Journal of Shanghai University (English Edition), 2003, 7(2): 118~123 Article ID: 1007-6417(2003)02-0118-06

Multiple Sequence Alignment of the M Protein in SARS-Associated and Other Known Coronaviruses

SHI Ding-Hua(史定华), ZHOU Hui-Jie(周晖杰), WANG Bin-Bin(王斌宾), GU Yan-Hong(顾燕红), WANG Yi-Fei(王異飞) Department of Mathematics, Shanghai University, Shanghai 200436, China

Abstract In this paper, we report a multiple sequence alignment result on the basis of 10 amino acid sequences of the M protein, which come from different coronaviruses (4 SARS-associated and 6 others known). The alignment model was based on the profile HMM (Hidden Markov Model), and the model training was implemented through the SAHMM (Self-Adapting Hidden Markov Model) software developed by the authors.

Key words SARS (Severe Acute Respiratory Syndrome), coronavirus, M (Membrane or Matrix) protein, multiple sequence alignment, profile HMM.

MSC 2000 60J20,92C40

1 Introduction

SARS is the first newly identified serious infectious disease that human being is facing at the beginning of the 21st century. It has been primarily recognized that a variant of virus from the coronavirus family might be the candidate pathogen of SARS, as reported by WHO (World Health Organization) on April 29, 2003 (http://www.who.int/csr/sarsco untry/en).

Coronaviruses were first isolated from chickens in 1937. There are now approximately 15 species in this family. Coronavirus particles are irregularly shaped, round about 60-220 nm in diameter, with an outer envelope bearing distinctive, 'club-shaped' peplomers (round about 20nm long \times 10 nm at wide distal end)^[1]. This 'crown-like' appearance (Latin, *corona*) gives the family its name.

The genome size of SARS-associated coronaviruses (isolate BJ01) is 29725kb and has 11 ORFs (Open Reading Frames). The whole genome is composed of a stable region encoding an RNA-dependent RNA poly-

Received May 22, 2003

SHI Ding-Hua, Prof., E-mail: shidh2001@263.net

merase (composed of 2 ORFs) and a variable region representing 4 CDSs (Coding Sequences) viral structural genes (the S, E, M, N proteins) and 5 PUPs (Putative Uncharacterized Proteins)^[2]. Its gene order is identical to that of other known coronaviruses.

The S (Spike) protein, the N(Nucleocapsid) protein and perhaps together with the M protein appear to be the most important candidates for the future diagnostic testing, preventing and treatment based on antibodies and vaccines, as well as exploring the immunoreactions^[2]. Due to the limit of page space, we choose the M protein as an illustrated example here. The M protein with transmembrane-budding and envelope formation was predicted to be a mid-sized protein (221 acid amino residues). It was located at the nucleotide position 26379-27044 (isolate BJ01)^[2].

For the M protein, by using the Blast method and the ClustalW 1.8 software (http://www.ddbj.nig. ac.jp/E-mail/ clustalw-e.htm), the results on both the pair and the multiple sequence alignments have been respectively obtained and reported in literature. However, as far as the authors know, the multiple sequence alignment result based on the profile HMM has not been seen yet.

In this paper, we report some results about a multiple sequence alignment on the basis of 10 amino acid

Project supported by the National Natural Science Foundation of China (Grant No. 70171059) and the 863 Project (Grant No. 2002AA234021)

sequences of the M protein, which come from different coronaviruses in NCBI databases (http://www. ncbi.nlm.nih.gov). They covered 4 SARS-associated coronaviruses isolated from patients in Canada, USA, and China (Beijing, Hong Kong), and 6 others: 2 from human being (229E, Transmissible gastroenteritis), 3 from house animals (Porcine, Bovine, Turkey), and 1 from bird (Avian).

2 Model and Method

The alignment model is based on the profile HMM, and its topology as follows^[3]:

Fig.1 Topology of the profile HMM

The model training is implemented through the SAHMM software developed by the authors. The SAHMM software includes a two-stage alternative optimization method to maximize Bayesian posterior probabilities of parameters and topology for a hidden Markov model.

Let M_N denote the profile HMM with N main states, λ_N the parameter set of the profile HMM (including the state transition probabilities and the symbol emission probabilities), $O = \{O^{(w)}\}, w = 1, 2, \cdots$ W, the training sequence set, and T_w the length of the training sequence $O^{(w)}$.

