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Introduction 

Coronaviruses are widespread pathogens that cause a number of important diseases in 
mammalian and avian species. Their pathogenic potential ranges from respiratory and 
gastrointestinal diseases to hepatitis, encephalomyelitis, vasculitis and coagulopathies. 
The following diseases are of major economical importance: transmissible gastroen- 
teritis and porcine respiratory coronavirus infections in pigs, diarrhea in calves, infec- 
tious bronchitis in chickens, feline infectious peritonitis in cats [8, 100]. About 30% 
of common colds in human beings are attributed to these viruses. Furthermore, they 
cause a broad range of diseases in mice and rats. The majority of coronaviruses induce 
acute, self-limiting diseases. The major exceptions are infections caused by feline and 
murine coronaviruses. Feline infectious peritonitis (FIP) represents a debilitating con- 
dition based on infection of the monocyte/macrophage lineage and is associated with 
immune-mediated damage [20, 65, 71]. Murine coronaviruses (mouse hepatitis virus, 
MHV) can spread inapparently or may hide as persistent infections that modulate the 
immune response [38, 100]. Therefore, MHV infections may severely impair results 
of experimental studies and are of major concern in livestock breeding. On the other 
hand, these infections are interesting for analysing disease processes. MHV-JHM and 
MHV-A59 are mainly employed for studies of virus-induced demyelination in the 
central nervous system, whereas MHV-3 is a versatile model for the study of diseases 
of the liver and the lymphoreticular system. These aspects constitute the major focus 
of the following sections. 

Structure and replication of coronaviruses 

Typical coronaviruses are pleomorphic to rounded particles with a lipid envelope sur- 
rounded by a fringe of surface projections termed spikes or peplomers [8, 42, 87]. 
Their genome consists of a large, single-stranded RNA molecule comprising about 
28-32 kilobases of nucleotides. This is the largest known RNA genome. The RNA is 
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of positive polarity, with a cap structure at the 5' end and polyadenyl sequences at the 
3' end. The 5' end codes for the polymerase, followed by genes for envelope proteins 
and the nucleocapsid protein. Expression of the coronavirus genome involves a series 
of subgenomic mRNA, each containing one or more open reading frames. In the case 
of structural proteins, only the 5' end of the gene is translated. A similar gene organi- 
sation and expression strategy is employed by arteriviruses (e.g. equine arteritis virus) 
and toroviruses (e.g. Berne virus). Therefore, despite considerable morphological dif- 
ferences, these families may derive from a common ancestor of the "coronavirus-like 
superfamily" [85]. They each have a similar polymerase unit coupled to different sets 
of structural genes (modular evolution). About two thirds of the genome is required to 
code for the polymerase functions, corresponding to about 800 kilodaltons of amino 
acids. 

The genomic RNA and the nucleocapsid protein N form a helical structure, which 
is surrounded by a lipid bilayer. Attached to N is the matrix glycoprotein M, which 
protrudes into the lipid envelope. The major surface glycoprotein is the spike protein 
S. This protein is important for cell fusion, attachment to receptors on the cell surface 
and induction of protective immunity. The S gene displays a considerable genetic 
heterogeneity involving mutations, deletions and recombination events, which has 
a strong impact on virulence and tissue tropism. The virus receptors on the cell 
surface mirror this heterogeneity. Murine coronaviruses employ carcinoembryonic 
antigens as receptors; these are related to the IgG superfamily and consist of a large 
number of variants expressed in different tissues [19]. Other coronaviruses, such as 
the porcine transmissible gastroenteritis virus or the human coronavirus 229E, bind 
to a completely different type of molecule, the aminopeptidases [14]. 

A further surface glycoprotein, the haemagglutinin esterase (HE), is not expressed 
by all coronaviruses. This protein promotes binding to neuraminic acid and functions 
as a second receptor system. Depending on the coronavirus strain, the haemaggluti- 
nating activity is either associated with HE or can be a property of the S protein [8, 
87]. 

