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Coronavirus induced primary demyelination: indications for the involvement of a humoral immune
response

Coronavirus MHV-JHM infection of rodents can result in demyelinating encephalomyelitis.
We analysed histological changes induced by coronavirus MHV-JHM infection in Lewis rats.
Besides an acute disease (AE), chronic panencephalitis (CPE) and subacute demyelinating
encephalomyelitis (SDE) were induced. These disease types were differentiated by the incu-
bation period, the localization of lesions, the type of tissue damage and distribution of virus
antigen. In AE and CPE, virus antigen was detected in neurons, astrocytes and oligodendro-
cytes, whereas in SDE neurons lacked virus antigen. Viral nucleocapsid protein (N) was present
in the cytoplasm and the spike protein (S) was displayed on the surface of infected neural cells.
However, expression of S protein relative to N protein was severely impaired in SDE lesions.
Quantitative analysis of infiltrating inflammatory cells revealed that the number of macro-
phages and T cells were similar in lesions of AE, CPE and SDE. In contrast to that, SDE lesions
contained a significantly higher number of IgG+ B cells and plasma cells. In addition active
demyelinating SDE lesions displayed an enhanced IgG content and deposits of complement C9.
These results indicate that virus induced primary demyelination could be a consequence of
antibody mediated cytotoxicity. Furthermore, a reduction in the number of cells producing
spike protein in the chronic forms of the disease indicates down-regulation of this protein,
possibly mediated by anti-S antibodies.

Keywords: corona virus, MHV-JHM, spike protein, encephalitis, demyelination, remyelination,
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INTRODUCTION

Inflammatory demyelination is the main pathological change in a variety of neurological
diseases of humans. Some epidemiological evidence suggests that exogenous factors, possibly
viral infections, may play a role in the induction of inflammatory demyelinating diseases, such
as multiple sclerosis (Waksman & Reingold, 1986). Coronavirus infections of rodents are
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models to study the pathogenesis of such diseases (Dal Canto & Rabinowitz, 1981; Kyuwa &
Stohlman, 1990). Coronaviridae are enveloped viruses with a positive stranded RNA-genome
(Spaan, Cavanagh & Horzinek, 1988). The spike protein S, which forms peplomers on the
virion surface, and the nucleocapsid protein N are structural proteins of major importance for
virus-host interactions and the immune response.

Intracerebral infection of weaning rats with JHM coronavirus results either in an acute
panencephalitis (AE) or in a subacute demyelinating encephalomyelitis (SDE). The expression
of these disease variants depends upon many factors such as the rat strain, the age of the animal
at the time of infection and the virus strain (Cheever et al., 1949; Nagashima et al., 1978, 1979;
Sorensen, Percy & Dales, 1980; Wege er al., 1983; Koga, Wege & ter Meulen, 1984; SSrensen
etal., 1984; Wege, Dorries & Wege, 1984a; Watanabe, Wege & ter Meulen, 1987).

The pathogenetic mechanismsinvolved in tissue damage in coronavirus induced demyelinat-
ing encephalitis are still controversial. They may include a direct virus induced cytolytic effect in
infected cells (Lampert, Sims & Kniazeff, 1973; Weiner, 1973), immune mediated destruction of
virusinfected cells or virusinduced autoimmune reactions (Watanabe, Wege & ter Meulen, 1983;
Wang, Stohlman & Fleming, 1990). We now present evidence that the pattern and cell tropism
of virus infection closely correlates with the topographical distribution and cell specificity of
tissue destruction in the CNS of infected animals. In addition, the expression of coronavirus S
protein on the surface of infected cells in vivo as well as their reduced expression in chronic
diseases and also the presence of IgG and complement C9 in actively demyelinating lesions
suggests that antibodies against this viral protein may be involved in the pathogenesis of chronic
demyelinating lesions in this model.

MATERIALS AND METHODS
Virus

The murine Corona virus strain MHV-JHM was passaged by intracerebral infection of mice
and adapted to grow on Sac-cell cultures (Nagashima ef al., 1978; Wege et al., 1984a).

Animals

Specific pathogen free Lewis rats were obtained from the Zentralinstitut fiir Versuchstierzucht,
Hannover, FRG. The rats were intracerebrally inoculated with 800 PFU of the MHV-JHM
virus, between 3 and 8 weeks of age.

Histology

Animals were perfused with 4% paraformaldehyde dissolved in 0.1 M phosphate buffer. Parts of
the brain and spinal cord were embedded in paraffin. Paraffin sections (3 um thick) were stained
with haematoxylin & eosin, with Kliiver-Barrera stain for myelin and with Bielschowsky silver
impregnation for axons, or subjected to immunocytochemistry. Small tissue samples from
spinal cord, brain stem and cerebellum were either processed for immune electron microscopy
or post-fixed in 3% phosphate buffered glutaraldehyde, osmicated and routinely embedded in
Epon for electron microscopy.

