively. Their 
corresponding mRNAs are identified as p, m, n, hp, 7.7k, 27.7k, and 
9.2k. The site from which the oligonucleotide probes were derived is 
indicated by an arrow. The 5' leader sequence (presumed to be 80 
bases) and the 3' noncoding sequence (276 bases) are indicated by 
heavy lines and are drawn to scale. The 3' poly(A) tail is indicated 
by a wavy line. The largest mRNA, which serves as template for 
synthesis of the viral polymerase, is presumably identical to the 
genome. 

genomic mRNAs undergo replication as does the genome, 
since they possess 3' and 5' end sequences that are identical 
to those of the genome. 

We have addressed this question by seeking the existence 
of subgenomic minus-strand RNA molecules in cells infected 
with TGEV. Synthetic oligodeoxynucleotide probes were 
used that specifically identified both full-length and subge- 
nomic plus- and minus-strand RNA species, and the kinetics 
of synthesis of the most abundant species was measured. 
Evidence for mRNA replicons in the form of replicative 
intermediates was found, and we propose that these function 
as a mechanism for mRNA amplification. We further propose 
that mRNA replicons compete with replicating genome for a 
limiting factor during RNA synthesis, perhaps the viral RNA 
polymerase, much as do defective interfering RNA species of 
some defective viruses, and that this explains how corona- 
viruses readily establish persistent infections in cell culture. 

MATERIALS AND METHODS 

Preparation of RNA from Uninfected and Infected Cells. 
Clone 116 of the Purdue strain of TGEV was plaque-purified 
and grown on swine testicle cells as described (1). The virus 
was plaque-purified again by using infectious genomic RNA 

Abbreviations: TGEV, porcine transmissible gastroenteritis corona- 
virus; MHV, mouse hepatitis coronavirus. 
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(1) and a virus stock was prepared by passing the virus five 
times, using a multiplicity of infection of -1 at each passage. 
For RNA preparation, cells were grown to confluency in 
850-cm2 roller bottles (;3.8 x 108 cells per bottle) and either 
mock-infected or infected with stock virus at a multiplicity of 
infection of 10. One hour after addition of inoculum, cells 
were rinsed twice with warmed Earle's balanced salt solution 
and either harvested for RNA extraction (0 hr postinfection) 
or refed with growth medium and incubated at 37?C until 
harvested at 0.5, 1, 1.5, 2, 4, 6, or 10 hr postinfection. Total 
cytoplasmic RNA was isolated as described (17) except that 
the lysis buffer contained 10 mM vanadyl ribonucleoside 
complex. The RNA precipitate was kept under ethanol (total 
volume of 24 ml for RNA from one roller bottle) at -20?C and 
resuspended by Vortex mixing immediately before sample 
removal. For quantitation by UV absorption, a fraction of the 
RNA was extracted with phenol/0. 1% 8-hydroxyquinoline to 
remove residual vanadyl ribonucleoside complex, which also 
absorbs at 260-nm wavelength. Ten micrograms (in -100 l1 
of precipitate suspension) was used per lane for electropho- 
resis except when RNase-resistant forms were analyzed 
(described below). 

Preparation of Virion RNA. Virus was purified from 1 liter 
of supernatant and RNA was extracted as described (16). One 
hundred microliters of precipitate suspension (from a total 
volume of 8 ml), containing =20 ng of virion RNA, was 
electrophoresed per lane. 

Preparation of Radiolabeled Oligodeoxynucleotide Probes. A 
stretch of G+C-rich sequence (57% G+C) was arbitrarily 
chosen from within the HP gene (Fig. 1) and a 26-mer oligode- 
oxynucleotide complementary to virus sense RNA and having 
the sequence 5'-CAGCATGGAGGAAGACGAGCATCTCG- 
3' (identified as probe 1) was synthesized by the phosphora- 
midite method. Probe 2 was likewise synthesized but has a 
sequence complementary to probe 1. Oligodeoxynucleotides 
were purified by size-exclusion chromatography through 
Sephadex G-25 NICK columns (Pharmacia) and the concen- 
tration of each oligodeoxynucleotide was determined by ab- 
sorbency at 260 nm, with 1 A260 unit equivalent to 20 ,ug. 
Oligodeoxynucleotide (100 ng, 11 pmol) was end-labeled by 
the forward reaction using [y-32P]ATP (ICN) and polynucle- 
otide kinase (New England Biolabs) (18). Unincorporated 
[y-32P]ATP was removed with a Bio-Spin 6 column (Bio-Rad). 
To determine the specific activity of the radiolabeled probe, it 
was assumed that all of the oligodeoxynucleotide was recov- 
ered, and the radioactivity was quantitated by spotting a 
sample onto Nytran membrane (Schleicher & Schuell) and 
then excising the spot for liquid scintillation counting in 
Scintiverse (Fisher). Specific activity of the radiolabeled 
probes ranged from 1.6 to 3.5 x 106 cpm/pmol. 

