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 An Experimental Model for Dilated Cardiomyopathy after Rabbit Coronavirus
 Infection

 Lorraine K. Alexander, J. David Small,
 Suzanne Edwards, and Ralph S. Baric

 Program in Infectious Diseases, Department of Epidemiology,
 and Department of Microbiology and Immunology,

 University of North Carolina at Chapel Hill

 A rabbit model for coronavirus-induced dilated cardiomyopathy is described. Acute rabbit
 coronavirus infection results in virus-induced myocarditis and congestive heart failure. Of the
 survivors of rabbit coronavirus infection, 4107o had increased heart weight and heart weight-to-

 body weight ratios, biventricular dilation, myocyte hypertrophy, myocardial fibrosis, and myo-
 carditis consistent with the development of dilated cardiomyopathy. These changes were also
 seen in the remaining 5907o of the survivors, except that the degree of myocyte hypertrophy was
 reduced and only right ventricular dilation was present. In most survivors, myocarditis was
 usually mild (1-5 foci/transverse section), but in some cases it was severe ^20 foci/transverse
 section). Interstitial and replacement fibrosis was more pronounced in the papillary muscles.
 These data suggest that rabbit coronavirus infection may progress to dilated cardiomyopathy.

 Dilated cardiomyopathy (DCM) is a debilitating chronic
 illness with an incidence of?0.73-7.5 cases/100,000 popu-
 lation/year in developed countries [1]. In developing coun-
 tries, this number is probably significantly higher [1]. DCM
 is characterized by a grossly enlarged heart, ventricular dila-
 tion, and low ejection fractions that can frequently result in
 the formation of ventricular thrombi. Histologic examina-
 tion reveals myocyte hypertrophy, fibrosis, and occasionally
 myocarditis [2, 3]. The 2- to 3-year survival rate of a patient

 with DCM is ?50^ [4], with death frequently occurring
 from chronic congestive heart failure (CHF) and to a lesser
 extent from ventricular arrhythmias or pulmonary or periph-

 eral emboli [2, 3].
 The etiologic basis for DCM is unclear, but it may repre-

 sent the end product of a previous injury to the heart muscle.
 Common risk factors associated with DCM include alcohol

 abuse, pregnancy, hypertension, and malnutrition [3, 5].
 Viral infections of the heart muscle also have been suggested
 as an important initiating event in the development of DCM.
 Most of the evidence linking viral myocarditis to DCM has
 been obtained from retrospective serologic studies in hu-
 mans [6-8], the identification of enteroviral RNA sequences
 in patients with myocarditis and DCM [9-13], and animal
 studies [14-16].

 The most direct evidence suggesting that viral myocarditis

 may lead to the development of DCM has been demon-
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 strated after coxsackievirus B or encephalomyocarditis virus
 infection in mice. In these models, viral infection results in

 myocarditis and CHF, with a significant percentage of survi-

 vors developing DCM at a later stage in life [14-16].
 A rabbit model for coronavirus-induced heart disease has

 been described [17, 18]. Infection with rabbit coronavirus
 (RbCV) resulted in virus-induced myocarditis and CHF with
 a mortality rate of ~60^. Morphologic and pathologic evi-
 dence indicates that a significant percentage of these animals
 were dying from heart failure [17]. We determined whether
 survivors of RbCV infection would develop DCM.

 Materials and Methods

 Animals and virus. Male New Zealand White rabbits weigh-
 ing 2.5-3.0 kg were purchased from commercial suppliers
 (Franklin Rabbitry, Wake Forest, NC, or Robinson Services,
 Winston-Salem, NC). The animals were housed individually at
 room temperature (210C) and given rabbit diet (Agway; Grand-
 ville Milling, Creedmoor, NC) and water ad libitum. RbCV
 stocks were obtained from moribund animals when peak titers
 were present at 4 days after infection [17]. Virus stocks were
 diluted to 103 -104 rabbit ID5o per milliliter and stored at
 -140oC. Animals were inoculated either intravenously via the
 marginal ear vein or occasionally intramuscularly in the thigh
 muscle with 0.2 mL of the 103 -104 RID50 virus stock. No differ-

 ences were observed in day of death, clinical signs of infection,
 or histologic findings between the routes of inoculation. Ani-
 mals were observed daily for signs of infection, which included
 weight loss, dullness of the sclera, hyphema, and severe conges-
 tion of the conjunctivae and irides.