Immunohistochemical staining was performed with the avidin/biotin technique or with the
alkaline phosphatase anti-alkaline phosphatase (APAAP) method as described in detail pre-
viously (Lassmann et al., 1986; Vass et al., 1989). Biotinylated species specific anti-mouse and
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anti-rabbit sera were purchased from Amersham, UK; horse radish peroxidase labelled Avidin
from Sigma, St Louis, USA, rabbit anti-mouse and APAAP complex from Dakopats,
Denmark. The following primary antibodies and sera were used: a polyclonal rabbit anti JHM
serum (Wege, Watanabe & ter Meulen, 1984b); mouse monoclonal antibodies against nucleo-
capsid (N 556) and surface protein (§-D15 and S-E16) (Wege er al., 1984a); a polyclonal rabbit
serum against complement component 9 (Linington et al., 1989); a rabbit serum against rat
albumin (Nordic, Netherlands) and a biotinylated anti rat IgG serum (Amersham, UK) to
stain plasma cells; monoclonal antibodies against glial fibrillary acidic protein (GFAP)
(Boeringer Mannheim, Germany); myelin basic protein MBP (Hybtritec, USA); myelin
oligodendroglial glycoprotein (MOG) (8-18-C5) and PO (a gift from Dr C. Linington). EDI
(Serotec, UK) and W3/13 (Sera-lab, UK) were applied to stain monocytes, T cells and
neutrophils respectively.

Foridentification of the infected glial cell type (oligodendrocytes or astrocytes) we used both
a morphological approach (as shown in Figure 5b,e) and a double labelling immunohisto-
chemistry procedure. As a first step viral antigen was visualized using the polyclonal rabbit
serum and the avidin/biotin technique. Subsequently, oligodendrocytes and astrocytes were
identified on the same sections using mouse monoclonal antibodies against myelin oligo-
dendroglial glycoprotein (MOG) (8-18-C5) or glial fibrillary acidic protein (GFAP) and the
alkaline phosphatase anti-alkaline phosphatase (APAAP) technique.

Immune electron microscopy

For immune electron microscopy an avidin/biotin technique was employed (Lassmann et al.,
1986). Sections cut with a razor blade were incubated for 8 h in each step with the following
antisera, diluted in phosphate-buffered saline containing 10% fetal calf serum (FCS).
Monoclonal antibodies against nucleocapsid (N556) or spike protein (S-D15 and S-E16) were
used as a primary layer; sections were then incubated with biotinylated anti-mouse immuno-
globulin (Amersham, UK), to which 3% rat serum was added to abolish cross reactivity
completely. Horse radish peroxidase labelled avidin (Sigma, St Louis, USA) was applied in
the next step and the reaction was visualized by a diaminobenzidine reagent. Sections were
osmicated and embedded in Epon.

Quantitative evaluation

Quantitative studies on virus antigens were performed in the spinal cord white matter of 14 rats
from different stages of the disease. N as well as S protein expressing glial cells were evaluated in
consecutive sections at least in two spinal cord levels per animal. Similarly plasma cells IgG ™),
macrophages (ED1 %) and T cells (W3/13*) were counted in at least two spinal cord levels of all
animals in each group. Non-parametric Mann-Whitney U test was used to analyse statistical
differences in the infiltration with inflammatory cells and in the relative proportion of S
expressing cells between AE, CPE and SDE.

RESULTS

Clinical disease

The following study was performed with tissue samples from 29 diseased Lewis rats which were
selected for detailed neuropathological investigation frqm a total number of 400 infected Lewis
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Table 1. Topographical distribution of inflammatory or demyelinating lesions and of virus infected cells

Region Inflammation|lesions Virus positive cells

AE CPE SDE AE CPE SDE
Lumbar spinal cord 6/6 S/5 9/11 5/6 5/5 10/11
Thoracical spinal cord 6/6 5/5 12/14 5/6 5/5 11/14
Cervical spinal cord 6/6 5/5 12/14 5/6 5/5 11/14
Brain stem 6/6 5/5 12/14 5/6 575 9/14
Cerebellar white matter 6/6 5/5 5/14 4/6 5/5 6/14
Cerebellar cortex 4/6 2/5 0/14 5/6 5/5 0/14
Basal ganglia 6/6 5/5 2{14 5/6 5/5 0/14
Hippocampus 5/6 2/5 1/14 5/6 4/5 2/14
Periventricular white matter 5/6 2/5 3/14 4/6 4/5 3/14
Cerebral cortex 3/6 2/5 0/14 S/6 4/5 0/14
Meninges 6/6 5/5 14/14 0/6 0/5 0/14

rats. Intracerebral infection of adult Lewis rats with MHV-JTHM resulted in an encephalo-
myelitis in 87% of the animals. The majority of the rats (66%) developed clinical signs within
8-12 days. This acute diséase was characterized by ruffled fur, an ataxic, trembling gait and
paralysis of fore- or hindlegs and was usually lethal. A milder and more chronic type of the
disease was displayed by 21% of the rats, characterized by ruffled fur, an ataxic, trembling
gait and paralysis of fore- or hindlegs several weeks to months post-inoculation. Twenty-five
animals in this study were killed 8 to 210 days after infection, thatis 1 to 10 days after the onset of
clinical signs. Four additional animals, which recovered from the chronic disease with complete
disappearance of clinical signs, were dissected 16 to 185 days after the onset of disease.