Electrophoresis and Hybridization Analysis of RNA. RNA 
was removed as resuspended precipitate in ethanol, dried 
under vacuum (Savant SpinVac), dissolved in 37 Al of lx 
Mops buffer (20 mM 4-morpholinepropanesulfonic acid, pH 
7.0/5 mM sodium acetate/i mM EDTA)/50% (vol/vol) 
deionized formamide/2.2 M formaldehyde, denatured by 
heating at 65?C for 5 min, mixed with 8 Al of loading dye (50% 
glycerol/0.25% bromophenol blue/0.25% xylene cyanol/1 
mM EDTA), and loaded onto a horizontal 1% agarose gel (20 
x 25 cm and 0.5 cm thick) made in 1 x Mops buffer containing 
2.2 M formaldehyde. Electrophoresis was carried out at 140 
V for 4 hr at room temperature in 1 x Mops buffer. RNA was 
transferred to Nytran membrane (Schleicher & Schuell) by 
using a Vacublot apparatus (LKB) and 20x SSC (lx SSC is 
0.15 M NaCl/0.015 M sodium citrate) for 6 hr. From separate 
experimentation with radiolabeled RNA, the degree of trans- 
fer was found to range from 80% for the smallest RNA species 
to 60% for the largest (genome). RNA was UV-crosslinked 
(19) and the membrane was cut into two halves and prehy- 
bridized at 55?C for 2 hr in 5x SSC/0.1% Ficoll/0.1% 

polyvinylpyrrolidone/0.1% bovine serum albumin/S0 mM 
sodium phosphate, pH 7.0/1% NaDodSO4 containing 100 ug 
of sheared salmon sperm DNA and 50 ,g of tRNA per ml. 
Radiolabeled oligodeoxynucleotide probes (-2 x 107 Ceren- 
kov cpm per 120-cm2 membrane) were denatured at 90?C for 
5 min and added to the prehybridization solution, and hy- 
bridization was carried out at 55?C for 16 hr. The membrane 
was given three 10-min washes in 2 x SSC at 25?C and a fourth 
wash for 30 min at 55?C, air-dried, and exposed to Kodak 
XAR-5 film at -70?C with an intensifying screen for 18-24 hr. 
Radioactive bands were excised for liquid scintillation count- 
ing in Scintiverse. The number of molecules of each RNA 
species per cell was determined from the specific activity of 
the individual probe and from our measured yield of 10 ,tg of 
RNA per 1.6 x 106 cells. 

Identification of Double-Stranded Replicative Forms. Intra- 
cellular RNA extracted 6 hr postinfection was used for 
detecting double-stranded RNA. RNA (60 ,tg) in ethanol 
suspension was pelleted, washed once with 80% ethanol, 
dried, dissolved in 40 ul of 10 mM Tris HCl, pH 7.2/300 mM 
NaCI/10 mM MgCl2/1 mM EDTA containing 10 ,ug of RNase 
A (Sigma) per ml, and incubated at 37?C for 30 min. Digestion 
was terminated by addition of NaDodSO4 (final concentra- 
tion, 2%) followed by phenol/chloroform and chloroform/ 
isoamyl alcohol extraction, and RNA was precipitated by 
adding 2.2 volumes of ethanol. RNA was analyzed by elec- 
trophoresis and hybridization as described above. RNase- 
treated RNA (30 ug) and untreated RNA (10 ,tg) were ana- 
lyzed in adjacent lanes. 

RESULTS 
There Exists a Subgenomic Minus-Strand Counterpart for 

Each Plus-Strand mRNA Species. Studies in this laboratory 
(16, 17, 20, 21) have determined the nucleotide sequence of 
the 3'-terminal 8.5 kilobases of the TGEV genome and have 
identified seven open reading frames (Fig. 1). The structural 
protein genes have also been sequenced in other laboratories. 
(22-24). Each open reading frame in Fig. 1 is preceded by the 
consensus intergenic sequence CYAAAC, which is thought 
to function in leader priming of transcription, and thus an 
mRNA for each of these open reading frames can be expected 
(14, 16, 17, 25). Polyadenylylated RNAs for six of the seven 
open reading frames were previously identified by metabolic 
labeling experiments (15), and the species encoding the major 
structural proteins as well as the 27.7-kDa putative nonstruc- 
tural protein have been identified by in vitro translation 
studies (8). 