The first step of two-stage alternative optimization method in the SAHMM software is parameter estimation that is to find λ_N^* as the number of main states N is fixed. By using the Bayes formula, we have

$$\lambda_{N}^{*} = \arg \max_{\lambda_{N}} P(\lambda_{N} | O, M_{N})$$

$$\propto \arg \max_{\lambda_{N}} P(O | \lambda_{N}, M_{N}) P(\lambda_{N} | M_{N})$$
(1)

in which $P(O | \lambda_N, M_N)$ is the likelihood function of the training sequence set O, $P(\lambda_N | M_N)$ is the prior distribution of the parameter set λ_N . We use Bayesian Baum-Welch algorithm plus simulated annealing to estimate the parameters λ_N of the profile HMM. The Baum-Welch algorithm is a variation of the more general EM algorithm. It iterates between an expectation step (E-step) and a maximization step (M-step). The iterative process continues until some stop rule is satisfied.

The second step of two-stage alternative optimization method in the SAHMM software is the topology optimization that is to find the following M_N .

$$M_{N} \cdot = \arg \max_{M_{N}} P(M_{N} | O)$$

$$\propto \arg \max_{M_{N}} P(O | M_{N}) P(M_{N})$$
(2)

in which $P(M_N)$ is the prior distribution of the model topology M_N . Under the assumption of a non-information prior distribution, we have

$$P(M_N|O) \propto P(O|M_N)$$

= $\int P(O|M_N, \lambda_N) P(\lambda_N|M_N) d\lambda_N$ (3)

Usually, the integral in Eq. (3) is difficult to calculate directly. Hence we use Bayesian Information Criterion (BIC)^[4] to approximate it:

$$BIC = -2\log P(O \mid \lambda_N^*, M_N) + K_N \log W$$
(4)

where K_N is the number of free parameters in the profile HMM with N main states, W is the sample size, and $-\log P(O | \lambda_N^*, M_N)$ is the maximized negative log-likelihood of training sequence set O. Then the optimum topology model M_N^* is

$$M_N \cdot = \arg \min_{M_N} \{ -2\log P(O \mid \lambda_N^*, M_N) + K_N \log W \}$$
(5)

We have proved that $P(O|\lambda_N^*, M_N)$ is a monotonously increasing function with respect to N, so the object function of (5) is a single peak function. We can use various optimum methods to solve (5), e. g. the golden section method.

3 Data and Results

3.1 Data

Organism	Accession	Length	Web site
SARS coronavirus BJ01	AY278488.2	221a.a.	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd = Retrieve&db = protein&dist_uids = 30275673&dopt = GenPept
SARS coronavirus CUHK-W1	AY278554.2	221a.a.	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd = Retrieve&db = protein&list_uids = 30023958&dopt = GenPept
SARS coronavirus NC_004718.3	NC-004718.3	221a.a.	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd = Retrieve&db = protein&list-uids = 29836504&dopt = GenPept
SARS coronavirus urbani	AY278741. A	221a.a.	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd = Retrieve&db = protein&list_uids = 30027623&dopt = GenPept
Transmissible gastroenteritis virus	NC-002306.2	262a.a.	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd = Retrieve&db = protein&list_uids = 13399294&dopt = GenPept
Human coronavirus 229E	NC_002645	225a.a.	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd = Retrieve&db = protein&list-uids = 12175752&dopt = GenPept
Porcine-epidemic diarrhea virus	D49591	226a.a.	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd = Retrieve&db = protein&dist_uids = 1360870&dopt = GenPept
Bovine coronavirus	AF220295.1	230a.a.	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd = Retrieve&db = protein&dist_uids = 17529680&dopt = GenPept
Turkey coronavirus	JQ1172	230a.a.	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd = Retrieve&db = protein&dist_uids = 77083&dopt = GenPept
Avian-infectious bronchitis virus	M95169.1	225a.a.	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd = Retrieve&db = protein&dist_uids = 292958&dopt = GenPept

3.2 Results

The multiple sequence alignment of the M protein produced by the ClustalW(1.8) software