General neuropathology

Based on the neuropathological findings and the incubation period three different disease
patterns (acute encephalitis [AE], chronic panencephalitis [CPE] and subacute demyelinating
encephalitis [SDE]) were distinguished. The lesional topography and the main alterations in
these pathological entities are summarized in Table 1.

Acute encephalitis

All six animals with an incubation period of less than 2 weeks showed high numbers of virus
infected cells and perivascular inflammatory infiltrates distributed throughout the CNS. In
addition, focal parenchymal infiltrations were present, predominantly in the grey matter of
spinal cord, brain stem and hippocampus. These infiltrates consisted mainly of macrophages,
lymphocytes and polymorphonuclear cells. Damaged nerve cells with either swollen and vacuo-
lated, or dark and shrunken cytoplasm were frequently observed in the lesions. Occasionally
glial nodules, composed of cells with dense and rod-like nuclei, surrounded such degenerating
cells. Axon spheroids associated with secondary breakdown of myelin sheaths were observed
scattered in the white matter, but primary demyelination was not seen. Activation of astrocytes
visualized by thickening of their GFAP positive cellular processes was constantly seen at sites of
inflammation. Albumin, IgG and complement reactivity was very low and diffusely dispersed
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Figure 1. Cystic necrotic lesion of CPE in the grey matter of spinal cord. a, Massive infiltration with macrophages
(EDI). x 70. b, Same area as shown in a, stained for viral nucleocapsid protein. Infected cells surround the necrotic
lesion. x 70. ¢, d, the same lesion at higher magnification x 150 stained for MBP, ¢, and GFAP, d, degraded myelin in
macrophages (arrow), ¢, complete loss of astrocytes in the lesion and gliosis in the surrounding tissue, d.

throughout the CNS tissue. No perivascular or parenchymal granular C9 deposits were
observed.

Chronic panencephalitis
Similar changes to those described in AE were present in five rats with the late onset type of the

disease, but they were more severe. The most conspicuous findings were symmetrically arranged
necrotic lesions in the grey matter (Figure 1), most frequently encountered in the spinal cord and
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brain stem. In these lesions, all structures including neurons, glial cells, axons and myelin
sheaths were destroyed. Virtually all cells remaining within the lesions could be identified as
inflammatory cells by the use of macrophage and lymphocyte markers (Figure 1a). In the centre
of the lesions there was a complete loss of GFAP reactivity, which contrasted with the dense
network of GFAP positive cells and processes in the surrounding tissue (Figure 1d).

Inanimals with prolonged disease we also found well demarcated areas of cystic parenchymal
necrosis, especially in the grey matter of the spinal cord. Only a minor inflammatory reaction,
consisting mainly of macrophages, was present within these lesions. Such areas were clearly
demarcated from the adjacent tissue by a rim of gliosis.

The levels of immunoreactivity for albumin, IgG and complement C9 were very low, but in
areas of pronounced inflammatory infiltration or in necrotic lesions a slightly stronger, diffuse
staining was detected. No perivascular or parenchymal granular C9 deposits were observed.

Virus infected cells in AE and CPE were disseminated throughout the CNS, in grey and
white matter. They were found in highest density in the grey matter of spinal cord and brain stem
(Table 1). Positive cells were frequently arranged in clusters, showing a characteristic patchy
appearance at low magnification. Focal, parenchymal, inflammatory infiltration was associated
with these clusters. In CPE, infected cells were found to be particularly numerous in the
periphery of cystic necrotic lesions (Figure 1b), whereas cells expressing virus antigen were rare
within the necrotic centres.

Subacute/chronic demyelinating encephalomyelitis

In another group of 14 animals, primary demyelinating lesions were found which were charac-
terized by selective loss of myelin sheaths and, apart from the presence of few axon spheroids,
showed relative sparing of axons. The lesions were restricted to the white matter and were
mainly found in the spinal cord and brain stem and in the cerebellar and periventricular white
matter. We were able to differentiate between various subtypes of demyelinating lesions,
apparently reflecting different stages of lesion formation.

Early lesions were marked by a diffuse, spongiform loosening of myelin structures (Figure
2a). Astrocytes were strongly reactive for GFAP (Figure 2b). These lesions were densely
infiltrated with macrophages, lymphocytes and plasma cells.

Sharply demarcated plaques, completely devoid of myelin sheaths represented a second type
of lesion (Figure 2c). A massive accumulation of lipid laden macrophages was seen predomi-
nantly within the plaques (Figure 3a), whereas lymphocytes were located mainly along the
actively demyelinating borders of the lesions. Almost all the cells remaining in the demyelinated
plaques expressed markers specific for inflammatory cells which suggested an extensive loss of
glial cells. Such a loss was also demonstrated by the reduced immunohistochemical staining for
GFAP (Figure 2d) and for myelin oligodendroglia glycoprotein (MOG). In contrast to this
ﬁ?cSthé, marked gliosis surrounded the lesions. Nerve cells were not involved in the pathology
o .