Immunopathology of feline coronavirus infections 

In several virus diseases such as Dengue haemorrhagic fever, yellow fever or some 
stages of HIV infections, a cytokine-mediated dysregulation of the immune system 
results in an augmentation of pathology by the antibody response through deposition 
of immune complexes or antibody-mediated enhancement of infectivity [31, 53, 104]. 
Chronic inflammations elicited by feline coronavirus infections provide an interesting 
virus-host system in which such mechanisms can be studied. 

General biological and clinical aspects 

Feline coronaviruses comprise multiple strains or biotypes that differ in their patho- 
genic potential and organ tropism [65, 71]. The feline infectious peritonitis virus 
(FIPV) strains have probably evolved from feline enteric coronaviruses (FECV) by 
mutations or recombination events [20, 73]. FECV causes rather inapparent infections 
and can induce mild enteritis in kittens. By contrast, FIPV induces an array of clini- 
cal diseases with high mortality, which are characterised by inflammatory changes in 
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many organ systems [71, 89]. The disease is predominant in young cats (of less than 1 
year of age). It is debatable whether the greater incidence among purebred cats is the 
result of a certain genetic predisposition or a management problem of catteries. The 
disease is transmitted by contact (ingestion, inhalation, bites) and shed via feces and 
secretions. The manifestation of clinical disease occurs after an incubation period of a 
few weeks to months and years. Asymptomatic carders may be involved. Two differ- 
ent manifestations can be diagnosed, either an effusive (wet) form or a non-effusive 
(dry) form [71, 72]. Furthermore, combinations of these phenotypes complicate the 
clinical definition of FIP. 

Characteristic of the effusive form is a fibrin-rich fluid accumulating in the peri- 
toneal, pericardial or renal, subcapsular spaces. The severity and type of signs depends 
on the site of effusion, in most classical cases the cats develop an enlargement of the 
abdomen. General symptoms are anorexia, weight loss, dehydration, deafness and 
fever. Depending on the site of inflammation, liver functions or the pancreas can 
be involved. The disease process leads, within weeks to months, to the death of the 
animal. 

In the effusive form multiple granulomas can affect different organ systems. Neu- 
rological signs such as paresis, ataxia, behavioural changes and seizures are often 
observed. These clinical signs can fluctuate in phases over many months. 

Infection by the oronasal route is followed by replication in the pharyngeal, res- 
piratory or intestinal epithelial cells. Monocytes are the predominant target, whereby 
the viremic phase remains predominantly cell associated [105, 106]. In the next step, 
virus spreads to the macrophages of the reticuloendothelial organs or into perivascular 
areas. This results in necrotising pyogranulomas with phlebitis and thrombosis. 

Antibody-dependent enhancement of infectivity 

The most puzzling phenomenon observed during FIP is the acceleration of disease if 
seropositive cats are challenged with FIPV. This more fulminant accelerated FIP is 
primarily associated with the existence of serum antibodies. Experimental transmission 
of immune serum or purified anti-FIPV IgG to seronegative kittens before challenge 
also resulted in an acceleration of disease [72, 104-106]. 

Two major mechanisms promote and drive the pathological changes. The first 
mechanism involves immune complexes consisting of antibodies, complement (C t) 
and FIPV proteins [29, 31, 32]. Activation of C' appears to be the major factor 
eliciting inflammations and the blood-coagulation cascade [107]. Under experimental 
conditions, subclinical disseminated intravascular coagulation (DIC) can be elicited 
and the inflammations are associated with an array of mediators such as interleukin 
(IL)-I, IL-6, leukotriene B4 or prostaglandin E2. The second mechanism is triggered 
by antibodies that enhance the infection instead of blocking or neutralising the virus. 
Such an antibody-dependent enhancement (ADE) can be emulated by experiments 
with macrophages in vitro [27]. The detailed mechanism of ADE appears to be quite 
variable. Basically, the efficiency of infection of monocytes or macrophages is much 
higher with virus-antibody complexes than with virus alone [66, 67]. This phenomenon 
involves a receptor-mediated endocytosis employing Fc receptors or C ~ receptors and 
CD4 receptors. It is not yet clear whether Fc receptor-mediated enhancement of FIP 
infections occurs in absence or presence of C ~. 
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The viral structures that are involved in the induction of enhancing antibodies 
have been defined in more detail [66-68]. In the case of FIPV, certain epitopes on 
the S protein are associated with this phenomenon, whereby the same epitope can 
mediate virus neutralisation by binding of antibodies in a dose-dependent manner 
[10]. A smaller amount of antibodies is required for a maximal enhancement effect 
than for neutralisation. Furthermore, antibodies binding to the matrix protein M can 
also result in an enhancement. In addition, the IgG subclass plays a role. Whereas 
IgG 2a-specific monoclonal antibodies (mAb) can be responsible for either enhance- 
ment or neutralisation, IgG 1 mAb are strictly associated with neutralisation. The 
enhancing antibody may promote the infection by targeting the virus to the surface 
of cells bearing Fc receptors for IgG, thus resulting in phagocytosis or a more in- 
tense interaction of the virus proteins with the specific receptor on the cell surface. 
However, experiments were presented which demonstrate a correlation between the 
number of infected macrophages and the presence of enhancing antibodies. It was 
also speculated that the enhancing antibodies promote the uncoating of virus within 
the cell. 