 For virus isolation from the heart muscle, 7 survivors at 30-

 111 days after infection were sacrificed by intravenous injection
 of 50 mg/kg sodium pentobarbital. The hearts were removed
 and flushed extensively or perfused with PBS, pH 7.0. The apex
 of the ventricles was removed, snap frozen in liquid nitrogen,
 then stored at -140oC until assayed. One gram of tissue was
 minced and homogenized on ice in 4 mL of PBS using a manual
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 tissue grinder. Large pieces of tissue were removed by centrifuga-
 tion at 12,000 g for 10 min in an Eppendorf centrifuge (Fisher
 Scientific, Norcross, GA) at 4CC. Rabbits were inoculated with
 0.5 mL of the undiluted heart homogenate supernatant, then
 observed daily for 14 days for signs of viral infection. After 21
 days, rabbits were challenged with 0.2 mL of stock serum at
 103 ? 104 RIDso/mL and observed daily for 14 days for signs of
 infection.

 Pathology. Survivors of RbCV infection and uninfected
 control animals were sacrificed as previously described. Body
 weights were obtained to the nearest 0.10 kg. The heart was
 removed, separated from the pericardial sac, and flushed with
 PBS. The heart was weighed to the nearest 0.1 g; then the
 chambers were filled and fixed with 10% phosphate-buffered for-

 malin. The heart was sectioned transversely at the widest dimen-
 sions of the ventricles. Four paraffin-embedded 6-jum sections
 were cut at 150-^m intervals and stained with hematoxylin-eo-
 sin. Additional heart sections were also stained with von Kossa's

 method or Masson trichrome stain. Sections of lung, liver, and
 spleen were also removed, fixed in 10^ phosphate-buffered for-
 malin, and stained with hematoxylin-eosin.

 Morphometric studies. To determine the degree of myocyte
 hypertrophy, myocytes in the right and left ventricles and the
 interventricular septum were measured by using a software mor-

 phometry system (Image Measure; Phoenix Technology, Fed-
 eral Way, WA) with an image processor (FG-100-AT; Imaging
 Technology, Woburn, MA). The myocardial fiber diameter was
 measured through the nucleus of 30-40 transverse sectioned
 fibers in the right ventricle, left ventricle, and interventricular
 septum. Myocardial fibers were measured in two consecutive
 cardiac transverse sections, and the mean and SD were calcu-
 lated for each animal. Each cardiac section was measured inde-

 pendently by two of us (L.K.A., R.S.B.), and no significant dif-
 ferences in measuring were found.

 To determine the dimensions of the cardiac walls and cavities

 and to assess the area within each ventricular cavity, the same
 software morphometry system and image processor were used.
 The wall thickness of the right and left ventricles and the thick-
 ness of the interventricular septum were determined by taking
 15-20 measurements of each at regular intervals across the ven-
 tricular walls and septum. All measurements were statistically
 analyzed and presented as mean ? SD. A one-way analysis of
 variance was used to evaluate the statistical significance of car-
 diac measurements. To examine which specific differences were
 significant, a post hoc contrast was used to compare group
 means [191.

 Results

 Mortality and course of RbCV infection. Seventy-nine
 New Zealand White rabbits were inoculated with 0.2 mL of a

 103 -104 RIDso/mL stock of RbCV. Consistent with earlier

 studies [17, 18], animals died at 2-12 days, with an overall
 mortality of ~60^. Twenty-four (30%) died in the acute
 phase with enlarged hearts, right ventricular dilation, pleural

 effusion, and pulmonary edema. Twenty-four (307c) died in
 the subacute phase with various degrees of pleural effusion,

 Figure 1. Myocardial fiber diameters in right ventricle, interven-
 tricular septum, and left ventricle of survivors of rabbit coronavirus
 infection compared with uninfected controls (C) sacrificed on simi-
 lar days. Survivors had slight (S) or moderate (M) myocyte hyper-
 trophy [20]. Measurements are mean ? SD and were evaluated by
 analysis of variance.

 pulmonary edema, enlarged hearts, gross biventricular dila-
 tion, and ascites, consistent with death due to CHF. Of the

 79 animals, 407c survived and exhibited various degrees of
 ventricular dilation, myocarditis, interstitial and replace-
 ment myocardial fibrosis, and myocyte hypertrophy.