Strong albumin staining, indicating blood-brain barrier damage, was detected in most
dfemyclinating lesions, whereas depositions of IgG and complement C9 (Figure 3b), showing
diffuse and granular staining patterns, were more restricted, presumably to areas of active
demyelination.

Four animals that recovered from the demyelinating disease showed peripheral, Schwann
cell remyelination as early as 16 days after onset of clinical signs. Newly synthesized myelin
sheaths were easily recognized with markers specific for peripheral myelin (PO protein) (Figure
2e). We observed a persistent macrophage infiltration; a few such cells were still present 150 days
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Figure 2. a, b, Spongiotic lesion of SDE. a, Spongiform vacuolation of myelin sheaths. MPB. x 70. b, On serial
section, astrocytes are strongly reactive for GFAP. x 70: ¢, d, Demyelinated plaque. Serial sections stained for MBP
and GFAP. x 70. ¢, Loss of myelin sheaths in the plaque, degraded MBP positive myelin in macrophages. d,
Astrocytes are absent in the lesion but there is marked surrounding gliosis. e, f, remyelinated focus, PO pasitive
myelin sheaths, indicating peripheral remyelination e, no GFAP reactivity in the focus but gliosis in the surrounding

tissue. Serial sections. x 172.
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Figure 3. a, Demyelinating lesion; accumulation of macrophages within the plaque. ED1. x 70. b, Serial section.
Complement C9 depositions in the demyelinating lesion. ¢, Even distribution of infected cells in spongiotic lesion;
same area as shown in Figure 2a, b. Nucleocapsid protein. x 70. d, Infected cells surrounding the demyelinated
plaque; same area as shown in Figure 2¢, d. anti N, x 70.

after the disappearance of clinical disease, but we could detect no other inflammatory cells.
Furthermore remyelinating foci were characterized by a loss of GFAP* astrocytes and MOG
reactive oligodendrocytes in the lesions. A gliotic scar demarcated the focus from the
surrounding tissue (Figure 2f).

Virus antigen in SDE was almost completely restricted to the white matter; it was most
frequently detected in spinal cord and brain stem and, in a minority of cases, also in cerebellar
and periventricular white matter (Table 1). In spongy lesions, infected cells were evenly distri-
buted (Figure 3c), whereas in demyelinated plaques antigen-containing cells were concentrated
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in the marginal zones of active demyelination (Figure 3d). Positive cells were rare in the centre of
the demyelinated plaques. Furthermore, some inactive demyelinated lesions showed no infected
cells at all; in particular, we were not able to demonstrate virus antigen in remyelinated lesions.

Quantitative comparison of inflammatory cells in AE, CPE and SDE
There were no signficant differences in the number of infiltrating T cells and macrophages
between active lesions of AE, CPE and SDE (AE: 44 (26-70) T cells/mm?, 231 (98-433) macro-
phages/mm?;, CPE: 128 (46-220) T cells/mm?, 697 (290-960) macrophages/mm? SDE: 147
(7-326) T cells/mm?, 526 (165-1078) macrophages/mm?). Infiltration with plasma cells however
was significantly higher in SDE than in AE and CPE (see Figure 4).

Identification of infected cells and subcellular distribution of virus antigen and virus particles

Infected cells were identified by their typical morphological appearance and by double-labelling
immunocytochemistry. Whereas it is comparatively simple to spot infected nerve cells and
astrocytes, it is generally much more difficult to identify oligodendrocytes. However, three
observations suggest that oligodendrocytes are a major infected cell type. (i) Single cells were
double labelled for MOG and virus proteins. (ii) A high number of virus positive cells displayed
the morphological characteristics of oligodendrocytes (e.g. chains of small round cells in the
white matter). (iii) Although microglial cells are sometimes difficult to differentiate from
oligodendrocytes morphologically, they are usually positive for ED1 under inflammatory
conditions. ED1 positive, virus infected cells however, were extremely rare.

In AE and CPE, virus antigen was detected in nerve cells, astrocytes, oligodendrocytes and
axon spheroids (Figure 5a—c). In SDE, oligodendrocytes and astrocytes contained virus antigen
but neurons did not. Only rarely did we observe virus antigen in macrophages within the lesions;
no virus antigen was found in inflammatory cells of perivascular cuffs.

Differences in the intracellular distribution of N and S protein were clearly visible by light
microscopy. N protein was spread out diffusely in the cytoplasm of infected cells (Figure Sa—c),
whereas S protein appeared as granular or linear cytoplasmic material (Figure Se).



Figure 5. Infected a nerve cell, b astrocyte and ¢ oligodendrocytes stained for JHM nucleocapsid protein showing
diffuse staining of the cytoplasm. x 700. e, S protein shows a linear or granular staining pattern. x 700. d, Immune
electron micrograph, cytoplasmatic patches of nucleocapsid protein (arrows). x 11 200. f, g, immune electron
micrograph, S protein reaction product on stacks of endoplasmic reticulum (short arrows), perinuclear cisterns,
vesicles and on the cell surface membrane (arrowheads). f, x 11 200. g, x 14 000.
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Immune electron microscopy demonstrated nucleocapsid protein as a granular reaction
product lying free in the cytosol, leaving mitochondria, endoplasmic reticulum, Golgi
apparatus, vesicles and other organelles unstained. It was either evenly filling the whole cell and
all cell processes or forming focal aggregations (Figure 5d).