The implications for ADE in vaccination strategies are obvious. Trials to protect 
cats by vaccination with recombinant vaccinia virus expressing the FIPV S protein 
were, however, a failure. Challenge of vaccinated cats displaying S-specific antibodies 
resulted in a significantly accelerated infectious peritonitis instead of protection [96]. 
Furthermore, depending on the challenge schedule, a correlation between accelerated 
FIP and enhancing antibodies in the serum was demonstrated. By contrast, no such 
acceleration was encountered if cats were vaccinated with recombinants expressing 
either N or M protein of FIPV. 

Murine coronavirus infections as a model for virus-induced demyelination 

Many diseases of the central nervous system (CNS) are accompanied by inflamma- 
tory demyelination. Diseases such as visna in sheep, canine distemper in dogs or a 
number of parainfectious encephalomyelitides in humans are typical examples [16]. 
Furthermore, an involvement of virus infections in multiple sclerosis (MS) is a widely 
discussed and attractive hypothesis. This enigmatic disease process is driven by a com- 
bination of immunological, genetic and environmental factors [46, 69]. Coronavirus 
infections in mice and rats have been employed as a model to analyse such pathogenic 
mechanisms. 

The murine coronaviruses (or MHV) comprise a large number of strains and 
biotypes [8, 38, 100]. Most studies have been performed with MHV-JHM and MHV- 
A59 in rats and mice. The outcome of infection depends on the properties of the 
virus, route of inoculation and host factors such as genetics, age and immune status. 
Mice are in general more susceptible and a variety of organ systems can be involved. 
Rats must be infected intracerebrally, but the virus remains more restricted to the 
CNS. The major target cells in the CNS are neurons and oligodendroglia, whereas 
during persistent infection the astrocytes are the sites of predilection which harbour 
and spread the virus [92]. 

In both mice and rats, the immune response has a marked influence on the outcome 
of infection. On the one hand, a strong CD4 § T cell response is elicited, whereby 
the N protein represents a dominant antigen [1, 36, 101]. For protection and virus 
elimination in the early stages of infection, both CD4 § and CD8 § T cells are important 
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[6, 18, 23, 36, 81, 91, 109]. In the mouse system, non-immune B cells have been 
described which are capable of inducing apoptosis of MHV-A59-infected cells [63]. 
This mechanism differs from the classical cytotoxic T lymphocyte function and may 
be triggered by cell fusion activity of the viral S protein. On the other hand, if the 
immune response fails to eliminate the virus, a persistent infection may be established. 
Depending on the experimental conditions, an immune-mediated demyelination can 
be induced [6, 22, 24, 82, 92, 97]. 