 Myocardial fiber diameters. Myocardial hypertrophy is
 one of the hallmarks of DCM [2, 3, 15]. The cardiac muscle
 cells of most survivors exhibited signs of both nuclear and
 cellular hypertrophy. In humans with DCM, a classification
 system based on myocyte fiber diameter has been devised
 [20]. By this system, animals with mean myocyte diameters
 of 16-20 /xm would have slight myocardial hypertrophy, of
 21-25 ^m would have moderate myocardial hypertrophy,
 and of ^6 jum would have severe myocardial hypertrophy.
 To document conclusively the presence of myocyte hyper-
 trophy, the mean myocyte fiber diameter was determined in
 the hearts of 22 RbCV-infected survivors and 9 controls at

 30-111 days after infection.
 Thirteen animals (59^ of the survivors) had evidence of

 slight myocardial fiber hypertrophy. The mean myocardial
 fiber diameters were 18.8 ? 1.4, 18.8 ? 1.0, and 18.4 ? 1.0

 urn in the right ventricle, interventricular septum, and left
 ventricle, respectively. Moderate myocardial fiber hyper-
 trophy was present in 9 (41^) of the survivors. In these ani-
 mals, the mean myocardial fiber diameters in the right ven-
 tricle, interventricular septum, and left ventricle were 22 ?
 1.4, 21.5 ? 1.4, and 21.8 ? 1.7 /mi, respectively (figure 1).
 Statistically significant differences were present between the

 slight and the moderate groups (P < .001). No statistically
 significant differences were noted in the degree of myocyte
 hypertrophy measured in animals sacrificed early or late after
 infection (P = .652), and no animals had mean muscle cell
 diameters of ^6 jtm in this study. From these studies, survi-
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 vors of RbCV infection were divided into two groups, those
 exhibiting zero to slight hypertrophy and those with moder-
 ate hypertrophy.

 Control animals demonstrated significantly smaller mean
 myocyte diameters than either group of survivors (P < .001).
 The mean myocyte fiber diameters of the 9 control animals

 were 15.0 ? 1.5, 15.7 ? 1.9, and 15.4 ? 1.8 iim in the right
 ventricle, interventricular septum, and left ventricle, respec-

 tively.

 Body weight, heart weight, and heart weight-to-body
 weight ratios. Body weight, heart weight, and the heart
 weight-to-body weight (HW:BW) ratios were measured in
 RbCV-infected and control animals sacrificed on similar

 days. After infection, body weights initially decreased but
 then increased as animals recovered. There was no signifi-
 cant difference among the body weights of the 13 animals in

 the slight group (3.23 ? 0.355 kg), the 9 in the moderate
 group (3.20 ? 0.29 kg), or the 9 controls (3.36 ? 0.28 kg;
 P = .52).

 The heart weights of the survivors (slight group, 8.35 ?
 1.21 g; moderate group, 8.21 ? 0.48 g) were significantly
 greater than the heart weights of control animals sacrificed
 on similar days (6.59 ? 0.86 g; P < .001). There were no
 significant differences in the heart weights between animals

 in the slight and moderate groups (P = .733; figure 2A).
 The HW:BW ratios of survivors were also significantly in-

 creased compared with the controls (slight group, 2.6 ? 0.2
 X 10"3; moderate group, 2.5 ? 0.2 X 10"3; control group, 2.0
 ? 0.2 X lO-3; P < .001). There were no significant differ-
 ences between the HW:BW ratios in the slight and moderate
 groups (P = .625; figure 2B).

 Dimensions of the cardiac walls and cavities. Changes in
 the size of the heart and dimensions of the ventricles were

 evident among the survivors (figure 3). These data suggested
 that biventricular dilation was clearly present within the mod-

 erate group, while survivors in the slight group probably had

 dilation of the right ventricle. To determine whether the de-
 gree of dilation correlated with the degree of myocyte hyper-
 trophy, the thicknesses of the right and left ventricular cavity

 walls and the interventricular septum in both survivors and
 control animals were measured. No significant difference
 was evident in the thickness of the ventricular walls and the

 interventricular septum between survivors and controls (fig-
 ure 4). For example, the mean thickness of the interventricu-

 lar septum in control animals was 3364.46 ? 583.21 fim
 compared with 3697.95 ? 577.29 Mm and 3367.13 ? 520.63
 Aim in the slight and moderate groups, respectively
 (P = .285).