To determine by a second experimental approach whether 
a plus-strand transcript is made for each of the seven open 
reading frames, RNA hybridization analyses were done using 
a single-stranded, minus-strand nucleic acid probe (probe 1) 
that is complementary to a region within the HP gene, the 
3'-most open reading frame (Fig. 2, lanes 1-10). Because of 
the well documented 3' nested-set arrangement of coronavi- 
rus mRNAs (26-28), a 3'-end probe can be expected to 
identify all mRNAs, including the genome, which apparently 
functions as mRNA for synthesis of the RNA-dependent 
RNA polymerase (29, 30). Fig. 2 lanes 1-10 illustrate that 
probe 1 from within the HP gene does identify this mRNA 
(21) (identified as hp mRNA) and seven larger RNA species 
of the appropriate size to represent transcripts of the iden- 
tified open reading frames and progeny genome. These are 
respectively named hp, n, m, 9.2k, 27.7k, 7.7k, p, and 
genome. The specificity of this approach was confirmed by 
using a 26-mer oligodeoxynucleotide probe, also having a 
G+C content of 57% but complementary to a region within 
the N gene. As would be predicted, the N-gene probe 
identified the n mRNA and all larger species but not the hp 
mRNA (data not shown). 

This content downloaded from 62.122.73.84 on Fri, 2 May 2014 17:45:44 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


5628 Microbiology: Sethna et al. Proc. Natl. Acad. Sci. USA 86 (1989) 

Plus Strand RNA Minus Strand RNA 
I I I . 1 

t\x &O o4F Y' & C~ $o CK4 ?'Sf C 2 . * *, * * . * * * . * . * . . *, ., * . * . ., * * . . * . ... ... . w* * .. . * . . * . . ^-origin 

-highmol.wt.RNA 
genome_- 3 -cogenome 

p,. 

7.7k_.- ..m.7k 
27.7k'-*277k 

hp'- * > ' @ i * ~ cothp 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

FIG. 2. Identification of subgenomic plus- and minus-strand RNA species by probes derived from the HP gene sequence. RNA from purified 
virions or from the cytoplasm of uninfected or infected cells (hours postinfection are shown above lanes) was electrophoresed, blotted, and 
hybridized with radiolabeled probe 1 to detect plus-strand RNA species (lanes 1-10) or with probe 2 to detect minus-strand RNA species (lanes 
11-20). a indicates antisense, or minus-strand, polarity; asterisks indicate uncharacterized RNA species (see text); three dots at the top of each 
lane identify the well. 

To determine whether subgenomic minus-strand RNAs 
exist, probe 2, which is complementary to probe 1, was used 
on RNA prepared and analyzed the same way, and a coun- 
terpart to each plus-strand species was found (Fig. 2, lanes 
11-20). That is, there exists a 5'-coterminal nested set of 
RNA species appearing as complements to the mRNA spe- 
cies. Four observations suggested that probes designed to 
detect minus strands were not merely detecting abundant 
mRNA molecules nonspecifically. (i) Three of the eight 
minus-strand species (ahp, a27.7k, and a7.7k) did not mi- 
grate with the same mobility in formaldehyde gels as did their 
presumed plus-strand counterparts [Fig. 2 and data (not 
shown) obtained by electrophoresis of plus and minus strands 
in alternating lanes]. Differences in migration rates would be 
expected if base compositions between the plus- and minus- 
strand counterparts differed significantly. A difference would 

also be expected if there were no poly(U) copy of the 3' 
poly(A) tail on the mRNA. (ii) A probe from within the N 
gene (a complement of the 26-mer described above), designed 
to detect minus strand, did so and also detected the larger 
minus-strand species, but not ahp, as would be expected if 
the minus-strand RNAs formed a 5'-coterminal nested set 
(data not shown). (iii) The maximal abundance of minus- 
strand species occurred at 4 hr postinfection, whereas that of 
plus-strand species occurred at 6 hr (Fig. 3). (iv) Probes used 
to detect minus-strand species did not identify virion genomic 
RNA (Fig. 2, lane 20, and data not shown), whereas both 
probes used to detect plus-strand sequences did (Fig. 2, lane 
1, and data not shown). 