Demyelinating encephalomyelitis in rats 

Infection of several inbred rat strains with MHV-JHM results in a demyelinating 
CNS disease [86, 99]. In Lewis rats, following intracerebral infection with MHV-JHM 
different forms of encephalomyelitis were observed. The acute encephalomyelitis (AE) 
develops within a short incubation time and leads rapidly to the death of the animal. 
The lesions are located mainly in the grey matter of the CNS. In contrast, the subacute 
demyelinating encephalomyelits (SDE) is a paralytic disease, which develops after an 
incubation time of several weeks to months and is based on a persistent infection 
[61, 62, 110]. Inflammatory demyelinating lesions are restricted to the cerebral white 
matter including the optic chiasm, brain stem and spinal cord. The disease develops 
after an incubation time of several weeks to months and in a number of cases relapse 
occurs [102]. 

Lewis rats and BN rats react very differently to infection with MHV-JHM [99]. 
Lewis rats are highly susceptible and display a strong inflammatory response in the 
CNS driven by CD4 § T calls. BN rats are quite resistant to MHV-JHM infection 
and react with a strong intrathecal antibody response [17, 18, 77]. The virus remains 
restricted to the periventricular regions, whereby a heavy infiltration of virus-specific 
antibody-secreting plasma cells occurs in the brain parenchyma. 

In Lewis rats, macrophages and CD4 § T cells are the major cell type in the in- 
filtrates [18, 110]. The cytokines released by these infiltrates may contribute to the 
up-regulation of major histocompatibility complex (MHC) class II antigens including 
microglia cells and astrocytes [80]. Results from in vitro studies have indicated that 
interferon (IFN)--y induces MHC class II expression in astrocytes, which are then 
capable of  functioning as antigen-presenting cells [25, 78]. Furthermore, MHV-JHM 
virions have the capacity to elicit an up-regulation of MHC class II in astrocyte cul- 
tures [54]. This effect is rat strain dependent; astrocytes derived from BN rats do 
not display a virus-dependent up-regulation of MHC class II expression [55, 78]. 
Astrocytes can prime CD8 § T cells and can perpetuate CD4 § T cell functions [79]. 
However, in vivo the priming and proliferation of antigen-specific CD4 § T lympho- 
cytes occurs probably in cervical lymph nodes outside the CNS. The T lymphocytes 
which home to the infected areas of the CNS are unresponsive to proliferation signals, 
but continue to produce cytokines and function as effector cells [30, 79]. Therefore, 
it is conceivable that it is the role of activated astrocytes or microglia to mitigate the 
inflammatory response within the CNS. Most of the inflammatory T cells in older 
lesions are eliminated by apoptosis. 

The influence of immunity on the outcome of infection was investigated by em- 
ploying for immunisation recombinant vaccinia viruses, which express structural pro- 
teins of MHV-JHM. Protective immunity was induced against MHV-JHM if the chal- 
lenge infection of rats was performed within 7 days following vaccination against S 
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protein [23]. As shown by depletion experiments, the protective effect depends on the 
presence of S protein-specific CD8 § T cells. However, a subclinical and protracted 
course of disease associated with a persistent infection was induced if the MHV-JHM 
challenge was performed 3 weeks after vaccination [24]. Employing this immunisation 
schedule, the CD8 § T cells appear to be of less importance. 

It is conceivable that the presence of antiviral antibodies shields the neurons 
against a cytolytic virus infection and thus prevents lethal disease [49]. The conclusion 
that the humoral immune response may modulate the disease is supported by data from 
immune-histological analysis of rats displaying inflammatory demyelinating lesions 
[110]. Within the lesions, binding of antiviral antibodies, complement C3 and an 
increased amount of B cells are detectable, whereas the amount of S protein expressed 
is drastically reduced in comparison to the nucleocapsid protein. As shown by tissue 
culture experiments with measles virus-infected cells, during persistent infection in 
the presence of antibodies viral glycoproteins disappear from the cell surface and their 
expression can be down-regulated. This mechanism of antigenic modulation may help 
the virus escape from immmune surveillance [64]. 

Most fascinating was the finding that, during SDE, lymphocytes are sensitised 
against myelin basic protein (MBP) [98]. To test the pathogenetic potential of these 
cells, such lymphocytes were restimulated in vitro to enhance their number and then 
transferred to healthy syngeneic rats. These animals developed inflammatory lesions 
and clinical signs characteristic of experimental allergic encephalitis (EAE). It is 
noteworthy that no autoimmune response was observed in BN rats (a strain relatively 
resistant to induction of EAE and other autoimmune diseases [99]). These results 
support the hypothesis that autoimmunity specific for brain antigens can be triggered 
by a virus infection and have implications for pathogenesis. 