 Significant changes in the size of the ventricular cavities
 were evident after infection. The right ventricular cavity in

 the slight group (74.34 ? 21.88 X 106 /mi2) was larger than
 in the control group (44.77 ? 13.83 X lO6/*?2;/^ .05). In
 contrast, the left ventricular cavity area in the slight group
 was 63.61 ? 21.45 X 106 /tm2  . This was not significantly

 Figure 2. Heart weight (A) and heart weight-to-body weight ra-
 tios (B) of survivors of rabbit corona virus infection compared with
 uninfected controls (C) sacrificed on similar days. Survivors had
 slight (S) or moderate (M) myocyte hypertrophy. Measurements
 are mean ? SD and were evaluated by analysis of variance. NS, no
 significant difference.

 different from that of the control group (61.92 ? 22.62 X 106

 /im2; P = .89). Dilation of the right ventricular cavity was
 more pronounced in the moderate group (116.11 ? 52.99 X
 106 /*m2; P < .01). There was also a significant increase in
 the area of the left ventricular cavity in the moderate group
 compared with both the control and slight groups (94.56 ?
 40.05 X 106 Mm2; P < .05; figure 5).

 Pathology. Gross and microscopic lesions in animals dy-
 ing between days 3 and 12 were as previously described [17,
 18]. Hearts from survivors varied and either appeared nor-
 mal or had dilation of the right or both ventricles. No pulmo-

 nary edema, pleural effusion, or ascites was observed, nor
 were lesions observed in other organs.

 Microscopic analysis revealed that myocardial lesions
 commonly seen early in the acute and subacute stages of
 infection had resolved by 30 days after infection. Myocytes
 in both the slight and moderate groups exhibited various de-
 grees of hypertrophy and demonstrated enlarged nuclei (fig-
 ure 6A). Interstitial and replacement fibrosis was present but
 was usually not extensive (figure 6B). Fibrosis was most evi-
 dent in the papillary muscles of both ventricles (figure 6C).
 Calcification was seen in only 1 of the survivors.

 Myocarditis characterized by clusters of lymphocytes was

 HEART WEIGHT

 (GRAMS)

 HEART WEIGHT  BODY WEIGHT

 (X10-3)

This content downloaded from 130.63.180.147 on Sat, 17 Sep 2016 05:54:24 UTC
All use subject to http://about.jstor.org/terms



 JID 1992;166 (November) Coronavirus: Dilated Cardiomyopathy 981

 Figure 3. Cardiac dilation in survivors of rabbit coronavirus in-
 fection: representative sections from slight (S) and moderate (M)
 groups at 30-111 days after infection. Uninfected control (C) ani-
 mals were sacrificed on similar days (36-106).

 present in all survivors sacrificed 30-111 days after infection
 (figure 6D, E). Most rabbits had small scattered foci (1-5/
 section) of inflammatory infiltrate associated with degenera-

 tive or necrotic myocardial cells. In a few survivors, the de-

 Figure 4. Dimensions of right ventricular walls, interventricular
 septum, and left ventricular walls in survivors of rabbit coronavirus
 infection compared with uninfected controls (C) sacrificed on simi-
 lar days. Survivors had slight (S) or moderate (M) myocyte hyper-
 trophy. Measurements are mean j SD and were evaluated by analy-
 sis of variance. NS, no significant difference.

 Figure 5. Area within right and left ventricles from survivors of
 rabbit coronavirus infection compared with uninfected controls (C)
 sacrificed on similar days. Survivors had slight (S) or moderate (M)
 myocyte hypertrophy. Measurements are mean h SD and were eval-
 uated by analysis of variance. NS, no significant difference.

 gree of myocarditis was quite severe (>20 foci/cross section).
 Other than the degree of myocyte hypertrophy, pathologic
 findings were similar in the slight and moderate groups.
 The lungs were generally normal. In a few animals, a small

 residue of intraalveolar fluid was evidenced by pale pink-
 staining material in some of the alveoli. The compression of
 hepatic cords and necrosis of hepatocytes around central
 veins, seen early in infection, were not evident 30 days after
 infection.

 Isolation of infectious virus. Between 30 and 111 days
 after infection, the heart muscle of 7 animals was examined

 by in vivo infectivity assay for the presence of virus. In-
 fectious virus was isolated from the hearts of 4 of the 7 ani-

 mals. Clinical signs of RbCV infection were not observed in
 animals inoculated with the heart homogenate. However,
 previous exposure to RbCV was demonstrated by protection
 from subsequent challenge with an RbCV stock of 103-104
 RID50/mL.