S protein, in contrast, was strictly associated with membranes, showing a patchy or continu-
ous linear staining pattern. Reaction product was found on perinuclear cisterns, endoplasmic
reticulum and on vesicles. In addition, smaller amounts of S protein were also expressed on the
extracellular side of the surface membranes of infected cells (Figure 5f,g).

Intracytoplasmic accumulations of electron dense material were observed by conventional
electron microscopy, corresponding in structure and localization to nucleocapsid protein or
core particles. Although, in adjacent paraffin embedded sections, up to 700 virus positive cells/
mm? were counted, only two or three of these cells in the same area actually contain morpho-
logically recognizable virus particles. The 100 nm, round virus particles were always found
within vesicles of cells with an otherwise normal appearance. No virus particles were found in
ballooned or pyknotic, degenerating cells.

Expression of nucleocapsid and spike protein in AE, CPE and SDE

When quantifying the extent of the infection, we also compared, on consecutive paraffin sec-
tions, the number of cells stained positively for N or S protein (Figure 6). Although there were
always fewer cells which expressed detectable levels of S protein than nucleocapsid protein, the
degree varied in different animals and lesion types. In AE an average of 60% (between 40 and
74%) of N positive cells contain S protein. In SDE, however, a significantly lower proportion of
cells (P<0.01 in Mann-Whitney U test) was stained with S specific antibodies, i.e. only about
15% (between 5 and 30%) of N reactive cells. The values of relative S expression in CPE
{between 29% and 41%) were significantly lower than in AE (P <0.05) but significantly higher
than in SDE (P <0.05).
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DISCUSSION

This study gives a detailed neuropathological description of changes following infection of rats
with a neurotropic coronavirus. An array of lesions, which differ in complexity, was observed.
Some evidence was obtained that the antiviral immune response may contribute to primary
demyelination and virus persistence.

Animals developing a fatal disease within less than 2 weeks showed the changes of AE.
Those rats with a milder, later onset of disease, however, revealed two different types of lesion.
In the majority of animals, demyelinating lesions of SDE were found, butin one third of the rats,
a chronic panencephalitis with tissue necrosis in both the grey and white matter was observed.
Although previous authors describe neuropathological changes of AE and SDE in JHM virus
infected rats (Cheever er al., 1949; Nagashima et al., 1978, 1979; SSrensen et al., 1980; Wege
et al., 1984b; Koga et al., 1984), the occurrence of late onset CPE has not been reported so far.

The initial inflammatory changes appearing in CPE are ubiquitous perivascular cuffs in grey
and white matter, similar to AE. Focal parenchymal accumulations of inflammatory cells and
necrotic areas with destruction of normal CNS structures probably reflect later stages. Finally,
lesions develop into cystic necrotic foci with very little remaining inflammation. Thus, this
disease type differs from AE, which usually leads to death within 1 or 2 days in that it has a
later onset and a milder and prolonged disease course. This prolonged disease course allows
sufficient time for fully developed necrotic lesions to be formed or even for the inflammatory
component to be resolved.

In SDE, different variants of demyelinating lesion were found. Diffuse spongiotic white
matter changes, similar to those mentioned by Nagashima et al. (1978), apparently constitute
initial stages of demyelination. The well demarcated demyelinated plaques presumably represent
olderlesions,in which mostaxons havelost theirmyelin sheaths and myelin degradation products
are found in phagocytes. An interesting observation was the extensive, almost complete loss of
both oligodendrocytes and astrocytes in these lesions. There have been no reports of the extent
of glial and particularly astroglial cell destruction. Previous investigators considered degenerat-
ing cells in lesions to be mainly oligodendrocytes (Lampert et al., 1973; Nagashima ez al., 1978,
1979).

Remyelination of SDE lesions was reported to be mainly of the CNS type and occasionally
also of the PNS type (Herndon et al., 1975; Nagashima et al., 1979; Wege et al., 1984b;
Watanabe et al., 1987). We observed in this study extensive Schwann cell invasion and
peripheral remyelination. As shown in demyelinating models based on intoxication, CNS
remyelination cannot occur unless sufficient oligodendrocytes and probably also astrocytes are
present (Ludwin, 1980; Blakemore & Crang, 1988). In addition, it is known that invasion of
Schwann cells is restricted to areas with astrocytic damage and destruction of the glial limiting
membrane (Blakemore, 1978; Blakemore, Crang & Curtis, 1986). Thus the observed destruc-
tion of both oligodendrocytes and astrocytes in SDE lesions might be the reason for peripheral
remyelination.