Coronavirus-induced demyelination in mice 

The susceptibility of neuronal cells and macrophages is a key element in determining 
the outcome of infection and may involve only one single dominant gene. By contrast, 
the development of chronic MHV-induced CNS disease is probably under the control 
of several genes [38]. A chronic demyelinating encephalomyelitis was observed in a 
few mice that survived the acute disease [90, 103]. Whereas demyelination during the 
acute stage might be a direct consequence of a cytolytic infection affecting oligoden- 
drocytes, astrocytes are the predominant ceils that maintain the virus as a smoldering 
persistent infection throughout the chronic stage [92]. 

Some evidence has been obtained that MHV-JHM also triggers also autoim- 
mune responses in mice. However, it is not known whether this phenomenon plays 
a pathogenic role leading to inflammatory demyelination. In MHV-JHM-infected 
BALB/c mice, the frequency of self-reactive T cells was significantly elevated [40]. 
In this context, it is interesting that a murine coronavirus infection strongly influenced 
the pathology of an autoimmune relapsing encephalomyelitis in a mouse model [12]. 
In PL/J mice, EAE was elicited by transfer of MBP-specific lymph node cells. Only 
mice containing antibodies against MHV displayed large demyelinating lesions in the 
spinal cord. In addition, MHV-JHM induces a biphasic retinal disease in BALB/c 
mice [28]. In the early phase, the virus induces a retinal vasculitis. Later, when both 
viral particles and inflammatory ceils are no longer detectable, these animals suf- 
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fer from a degeneration of the retina associated with the presence of autoantibodies 
against retina and retinal pigment epithelial cells. 

The major factor leading to primary demyelination and inflammation appears to be 
provoked by the antiviral immune response. A persistent virus infection and demyeli- 
nation can be induced if C57B1/6 mice that are nursed by already immune mothers are 
infected [74]. This chronic disease may involve humoral antibodies, which prevent 
virus spread and damage of neurons during the acute phase. A similar modulation 
of the disease was observed after infection of mice infused with mAb against the S 
protein [2, 92]. 

The pathology of virus-induced CNS infections depends on changes caused di- 
rectly by the virus and the effects mediated by proinflammatory cytokines [37, 108]. 
During the acute stage, the infection of MHV-JHM results in an increase of MHC 
class I expression on oligodendrocytes and astrocytes [93, 94]. This induction of 
MHC class I expression in astrocytes is dependent on the virus strain employed for 
infection [26]. In addition, a virus-mediated induction of IL-6 was demonstrated on 
endothelial cells and astrocytes [35]. These virus-specific immune modulatory effects 
are thought to involve soluble factors released from brain cells. Furthermore, besides 
neural cells, infiltrating monocytes and macrophages are a target for infection. Surviv- 
ing the acute disease depends strongly on an efficient clearance of virus involving both 
CD4 § and CD8 § T lymphocytes, which act through the release of cytokines [1, 108]. 
At the time of clearance, an increase of mRNA for IL-lc~, IL-1/3, IL-6, tumor necrosis 
factor (TNF)-c~ and IFN- 7 was demonstrated [70]. In irradiated mice, the clearance 
of virus from the CNS is severely impaired. However, although the amount of in- 
fectious virus is significantly enhanced, demyelination is abrogated. Passive transfer 
of splenocytes from immune animals again resulted in inflammatory demyelination. 
Virus-specific Thy-1 + cells are, therefore, considered to be of central importance in 
mediating demyelination [22, 82, 97]. 

Common pathogenic aspects of coronavirus-induced demyelination, EAE and MS 

The process of demyelination, the involvement of autoimmunity and the clinical 
course of experimental coronavirus infections emulate some aspects of MS. EAE 
is investigated as the classical model to illustrate the involvement of autoimmunity 
in CNS diseases [46, 69]. To induce EAE, animals are immunised with mixtures of 
MBP or myelin extracts with adjuvants.The essential pathogenic element consists of 
CD4 § T cells sensitised against "encephalitogenic" epitopes of MBP. Passive trans- 
fer of activated MBP-specific T cell lines also results in EAE. However, the lesions 
associated with this type of EAE model only consist of perivascular infiltrations of T 
cells and monocytes, whereas inflammatory demyelination is a hallmark of MS. To 
emulate such pathological changes, a number of experimental designs were evaluated. 