Three species of minus-strand RNA for which we have no 
explanation at the present time were identified with probe 2 
(asterisks in Fig. 2). These are a broad band of high molecular 

A A Plus B Minus A ~~~~~Strand BStrand 
RNA RNA 

o n 0~~~~~~~~~~~~~~~~~~~~~~~~~~~( 

otp hP 

(D Q~~~~~~~~~~~~~~~~~~~~~~~~~~~~~) 

Ihp a27 FIG. 3. Kinetics of plus-strand 
m (x 7.7k (A) and minus-strand (B) RNA 
7.7 k 1 /27.7k synthesis. Radiolabeled bands in 

-/ 2i.7k ag * agenome Fig. 2 were excised and radioac- 
/p ap tivity was measured by scintilla- 

; o = = genome >I tion spectroscopy. Copy numbers 
4 8 4 8 were determined as described in 

Time (Hours) Materials and Methods. 

This content downloaded from 62.122.73.84 on Fri, 2 May 2014 17:45:44 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Microbiology: Sethna et al. Proc. Natl. Acad. Sci. USA 86 (1989) 5629 

weight RNA migrating between the antigenome and the well 
of origin, a species located between a7.7k and ap, and a 
species located between ahp and an. 

Subgenomic, Double-Stranded Replicative Forms Corre- 
spond in Size to mRNA Species. If a minus-strand counterpart 
of each mRNA exists that might be involved in the replication 
of mRNA, then a corresponding RNase-resistant double- 
stranded form should be found in cytoplasmic RNA. To 
identify double-stranded forms, cytoplasmic RNA isolated 6 
hr postinfection was digested with pancreatic RNase A in the 
presence of 0.3 M NaCl and analyzed by RNA hybridization 
after electrophoresis in formaldehyde/agarose gels. Both 
plus and minus strands corresponding in size to mRNA 
species were found, indicating that subgenomic replicative 
forms were present (Fig. 4A). Furthermore, within the dou- 
ble-stranded forms, there were very few full-length (i.e., 
mRNA-length) plus-strand RNAs (Fig. 4A, lanes 2 and 6), but 
full-length minus-strand RNAs were abundant (lane 4). These 
results indicate that the replicative forms were most probably 
derived from replicative intermediate structures having a 
single minus-strand template and multiple plus-strand tails 
(Fig. 4B). Such structures would generate only short frag- 
ments of protected plus-strand molecules following RNase 
digestion, and these fragments would be too small to be 
resolved by electrophoresis in a 1% agarose gel. Replicative 
intermediates having this structure have been characterized 
for genome-length RNA during picornavirus and togavirus 
replication, and they were found to occur at the time of peak 
plus (genome)-strand synthesis (31, 32). 

Both Plus- and Minus-Strand Subgenomic RNA Species Are, 
in General, Synthesized at a Rate Inversely Related to Their 
Length. Two points emerge from our quantitative analysis of 
plus- and minus-strand RNA synthesis. First, with the ex- 
ception of the shortest (hp) mRNA, the shorter RNA species 
were made at a higher rate than longer species. n mRNA and 
its complement were made most rapidly, followed by hp, then 
m, and so on in order of increasing length. This can be 
observed by noting slopes throughout the first 6 hr for 

plus-strand RNA synthesis (Fig. 3A) and throughout the first 
4 hr for minus-strand RNA synthesis (Fig. 3B). Second, 
although we were unable to measure turnover rates with our 
methods, the number of plus-strand molecules at all times 
exceeded the number of minus strands for any given species. 
At 6 hr postinfection, the time of peak plus-strand synthesis, 
this ratio ranged from 2 for genome RNA to 10 for n mRNA 
(Fig. 3A). At 4 hr postinfection, the time of peak minus-strand 
synthesis, the molar ratio of subgenomic minus-strand spe- 
cies to antigenome ranged from 1 for ap to 8 for an (Fig. 3B). 

DISCUSSION 
The processes of RNA transcription and replication are one 
and the same for picornaviruses and those plus-strand viruses 
for which only one mRNA molecule is made, which is 
identical or nearly identical to genomic RNA (33). For the 
plus-strand togaviruses that synthesize a subgenomic plus- 
strand mRNA molecule as well as genome-length mRNA, 
transcription and replication are separate processes with 
regard to the subgenomic mRNA but are apparently the same 
for genome-length mRNA (34). In the case of togaviruses, it 
is not clear why the subgenomic mRNA, which has a 3' 
terminus that is identical to the 3' end of the genome, does not 
undergo replication to generate a subgenomic minus strand. 
It has been proposed that the full-length genome, which is 
known to circularize, does so and allows the 5' end to interact 
with the 3' end of the molecule in such a way as to enable 
polymerase initiation for minus-strand synthesis (34). The 
subgenomic mRNA is missing whatever is required at the 5' 
terminus (possibly a stable double-hairpin structure) for 
circularization or for polymerase recognition, or both, and 
minus-strand synthesis does not take place. 