Virus antigen was demonstrated in nerve cells, oligodendrocytes and astrocytes in panen-
cephalitic lesions. In SDE lesions, only oligodendrocytes and astrocytes displayed virus antigen.
Previous studies have not differentiated between different glial cell types infected in rats
(Nagashima et al., 1978, 1979; Koga et al., 1984; Sorensen et al., 1984; Watanabe et al., 1987)
and by electron microscopy virus particles were only found in oligodendrocytes (S6rensen et al.,
1980). In mice, however, astrocytes were shown to be a target cell for persistent infection
(Perlman & Ries, 1987).
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In vitro results appear to be controversial. Astrocytes were shown to be primary target cells
forinfection (Massa, Wege & ter Meulen, 1986), but other in vitro culture experiments, however,
stressed tropism of the virus to oligodendrocytes (Beushausen & Dales, 1985). These differences
may be due to the high variability of the virus variants used for infection.

Employing immune electron microscopic techniques, nucleocapsid protein was demon-
strated lying free in the cytoplasm and S protein was shown to be associated with perinuclear
cisterns, endoplasmic reticulum and vesicles. These findings are compatible with the sub-
cellular distribution of the closely related MHV-AS9 strain in cell cultures and with the known
fact that coronaviruses bud into intracellular membrane compartments such as endoplasmic
reticulum, smooth vesicles and Golgi apparatus (Tooze, Tooze & Warren, 1984). Further-
more, we found evidence that JHM S protein is expressed on the cell surface membrane of
infected glial cells in vivo. Thus, spike protein is accessible to the humoral immune system.
MHYV-JHM infected rats generally do show a high virus specific (neutralizing) antibody
response in the serum in the late phases of the disease (Koga et al., 1984; Wege et al., 1984b).
Synthesis of antibodies with antiviral and unknown specificities was also shown to occur
within the brain compartment (Sorensen et al., 1984; Dorries et al., 1986, 1987). Conse-
quently, it is conceivable that during stages of the disease which involve damage to the
blood-brain barrier, infected cells might be destroyed through antibody-complement
mediated cytotoxity or by antibody dependent cell mediated cytotoxity (ADCC). Further-
more, recent immunosuppression studies have demonstrated that demyelination is not just
simply due to cytolytic infection of oligodendrocytes (Wang et al., 1990). MHC restricted cell
mediated immune reaction against viral and myelin antigens may play a role in the establish-
ment of a demyelinating disease (Watanabe er al., 1983; Ehrlich, Matsushima & Stohlman,
1989; Wang et al.,, 1990). However, the notion that an ADCC mechanism operates (in
addition to a cell mediated immune response) is supported by the presence of plasma cells and
of granular IgG and C9 deposits in actively demyelinating lesions of SDE. These deposits are
similar to those described in co-transfer EAE models, in which lesions are induced by MBP
reactive T cells in co-operation with monoclonal antibodies against MOG (Linington et al.,
1988, 1989).

The results of several studies imply that during the acute stage of disease, the T cell response
plays a pivotal role in virus elimination (Kyuwa & Stohlman, 1990; Williamson & Stohlman,
1990; Korner er al., 1991). Neutralizing, S specific antibodies appear later and are important for
subsequent protection. On the other hand, the results from our analysis of SDE lesions suggest
thatinflammatory demyelination could be the consequence of inefficient viruselimination during
the clinically silent acute stage. The outcome of the disease in individual animals may depend on
the balance between successful virus elimination, tissue destruction and down-regulation of
virus production.

It was observed in this study that the number of cells expressing spike protein is reduced in
SDE. The mechanism is unclear, but seems to be complex, as a simple masking or shedding of
spike protein from the surface by antibodies would not account for the reduced intracellular
expression. It is tempting to speculate that the virus down-regulates spike protein production in
an attempt to escape from the immune reaction. In favour of this idea is the finding that in JHM-
infected glial cell cultures, the presence of S specific antibodies promotes the establishment of a
chronic infection and reduces the relative number of cells displaying S protein (Wege et al.,
1989). It has been shown in several viral systems, both in vive and in vitro, that there is a reduced
expression of glycoproteins on the cell surface during persistent infections relative to the levels
during acute infections (Oldstone, 1989).
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The virological basis for the variable outcome of infection employing syngenic animals is
not yet clear. A number of studies suggest that structural features of the highly variable S
protein are an important determinant for neurovirulence and cell tropism (Dalziel et al., 1986;
Fleminget al., 1987, Wege, Winter & Meyerman, 1988). Furthermore, under certain conditions,
antiviral antibodies appear to modulate the disease from an acute to a chronic form (Buchmeier
et al., 1984; Perlman et al., 1987).

In summary, our data suggest that the pathogenetic mechanisms leading to demyelination in
coronavirus-induced SDE may be similar to those described in chronic relapsing experimental
allergic encephalomyelitis (Lassmann et al., 1988; Linington e al., 1988). Inflammation appears
to be initiated and propagated by cellular immune reactions against coronavirus N protein or, in
chronic animals, against myelin basic protein (Watanabe et al., 1983). Demyelination and tissue
damage may then be augmented by antibodies against S protein expressed on the surface of
infected oligodendrocytes and astrocytes.

ACKNOWLEDGEMENTS

We thank Mrs A. Kury and M. Leiszer for skilful technical assistance and Dr S. Rayner for
reading the manuscript. This study was supported by the Science Research Fund (Austria),
Project 7740M, Deutsche Forschungsgemeinschaft and Hertie Stiftung.