One of the most successful modifications of the EAE model was achieved by a 
combined transfer of T cells specific for brain antigens and antibodies against sur- 
face proteins on oligodendrocytes or myelin. The intensity of inflammation and the 
degree of demyelination depend on the balance between encephalitogenic T cells 
and antibodies. The neuropathological changes observed in these EAE models and 
in coronavirus-induced demyelinating disease are similar to demyelinating lesions 
associated with MS. In both systems a spectrum of lesions can be analysed, which 
represent different stages of plaque development. The pathogenic mechanism driving 
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the different types of lesions appear to vary even within the same rat. In general, a 
persisting virus infection may provide a first antigen stimulus and disturb the balance 
of the immune system [111]. Viruses that replicate in neural tissue can incorporate 
host material, including myelin proteins, and thus provoke a normally irrelevant im- 
mune response [76]. Furthermore, epitopes of the virus may cross-react with potential 
neuroantigens, thus provoking autoimmunity by molecular mimicry [64]. Many direct 
or indirect disturbances of oligodendrocyte functions can impair myelin production, 
expose new antigens and progress to phases of increasing pathology. Oligodendro- 
cytes are sensitive to exposure to TNF or IL-1 [57]. Other factors are released by 
activated macrophages such as nitric oxide or proteases. Finally, oligodendrocytes are 
sensitive to C ~ or C'-mediated antibody reactions. Therefore, demyelination may also 
be the consequence of an "innocent bystander" effect related to an antiviral immune 
response. 

Astrocytes are coupled through gap junctions to oligodendrocytes and secrete 
trophic factors. In addition, the viability of oligodendrocytes depends on the integrity 
of the associated axons. Furthermore, the immunomodulatory functions of astrocytes, 
microglia and endothelial cells can be affected by a viral infection. In particular, 
the virus-induced up-regulation of MHC or of cytokines can be implicated in the 
disruption of immune regulation. An immunopathological process may, thus, prevail 
even when the eliciting infectious agent has already been eliminated. 

Despite the fascinating observations in such model systems, a direct etiological 
involvement of coronavirus infections in MS remains unlikely. The reports on coron- 
aviruses isolated from CNS tissue of MS patients using mice or murine cell cultures 
are debatable [3]. The risk of a hidden murine coronavirus infection during pro- 
longed passages is obvious. On the other hand, there are reports of coronavirus RNA 
or protein being detected in brain tissue in some MS cases [59, 88]. Furthermore, 
murine coronaviruses can induce encephalomyelitis in primates [4, 60]. There have 
been numerous attempts to incriminate viruses as an agent which triggers MS. No 
epidemiological evidence indicates that coronaviruses are involved in this disease. 

Dysfunctions of the immune system caused by murine coronavirus infections 

A number of low-virulent MHV viruses have been isolated from mouse colonies, 
which display a highly variable tropism for macrophages and T or B cell lineages 
[5]. Natural MHV infections can impair the function of splenic cells or influence 
the release of immunomodulatory neurotransmitters [5, 41, 83, 84]. Oral infection of 
BALB/cByJ mice with MHV-JHM resulted in a transient but marked depression of T 
cell functions [9, 15]. Within the first weeks of infection, the spleen cell response to 
polyclonal stimuli was decreased. On the other hand, spleen cells from mice infected 
with MHV-JHM proliferated spontaneously and produced elevated levels of IL-2 
and IL-3. This spontaneous lymphokine production was measured at a time point 
when infectious virus had already been eliminated [39]. Moreover, the frequency of 
self-reactive T cells was significantly elevated [40]. Following intranasal infection of 
BALB/c mice with MHV-A59, a transient acute phase was observed accompanied by 
a markedly decreased number of cells in lymphoid organs [11]. Later, when infectious 
virus was no longer detectable, these mice had an impaired ability to reject skin grafts. 
This long-term dysfunction of T cells was not detectable by in vitro assays. MHV- 
A59 does not infect T or B cells. Therefore, it is conceivable that this dysfunction 
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is caused by an impairment of accessory cell functions induced during the phase of 
acute infection. 