 Discussion

 A large number of RNA and DNA viruses are associated
 with heart disease in humans and experimental animals [21].
 Viruses commonly linked to heart disease include enterovi-
 ruses, togaviruses, paramyxoviruses, orthomyxoviruses, coro-
 naviruses, and others [21-23]. Infection may result in degen-
 eration and necrosis of myocytes, myocarditis, arrhythmias,
 and CHF [21, 23]. Viral infection has long been suspected as
 an important initiating event in the development of DCM
 [24-26]. Direct viral involvement in both myocarditis and
 DCM, however, has been difficult to prove, because recovery
 of infectious virus has rarely been successful [26]. In addi-
 tion, the mechanisms by which viruses induce myocarditis
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 Figure 6. Histologic changes associated with survivors of rabbit
 coronavirus infection. A, Myocyte hypertrophy with enlarged nu-
 clei in left ventricle at day 103. Bar = 25 im. B, Interstitial and
 replacement fibrosis in right ventricle at day 30. Bar = 500 itm. C,
 Interstitial and replacement fibrosis and hypertrophy in papillary
 muscle at day 54. Bar = 50 ptm. D, Myocarditis in right ventricle at
 day 30. Bar = 10 /im. E, Myocarditis in right ventricle at day 103.
 Bar = 25 um.
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 and DCM remain highly controversial, and more animal
 models are needed to provide insight into this phenomenon
 [27].

 Previous studies in our laboratory have demonstrated that
 RbCV infection is divided on the basis of death and patho-
 logic findings into acute and subacute phases. During the
 subacute phase, myocarditis is evident and animals are proba-
 bly dying of heart failure [ 17, 18]. The etiologic agent for this

 disease is an enveloped RNA virus, originally designated the
 Stockholm agent. This virus is antigenically and morphologi-
 cally related to group I human coronaviruses [18]. RbCV is
 also related to pleural effusion disease virus, which produces
 a similar disease in rabbits [18, 28-31].

 In the present study, we describe a new animal model sys-
 tem for RbCV-induced DCM. In humans and in other experi-
 mental animal models, myocyte hypertrophy, fibrosis, in-
 creased heart weight, and ventricular dilation are the
 principal features of DCM [2, 3, 15, 32]. Survivors of RbCV
 infection were divided into two groups. On the basis of myo-
 cyte measurements, 59% of the rabbits were in the slight cate-

 gory while the rest had a moderate degree of myocyte hyper-

 trophy. In addition to myocyte hypertrophy, the principal
 difference between the two groups was the presence of biven-

 tricular dilation in the moderate group. Heart weights,
 HW:BW ratios, pathologic findings, and day of death were
 not significantly different.

 The slight group had a small but statistically significant
 dilation of the right ventricle, with the left ventricle remain-

 ing normal. In humans, right ventricular DCM in the ab-
 sence of left ventricular dysfunction has been reported [33].
 While our data indicate that viral infection may result in
 right ventricular dilation, there was no evidence of right
 heart failure in these animals.

 Studies in humans suggest that hypertrophy and dilation
 represent an early stage of DCM, with CHF representing a
 later stage of the disease [20]. In the moderate group, biven-
 tricular dilation and hypertrophy were clearly evident in the
 absence of heart failure. These findings suggest that the rab-
 bits in the moderate group may have had early DCM without
 clinical signs of CHF. Similar findings have been demon-
 strated in the coxsackievirus B murine models of DCM [14,
 16]. In the encephalomyocarditis virus model of DCM, some
 animals had congestion of the lungs as early as 3 months
 after infection. The early development of CHF may be due
 to the severity of lesions in the chronic stages of encephalo-
 myocarditis virus infection [15, 34].