REFERENCES

Beushausen S. & Dales S. (1985) In vivo and in vitro models of demyelinating disease. IX Tropism and differentiation
regulate the infectious process of coronaviruses in primary explants of the rat CNS. Virology 141, 89-101
Blakemore W.F. (1975) Remyelination by Schwann cells of axons demyelinated by intraspinal injection of 6-amino-
nicotinamide in the rat. Journal of Neurocytology 4, 745-157

Blakemore W.F. (1978) Observations on remyelination in the rabbit spinal cord following demyelination induced by
lysolecithin. Neuropathology and Applied Neurobiology 4, 47-59

Blakemore W.F., Crang A J. & Curtis R. (1986) The interaction of Schwann cells with CNS axons in regions containing
normal astrocytes. Acta Neuropathologica ( Berlin) 71, 295-300

Blakemore W .F. & Crang A.J. (1988) Extensive oligodendrocyte remyelination following injection of cultured central
nervous system cells into demyelinating lesions in adult central nervous system. Developmental Neuroscience 10,
1-11

Buchmeier M.J., Lewicki H.A., Talbot P.J. & Knobler R.L. (1984) Murine Hepatitis Virus-4 (strain JHM)-induced
neurologic disease is modulated in vivo by monoclonal antibody. Virolegy 132, 261-270

Cheever F.S., Daniels J.B., Pappenheimer A.M. & Bailey O.T. (1949) A murine virus (JHM) causing disseminated

' encephalomyelitis with extensive destruction of myelin: 1. Isolation and biological properties of the virus.
Journal of Experimental Medicine 90, 181-194

Dal Canto M.C. & Rabinowitz S.G. (1981) Experimental models of virus-induced demyelination of the central nervous
system. Annals of Neurology 11, 109-127

Dalziel R.G., Lampert P.W., Talbot P.J. & Buchmeier M.J. (1986) Site-specific alteration of murine hepatitis virus
type 4 peplomer glycoprotein E2 fesults in reduced neurovirulence. Journal of Virology 59, 463471

Dérries R., Watanabe R., Wege H. & ter Meulen V. (1986) Murine coronavirus induced encephalomyelitides in rats:
analysis of immunoglobulins and virus-specific antibodies in serum and cerebrospinal fluid. Journal of
Neuroimmunology 12, 131-142

Dérries R., Watanabe R., Wege H. & ter Meulen V. (1987) Analysis of the intrathecal humoral immune response in
Brown Norway (BN) rats, infected with the murine coronavirus JHM. Journal of Neuroimmunology 14, 305-316

Erlich 8.S., Matsushima G.K. & Stohlman S.A. (1989) Studies on the mechanism of protection from acute viral
encephalomyelitis by delayed-type hypersensitivity inducer T cell clones. Journal of the Neurological Sciences 90,
203-216 .

Fleming J.O., Trousdale M.D., Brabury J., Stohlman S.A. & Weiner L.P. (1987) Experimental demyelination induced
by coronavirus JHM (MHV-4): molecular identification of a viral determinant of paralytic disease. Microbial
Pathogenesis 3, 9-20



MHV-JHM induced demyelination and humoral immune response 483

Herndon R.M., Griffin D.E., McCormick U. & Weiner L.P. (1975) Mouse hepatitis virus-induced recurrent demyelin-
ation. Archives of Neurology 32,32-35

Koga M., Wege H. & ter Meulen V. (1984) Sequence of murine coronavirus induced neuropathological changes in rats.
Neuropathology and Applied Neurobiology 10, 173184

Kérner H., Schliephake A., Winter J., Zimprich F., Lassmann H., Sedgwick J., Siddell S. & Wege H. (1991) Nucleo-
capsid or spike protein specific CD4* T cells alone protect against coronavirus-induced encephalomyelitis.
Journal of Immunology, in press

Kyuwa S. & Stohlman S.A. (1990) Pathogenesis of a neurotropic murine coronavirus, strain JHM in the central nervous
system of mice. Seminars in Virology 1,273-280

Lampert P.W., Sims J.K. & Kniazefl A_J. (1973) Mechanism of demyelination in JHM virus encephalomyelitis. Acta
Neuropathologica ( Berlin) 24, 76-85

Lassmann H., Vass K., Brunner C. & Wisniewski H.M. (1986) Peripheral nervous system lesions in experimental
allergic encephalomyelitis. Acta Neuropathologica ( Berlin) 69, 193-204

Lassmann H., Brunner C., Bradl M. & Linington C. (1988) Experimental allergic encephalomyelitis: The balance
between encephalitogenic T lymphocytes and demyelinating antibodies determines size and structure of
demyelinated lesions. Acta Neuropathologica ( Berlin) 75, 566-576

Linington C., Bradl M., Lassmann H., Brunner C. & Vass K. (1988) Augmentation of demyelination in rat acute allergic
encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte
glycoprotein. American Journal of Pathology 130, 443-454