Immune cell tropism of MHV-3 

This murine coronavirus displays a broad spectrum of organ tropisms and can affect 
liver, lymphoid organs and the CNS [47, 48, 100]. The outcome of disease strongly 
depends on the genetic background, the route of infection and the MHV-3 biotype. 
A/J mice are resistant to intraperitoneal infection, the virus being cleared within 7 
days. C57BL/6 mice by contrast die within a few days post infection (p.i.) from an 
acute hepatitis. This genetic restriction is based on the interaction between the virus, 
macrophages and lymphoid cells. The lymphoid organs of animals with acute disease 
are severely affected. The virus induces a lytic infection of cells belonging to the B 
cell lineage in spleen and bone marrow, which correlates with the pathogenicity of 
MHV-3 [33, 44]. In addition, the splenic and thymic T cell population is depleted. In 
these cells, a lytic viral infection is maintained through contact with stromal cells of 
the thymus [43]. 

A completely different outcome of infection was observed, when F1 hybrids de- 
rived from cross-breeding between those strains; (C57B1/6xA/J) F1 were employed 
[34]. These "semi-susceptible" animals are resistant to acute disease, but develop 
chronic diseases based on persistent infections, which can be associated with im- 
munosuppression. Major signs consist of a wasting syndrome, hind limb paralysis 
and incoordination. These mice occasionally die within 3 months. Similar manifes- 
tations of chronic disease are also inducible by MHV-3 infection of C3H, AKR or 
A2G mice. 

The chronic disease is under the control of several H-2-1inked genes, which influ- 
ence the degree of hepatic damage. The acute phase depends on another gene complex. 
The development of neurological disease depends on the level of virus replication in- 
volving meningeal cells, ependymal cells and neurons [13, 95]. Although antibodies 
against MHV-3 are continuously detectable, a strong impairment of both primary and 
secondary antibody responses occurs. Furthermore, the number of thymocytes, splenic 
cells and macrophages decreases significantly. The number of spleen cells decreases 
already within 2 days p.i. and remains low for up to 3 months. Infectious virus can 
be isolated from different organs of chronically infected mice. The major targets are 
mature B cells and thymic stromal cells. Viruses isolated from CNS tissue are less 
pathogenic and have lost the tropism for thymocytes [45]. It is noteworthy that neu- 
rological signs develop at a time when the spleen cellularity and number of peritoneal 
macrophages have reached normal levels. The paralysis is thought to result from an 
immune-mediated lysis of infected neural cells [34]. As a consequence of the T and 
B cell depletion during the acute phase, the elimination of infectious virus may be 
inefficient and, thus, establishment of a persistent infection could be promoted. 

MHV-3-induced coagulopathies 

Macrophage function determines to a significant extent the outcome of infections with 
MHV-3. The restriction of MHV-3 replication is strongly associated with macrophage 
activation by IFN-'7 [56]. Furthermore, the activation of the blood coagulation system 
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by infection with MHV-3 is a major pathogenic mechanism related to susceptibility 
and resistance [50]. Activation of the coagulation system can result in disseminated 
intravascular deposition of fibrin and, thus, lead to severe liver damage. A low basal 
procoagulant activity (PCA), a prothrombinase, is an intrinsic property of lymphoretic- 
ular cells. This enzymatic activity can be up-regulated by lipopolysaccharides, immune 
complexes or lectins. Monocytes and macrophages play a pivotal role in the induction 
of the PCA response. 