 DCM is thought to be a progressive disease after acute
 viral infection and myocarditis [25]. No progressive increase
 in myocyte hypertrophy and ventricular dilation was de-
 tected when animals were compared between early and late
 infection. It is therefore unclear whether some of these ani-

 mals will later develop a more advanced form of DCM.
 In humans with DCM, scattered foci of interstitial and

 replacement fibrosis are commonly seen throughout the

 heart [2, 3, 35, 36], including the papillary muscles of the
 ventricular wall [5, 37, 38]. Histologic examination of the
 hearts of survivors of RbCV infection revealed lesions quite
 similar to those seen in human DCM [2, 3, 35-37]. Scattered
 foci of both interstitial and replacement fibrosis were present

 throughout the heart. Fibrosis usually was mild and most
 evident in the papillary muscles of both the right and left
 ventricles. Direct viral cytotoxicity of the myocytes and myo-
 carditis has probably resulted in much of the fibrosis seen in

 the hearts. In addition, since papillary muscles are particu-
 larly sensitive to decreases in myocardial oxygenation, these
 data suggest that inadequate cardiac output due to impaired
 ventricular function has probably resulted in poor oxygena-
 tion of these tissues, resulting in fibrosis [39].

 Calcification of myocytes was seen in only 1 rabbit exam-
 ined ^0 days after infection. This is also consistent with the
 findings in humans with DCM, in whom calcification is rare

 and usually limited to a few scattered myocytes [36]. In the
 encephalomyocarditis virus murine model, the extensive fi-
 brosis and calcification seen after infection tends to be much

 more severe than that occurring in humans or in the RbCV
 or coxsackievirus B animal models. This may reflect the find-

 ing that encephalomyocarditis virus is more cardiotropic or
 that certain mouse strains are prone to calcification of soft
 tissues [14-16, 34, 36, 40, 41].

 Histologically, DCM is often described as resembling
 "burned-out" myocarditis [42]. Active lymphocytic myocar-
 ditis is a common finding in patients with DCM [8, 43-46].
 The inflammatory lesions seen are often small scattered foci

 of lymphocytic cells surrounded by necrotic tissue [2]. The
 frequency of myocarditis reported in DCM patients has var-
 ied greatly, ranging from 0 to 67^ [44-48]. Small scattered
 foci of lymphocytic myocarditis, as defined by the Dallas
 classification system [49], were seen in all survivors of RbCV

 infection. The degree of myocarditis varied from slight to
 severe (1 to ^0 foci/transverse section), which persisted
 through 111 days after infection. Most of the animals had
 scattered, small foci (1-5/transverse section) of lymphocytes
 that would have been difficult to detect by myocardial
 biopsy. In both the encephalomyocarditis virus and coxsack-
 ievirus B mouse models, mononuclear cellular infiltration of

 the heart was still evident 30 days after infection [ 14, 15]. At

 90 days, inflammatory cells were no longer present in the
 hearts of survivors of either encephalomyocarditis virus or
 coxsackievirus B infection [15,16]. As was seen in survivors
 of RbCV infection, myocarditis in mice with DCM infected
 with coxsackievirus B has been reported up to several
 months after infection [14].

 Low levels of infectious virus (^O1 RID5o) were detected
 in the heart tissue of 4 of 7 RbCV-infected rabbits sacrificed

 30-111 days after infection. This finding is consistent with a

 previous study that showed RbCV and other pleural effusion
 disease virus isolates to persist at low levels (^clOMO2
 RIDso/mL) in the serum of rabbits for almost 2 years after
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 infection. Survivors of pleural effusion disease virus infec-
 tion also demonstrate fibrotic lesions in the heart muscle

 and focal myocarditis [31]. Although the presence of hy-
 pertrophy was not noted, these data suggest that some survi-

 vors of pleural effusion disease virus infection may also de-
 velop DCM.

 Recent reports of enteroviral nucleic acid detected in the
 hearts of patients with DCM suggest that viral nucleic acid
 may persist in the heart muscle in the absence of detectable
 virus [9, 11-13]. Viral persistence and low-level expression
 of RbCV antigen in myocytes could result in chronic myo-
 carditis through 111 days after infection. Alternatively, au-
 toimmune mechanisms may explain the persistence of myo-
 carditis. The difficulty in finding infectious virus in humans

 with DCM or in other animal models suggests that viral per-
 sistence or autoimmunity may play a significant role in
 chronic myocarditis in DCM [27]. At present, the mecha-
 nisms by which RbCV produce myocarditis are unclear and
 require additional study.

 A model system for DCM after infection with RbCV has
 been described. Studies in this laboratory and others demon-
 strate that viral infection of the heart results in degeneration

 and necrosis of myocytes, myocarditis, and CHF[ 15, 17, 18,
 34]. Acute infection of the heart may also lead to DCM at a
 later stage in life [14-16, 34]. Such findings support the
 theory that viral infection of the heart may lead to dilated
 cardiomyopathy in humans.
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