The picture is different, however, for coronaviruses. Al- 
though one mRNA species (the largest) is apparently iden- 
tical to genomic RNA, the subgenomic mRNAs have both 5' 
and 3' termini that are identical to those of the genome 
(11-14), so theoretically there is no reason why they should 
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FIG. 4. (A) RNase-resistant species in the replicative form. Cytoplasmic RNA obtained from cells 6 hr postinfection was digested with RNase 
A in 0.3 M NaCI, electrophoresed in a denaturing gel, transferred, and hybridized with probes from the HP gene sequence. Lane 1, 10 jig of 
untreated RNA, and lane 2, 30 ,ug of RNase-treated RNA, were hybridized with probe 1. Lane 3, 10 Ag of untreated RNA, and lane 4, 30 Ag 
of RNase-treated RNA, were hybridized with probe 2. Lanes 5 and 6 are extended exposures of lanes 1 and 2. (B) Model showing the relationship 
between the replicative intermediate (RI) and resulting double-stranded replicative form (RF) following RNase digestion for a replicative 
intermediate of 2.5 kilobases. Sites to which probes 1 (on the plus strand) and 2 (on the minus strand) would bind are depicted by a filled circle 
and an open circle, respectively. 
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not replicate the same as the genome, provided the promoters 
for minus- and plus-strand synthesis lie within these terminal 
sequences. Experiments with MHV suggested that this is 
probably not the case, since only genome-length minus- 
strand RNA and genome-length replicative forms were found 
in infected cells (4, 5). 

Our data show that TGEV exhibits a major difference from 
MHV with regard to the behavior of subgenomic molecules. 
Subgenomic minus strands were found in TGEV-infected 
cells that cannot, on the basis of kinetics of appearance, be 
breakdown products of antigenomic RNA. We propose that 
they arose by the action of replicase on mRNA templates. 
Furthermore, RNase-resistant replicative forms were found 
that corresponded in size to TGEV mRNAs and bore struc- 
tures that most probably arose from parental replicative 
intermediates having a single minus-strand template and 
multiple plus-strand tails. Such structures indicate that sub- 
genomic minus strands, in turn, serve as templates for the 
synthesis of new mRNAs. Proof for our assertions regarding 
the origin and function of subgenomic minus strands, how- 
ever, will require further evidence showing subgenomic 
double-stranded forms to be replicationally and transcrip- 
tionally active. 

It is not clear why there is such a striking difference 
between TGEV and MHV with regard to the existence of 
subgenomic minus-strand RNAs. It is known that much 
divergence exists among coronavirus species in both the 
primary structure of genes of homologous proteins and in the 
arrangement of genes along the genome (reviewed in ref. 35). 
In many cases insertions or deletions appear both in genes 
and in noncoding sequences of closely related strains. High- 
frequency recombination among coronaviruses undoubtedly 
contributes to some gene rearrangements (6). It is possible, 
therefore, that polymerase recognition signals that are func- 
tional on TGEV mRNA species for the synthesis of minus 
strands have been lost or altered on MHV subgenomic 
mRNAs. 

The phenomenon of subgenomic mRNA replication does 
not rule out the mechanism of leader-primed transcription 
but, rather, suggests a second compatible mechanism by 
which mRNA can be produced. Conceivably, mRNA repli- 
cation could begin with nascent products of leader-primed 
transcription or with mRNA carried into the cell as part of the 
infecting virion. We predict that leader-primed transcription 
would be the more important source, however, because the 
number of mRNAs incorporated into virions is small (data 
not shown). For any given subgenomic mRNA species there 
is <1 copy incorporated for every 10 copies of genome. 

Two biological consequences can be predicted from the 
replication of subgenomic mRNAs. The first is that it may be 
a mechanism for rapidly amplifying mRNA levels for the 
synthesis of structural proteins that are required in highest 
numbers during virus replication. To test this hypothesis, it 
will be important to determine whether there are structural or 
functional differences between mRNAs produced by the 
leader-priming and replication mechanisms. The second con- 
sequence is that replicating mRNAs would most probably 
compete with replicating genome for limiting factors required 
in RNA replication, possibly the RNA polymerase, and 
behave as defective interfering particle RNAs having internal 
deletions (reviewed in refs. 36 and 37). This has been pro- 
posed to result in attenuation of viral cytopathogenesis and 
allow the establishment of persistent viral infections. This 
may explain how coronaviruses can so readily establish 
persistent infections in cell culture. 
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