BJ01-a	MADNGTITVEELKQLLEQWNLVIGFLFLAW
CUHK-b	MADNGTITVEELKQLLEQWNLVIGFLFLAW
NC-c	MADNGTITVEELKQLLEQWNLVIGFLFLAW
urbani-đ	MADNGTITVEELKQLLEQWNLVIGFLFLAW
Transmissible-e	-MKILLILACVIACACGERYCAMKSDTDLSCRNSTASDCESCFNGGDLIWHLANWNFSWSIILIVF
human-f	MSNDNCTGDIVTHLKNWNFGWNVILTIF
porcine-g	MSNGSIPVDEVIEHLRNWNFTWNIILTIL
Bovine-h	MSSVTTPAPVYTWTADEAIKFLKEWNFSLGIILLFI
Turkey-i	M\$SVTTPAPVYTWTADEAIKFLKEWNFSLGIILLFI
Avian-j	MPNETNCTLDFEQSVQLFKEYNLFITAFLLFL
BJ01-a	IMLLQFAYSNRNRFLYIIKLVFLWLLWPVTLACFVLAAVYRIN-WVTGGIAIAMACIVFLMWLS
CUHK-D	IMLLQFAYSNRNRFLYIIKLVFLWLLWPVTLACFVLAAVYRIN-WVTGGIAIAMACIVGLMWLS
NC-c	IMLLQFAYSNRNRFLYIIKLVFLWLLWPVTLACFVLAAVYRIN-WVTGGIAIAMACIVGLMWLS
urbani-d	IMLLOFAYSNRNRFLYIIKLVFLWLLWPVTLACFVLAAVYRIN-WVTGGIAIAMACIVGLMWLS

Vol.7 No.2 Jun.2003

Transmissible-e	ITVLQYGRPQFSwFvYGIKMLIMWLLwPvvLaltIFNAYSEYQvSRYvMFGFSIAGAIvTFvLWIM
human-f	${\tt IVILQFGHYKYSRLFYGLKmLvLwLLwPLvLALSIFDTwanwDSn-waFvAFSFFMAVSTLVMwvM}$
porcine-g	LVVLQYGHYKYSVFLYGVKMAILWILWPLVLALSLFDAWASFQVN-WVFFAFSILMACITLMLWIM
Bovine-h	TVILQFGYTSRSMFVYVIKMVILWLMWPLTIILTIFN~-CVYALN-NVYLGFSIVFTIVAIIMWIV
Turkey-i	TIILQFGYTSRSMSVYVIKMIILWLMWPLTIILTIFNCVYALN-NVYLGFSIVFTIVAIIMWIV
Avian-j	TIILQYGYATRSKVIYTLKMIVLWCFWPLNIAVGVISCTYPPN-TGGLVAAIILTVFACLSFVG
BJ01-a	YFVASFRLFARTRSMWSFNPETNILLNVPLR-GTIVTRPLMESELVIGAVIIRGHLRMAGHSLGR-
CUHK-b	YFVASGRLGARTRSMWSFNPETNILLNVPLR-GTIVTRPLMESELVIGAVIIRGHLRMAGHSLGR-
NC-c	YFVASFRLFARTRSMWSFNPETNILLNVPLR-GTIVTRPLMESELVIGAVIIRGHLRMAGHSLGR-
urbani-d	YFVASFRLFARTRSMWSFNPETNILLNVPLR-GTIVTRPLMESELVIGAVIIRGHLRMAGHPLGR-
Transmissible-e	$\label{eq:constraint} YFVRSIQLYRRTKSWWSFNPETKAILCVSAL-GRSYVLPLEGVPTGVTLTLLSGNLYAEGFKIAGG$
human-f	YFANSFRLFRRARTFWAWNPEVNAITVTTVL-GQTYYQPIQQAPTGITVTLLSGVLYVDGHRLASG
porcine-g	$\label{eq:construction} YFVNSIRLWRRTHSWWSFNPETDALLTTSVM-GRQVCIPVLGAPTGVTLTLLSGTLLVEGYKVATG$
Bovine-h	YFVNSIRLFIRTGSWWSFNPETNNLMCIDMK-GRMYVRPIIEDYHTLTVTIIRGHLYMQGIKLGTG
Turkey-i	YFVNSIRLFIRTGSWWSFNPETNNLMCIDMK-GRMYVRPIIEDYHTLTVTIIRGHLYMQGIKLGTG
Avian-j	YWIQSIRLFKRCRSWWSFNPESNAVGSILLTNGQQCNFAIESVPMVLSPIIKNGVLYCEGQWLAK-
BJ01-a	CDIKDLPKEITVATSR-TLSYYKLGASQRVGTDSGFAAYNRYRIGNYKLNTDHAGSNDNIALLVQ
CUHK-b	CDIKDLPKEITVATSR-TLSYYKLGASQRVGTDSGFAAYNRYRIGNYKLNTDHAGSNDNIALLVQ
NC-c	CDIKDLPKEITVATSR-TLSYYKLGASQRVGTDSGFAAYNRYRIGNYKLNTDHAGSNDNIALLVQ
urbani-d	CDIKDLPKEITVATSR-TLSYYKLGASQRVGTDSGFAAYNRYRIGNYKLNTDHAGSNDNIALLVQ
Transmissible-e	MNIDNLPKYVMVALPSRTIVYTLVGKKLKASSATGWAYYVKSKAGDYSTEAR-TDNLSEQEKLLHMV
human-f	$v \verb"QVHnlpeymtvavpsttiiys rvgrsvnsqnstgwvfyvrvkhgdfsavsspmsnmtenerllhff"$
porcine-g	$v \\ Q v \\ S \\ Q L p n f v \\ t v \\ A k \\ a t \\ t \\ i v \\ y \\ G r v \\ G r v \\ S \\ v \\ a s \\ S \\ c t \\ s \\ v \\ r \\ s \\ k \\ t \\ t \\ s \\ v \\ s \\ v \\ s \\ s \\ v \\ s \\ s \\ v \\ s \\ s$
Bovine-h	${\tt YSLSDLPAYVTVAKVS-HLLTYKRGFLDKIGDTSGFAVYVKSKVGNYRLPSTQKGSGLDTALLRNNI}$
Turkey-i	YSLSDLPAYVTVAKVS-HLLTYKRGFLDKIGDTSGFAVYVKSKVGNYRLPSTQKGSGMDTALLRNNI
Avian-j	CEPDHLPKDIFVCTPDRRNIYRMVQKYTGDQSGNKKRFATFVYAKQSVDTGELESVATGGSSLYT