The manner in which infection of macrophages by MHV-3 stimulates PCA is 
strictly dependent on the genetic background: high activity is induced in fully suscep- 
tible BALB/c mice, moderate responses are measurable in C3H/St mice and no PCA 
activity occurs in the fully resistant A/J strain. The PCA response develops within 
1-1.5 h p.i., before the virus replicates. Infusion of infected BALB/c mice with an 
mAb that neutralises PCA activity has a protective effect and limited hepatic necrosis 
[51]. Therefore, the mechanism by which macrophages contribute to genetic restric- 
tion is via induction of the blood coagulation cascade by the virus and is not directly 
dependent on the virus replication. In addition, MHV-3 infection of macrophages 
elicits the production of TNF, leukotriene B4 and IL-1. These mediators may in turn 
elicit the expression of PCA in endothelial cells. 

The induction of PCA in macrophages is not possible without T cell cooperation. T 
lymphocytes from resistant, immunised A/J mice are capable of inhibiting expression 
of PCA in susceptible, H-2-compatible recombinant mice. A virus-specific CD4 § 
Thl line has been established, which blocks the induction of PCA in macrophages 
[7]. Furthermore, this T cell line is capable of conferring resistance to otherwise 
susceptible mice. 

Results from several studies imply that IFN play a central role in susceptibility 
or resistance [56]. These cytokines display both antiviral and immunomodulatory 
activities. A major mechanism mediating an antiviral effect is elicited through 2- 
5 adenylate synthetase, which activates RNase L. This endoribonuclease activity can 
impair the synthesis of viral RNA by degradation of single-stranded RNA. Compounds 
that stimulate RNase L interfere with virus replication in macrophages [21]. However, 
MHV-3-induced PCA activity is not diminished and, thus, these substances did not 
prevent necrotic hepatitis. The beneficial role of IFN-3, appears to operate through 
stimulation of the Thl lymphocyte response and may not be a consequence of its 
antiviral effect. 

Conclus ions  and c o m m e n t s  

A number of coronavirus-induced disease processes are driven or accompanied by im- 
munopathological mechanisms. Of major clinical importance is feline infectious peri- 
tonitis, which is a management problem in catteries. This antibody- and C'-mediated 
disease process displays interesting mechanistic parallels to important virus diseases of 
human, involving haemorrhagic shock syndromes and damage to the lymphoreticular 
system [37, 53]. 

Murine coronavirus infections do not appear to be of clinical importance. How- 
ever, these viruses provide interesting experimental models by emulating complex 
disease processes and may represent as-yet-unrecognized threats or underestimated 
problems in biomedical studies. Infections with MHV strains affect about 60-80% 
of mouse colonies and are often not recognised because of their tendency to induce 
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subclinical and inapparent infections. Therefore, the long-term effects of such infec- 
tions on immune functions and the neuroendocrine system can severely impair the 
reliability of results of experiments employing mice and rats. In particular, studies 
with genetically manipulated animals may be invalidated if such colonies harbour an 
unrecognized MHV infection. 

Murine coronavirus infections of rodents have been developed as versatile models 
for virus persistence, chronic infections and demyelination [8, 16, 100]. The results 
have influenced experiments with a number of other systems, such as measles virus, 
Sindbis virus, SFV and Theilervirus [52, 58, 75]. 

The concepts derived from these studies may help to understand the pathogenesis 
of demyelination in EAE and MS [25, 46, 78, 111]. The CNS is no longer considered 
as a strictly "immunoprivileged" organ, because activated T cells can pass through the 
endothelial blood-brain barrier irrespective of their antigenic specificity. Coronavirus 
infections can induce dysfunctions of the immune system and trigger autoimmune 
reactions. Autoimmune T cell populations exist in the healthy organism and are not 
inevitably anergic or silenced. MBP is not the only encephalitogenic neuroantigen: 
depending on the genetic and immunological context, other molecules, e.g. prote- 
olipid protein or a virus protein, can drive chronic demyelination. Brain cells such as 
cerebral endothelial cells, astrocytes or microglia can function as antigen-presenting 
cells involved in modulation of the immune response within the CNS. Coronaviruses 
have the capacity to influence these regulatory circuits. 

Despite the strong reluctance to associate coronaviruses with MS, it remains an 
open question as to whether coronaviruses can enter the human CNS irrespective of 
pathological consequences. The hypothesis that virus infections may influence the 
clinical course of MS could be investigated in such model systems. 
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