Linington C., Lassmann H., Morgan B.P. & Compston D.A.S. (1989) Immunohistochemical localisation of terminal
complement component C9 in experimental allergic encephalomyelitis. Acta Neuropathologica ( Berlin) 79,
78-85

Ludwin S.K. (1980) Chronic demyelination inhibits remyelination in the central nervous system. Laboratory
Investigation 43, 382-387

Massa P.T., Wege H & ter Meulen V. (1986) Analysis of murine hepatitis virus (JHM strain) tropism toward Lewis rat
glial cells in vitro. Type I astrocytes and brain macrophages (microglia) as primary glial cell targets. Laboratory
Investigation 55, 318-327

Nagashima K., Wege H., Meyermann R. & ter Meulen V. (1978) Corona virus induced subacute demyelinating
encephalomyelitis in rats: a morphological analysis. Acta Neuropathologica ( Berlin) 44, 63-70

Nagashima K., Wege H., Meyermann R. & ter Meulen V. (1979) Demyelinating encephalomyelitis induced by a long-
term corona virus infection in rats. Acta Neuropathologica ( Berlin) 45, 205-213

Oldstone M.B.A. (1989) Viral persistence. Cell 56, 517-520

Perlman S. & Ries D. (1987) The astrocyte is a target cell in mice persistently infected with mouse hepatitis virus, strain
JHM. Microbial Pathogenesis 3, 309-314

Periman S., Schelper R., Bolger E. & Ries D. (1987) Late onset, symptomatic, demyelinating encephalomyelitis in mice
infected with MHV-JHM in the presence of maternal antibody. Microbial Pathogenesis 2, 185-194

Sérensen O., Percy D. & Dales D. (1980) In vivo and in vitro models of demyelinating diseases II1I. JHM virus infection
of rats. Archives of Neurology 37, 478484

Sérensen O., Coulter-Mackie M.B., Puchalski S. & Dales S. (1984) In vivo and in vitro models of demyelinating disease
IX. Progression of JHM virus infection in the central nervous system of the rat during overt and asymptomatic
phases. Virology 137, 347-357

Spaan W., Cavanagh D. & Horzinek M.C. (1988) Coronaviruses: structure and genome expression. Journal of General
Virology 69, 2939-2952

ToozeJ., Tooze S. & Warren G. (1984) Replication of coronavirus MHV-AS9 in sac-cells: determination of the first site
of budding of progeny virus. European Journal of Cell Biology 33, 281-293

Vass K., Berger M.L., Nowak T.S. Jr., Welch W.J. & Lassmann H. (1989) Induction of stress protein HSP70 in nerve
cells after status epilepticus in the rat. Neuroscience Letters 100, 259-264

Waksman B.H. & Reingold S.C. (1986) Viral etiology of multiple sclerosis. Where does the truth lie? Trends in
Neuroscience 9, 338-391

Wang F.I, Stohlman S.A. & Fleming J.O. (1990) Demyelination induced by murine hepatitis virus JHM strain
(MHV-4) is immunological mediated. Journal of Neuroimmunology 30, 31-41

Watanabe R., Wege H. & ter Meulen V. (1983) Adoptive transfer of EAE like lesions from rats with coronavirus
induced demyelinating encephalomyelitis. Narure ( London) 350, 150-153

Watanabe R., Wege H. & ter Meulen V. (1987) Comparative analysis of coronavirus JHM induced demyelinating
encephalomyelitis in Lewis and Brown Norway rats. Laboratory Investigation 57, 375-384



484 F. Zimprich et al.

Wege H., Koga M., Watanabe R., Nagashima K & ter Meulen V. (1983) Neurovirulence of murine coronavirus in JHM
temperature sensitive mutants in rats. Infection and Immunity 39, 1316-1324

Wege H., Dorries R. & Wege H. (1984a) Hybridoma antibodies to the murine coronavirus JHM: characterization of
epitopes on the peplomer protein (E2). Journal of General Virology 65, 1931-1942

Wege H., Watanabe R. & ter Meulen V. (1984b) Relapsing subacute demyelinating encephalomyelitis in rats in the
course of coronavirus JHM infection. Journal of Neuroimmunology 6, 325-336

Wege H., Winter J. & Meyermann R. (1988) The peplomer protein E2 of coronavirus JHM as a determinant of
neurovirulence: definition of critical epitopes by variant analysis. Journal of General Virology 69, 87-98

Wege H., Winter J., Kérner H., Flory E., Zimprich F. & Lassmann H. (1990) Coronavirus induced demyelinating
encephalomyelitis in rats: immunopathological aspects of viral persistency. In Coronaviruses and their Diseases,
Eds D. Cavanagh and T. Brown, pp 637-645. Plenum Press, New York

Weiner L.P. (1973) Pathogenesis of demyelination induced by a mouse hepatitis virus (JHM virus). Archives of
Neurology 28, 298-303

Williamson J.S.P. & Stohlman S.A. (1990) Effective clearance of mouse hepatitis virus from the central nervous system
requires both CD4+ and CD8+ T cells. Journal of Virology 64, 4589—4592

Received 4 February 1991
Accepted 31 May 1991