The Multiple sequence alignment of the M protein produced by the SAHMM software

BJ01-a	MADNGTI	T	VE-E-LKQLL	EQWN	LVI-GFLFLAWI
CUHK-b	MADNGTI	T	VE-E-LKQLL	EQWN	LVI-GFLFLAWI
NC-c	MADNGTI	T	VE-E-LKQLL	EQWN	LVI-GFLFLAWI
urbani-đ	MADNGTI	T	VE-E-LKQLL	EQWN	LVI-GFLFLAWI
Transmissible-e	MKILLILACV	IACACGERYC	AM-K-SDTDL	SCRNSTASDC	ESCFNG-GDLIWHLANWNFS
human-f	M-SNDNC	T	GD-IVTHL	KNWNF	GWN-VILTIFIV
porcine-g	M-SNGSI	P	VD-E-VIEHL	RNWNF	TWN-IILTILLV
Bovine-h	MSSVTTPAPV	YTWT	AD-E-AIKFL	KEWNFS	LGIILLFITV
Turkey-i	MSSVTTPAPV	YTWT	AD-E-AIKFL	KEWNFS	LGIILLFITI
Avian-j	MPNETNC	T	LDFEQSVQLF	KEYN	LFITAFLLFLTI

BJ01-a		MLLQFAYSNR	NRFLYIIKLV	FLWLLWPVTL	A-CFVLA-AV	YRI-NWVTGG
CUHK-b		MLLQFAYSNR	NRFLYITKLV	FLWLLWPVTL	A-CFVLA-AV	YRI-NWVTGG
NC-C		MLLQFAYSNR	NRFLYIIKLV	FLWLLWPVTL	A-CFVLA-AV	YRI-NWVTGG
urbani-d		MLLQFAYSNR	NRFLYIIKLV	FLWLLWPVTL	A-CFVLA-AV	YRI-NWVTGG
Transmissible-e	WSIILIVFIT	VL-QYGRPQF	SWFVYGIKML	IMWLLWPVVL	ALTIFNAYSE	YQVSRYVMFG
human-f		IL-QFGHYKY	SRLFYGLKML	VLWLLWPLVL	ALSIFDTWAN	WDS-NWAFVA
porcine-g		VL-QYGHYKY	SVFLYGVKMA	ILWILWPLVL	ALSLFDAWAS	FQV-NWVFFA
Bovine-h		IL-QFGYTSR	SMFVYVIKMV	ILWLMWPLTI	ILTIFNC-VY	ALN-NVYLGF
Turkey-i		IL-QFGYTSR	SMSVYVIKMI	ILWLMWPLTI	ILTIFNC-VY	ALN-NVYLGF
Avian-j		IL-QYGYATR	SKVIYTLKMI	VLWCFWPLNI	A-VGVIS-CT	YPP-NTGG
BJ01-a	-IAIAMACIV	GLMWLSYF	VASFRLFART	RSMWSFNPET	NILLNVPL-R	GTIVTRPLME
CUHK-b	-IAIAMACIV	GLMWLSYF	VASFRLFART	RSMWSFNPET	NILLNVPL-R	GTIVTRPLME
NC-c	-IAIAMACIV	GLMWLSYF	VASFRLFART	RSMWSFNPET	NILLNVPL-R	GTIVTRPLME
urbani-d	-IAIAMACIV	GLMWLSYF	VASFRLFART	RSMWSFNPET	NILLNVPL-R	GTIVTRPLME
Transmissible-e	-FSIAGAIVT	FVLWIMYF	VRSIQLYRRT	KSWWSFNPET	KAILCVSALG	RSYV-LPLEG
human-f	-FSFFMAVST	LVMWVMYF	ANSFRLFRRA	RTFWAWNPEV	NAITVTTVLG	QTYY-QPIQQ
porcine-g	-FSILMACIT	LMLWIMYF	VNSIRLWRRT	HSWWSFNPET	DALLTTSV-M	GRQVCIPVLG
Bovine-h	SIVFTIVAII	MWIVYF	VNSIRLFIRT	GSWWSFNPET	NNLMCIDMKG	RMYV-RPIIE
Turkey-i	SIVFTIVAII	MWIVYF	VNSIRLFIRT	GSWWSFNPET	NNLMCIDMKG	RMYV-RPIIE
Avian-j	-LVAAIILTV	FACLSFVGYW	IQSIRLFKRC	RSWWSFNPES	NAVGSILLTN	GQQC-NFAIE
BJ01-a	S-ELVIGAVI	IRGHLRMAGH	-SLGRCDIKD	LPKEITVA-T	SRTLSYYKLG	ASQRVGTD
CUHK-b	S-ELVIGAVI	IRGHLRMAGH	-SLGRCDIKD	LPKEITVA-T	SRTLSYYKLG	ASQRVGTD
NC-c	S-ELVIGAVI	IRGHLRMAGH	-SLGRCDIKD	LPKEITVA-T	SRTLSYYKLG	ASQRVGTD
urbani-d	S-ELVIGAVI	IRGHLRMAGH	-PLGRCDIKD	LPKEITVA-T	SRTLSYYKLG	ASQRVGTD
Transmissible-e	V-PTGVTLTL	LSGNLYAEGF	KIAGGMNIDN	LPKYVMVALP	SRTIVYTLVG	KKLKASSA

human-f	A-PTGITVTL	LSGVLYVDGH	RLASGVQVHN	LPEYMTVAVP	STTIIYSRVG	RSVNSQNS	
porcine-g	A-PTGVTLTL	LSGTLLVEGY	KVATGVQVSQ	LPNFVTVAKA	TTTIVYGRVG	RSVNASSG	
Bovine-h	D-YHTLTVTI	IRGHLYMQGI	KLGTGYSLSD	LPAYVTVAKV	SHLLTY-KRG	FLDKIGDT	
Turkey-i	D-YHTLTVTI	IRGHLYMQGI	KLGTGYSLSD	LPAYVTVAKV	SHLLTY-KRG	FLDKIGDT	
Avian-j	SVPMVLSPII	KNGVLYCEGQ	-WLAKCEPDH	LPKDIFVCTP	DRRNIYRMVQ	KYTGDQSGNK	

BJ01-a	SGFAAYNRYR	IGNYKLN	TD-HAGSNDN	IALLVQ
CUHK-b	SGFAAYNRYR	IGNYKLN	TD-HAGSNDN	IALLVQ
NC-c	SGFAAYNRYR	IGNYKLN	TD-HAGSNDN	IALLVQ
urbani-d	SGFAAYNRYR	IGNYKLN	TD-HAGSNDN	IALLVQ
Transmissible-e	TGWAYY-VKS	KAGDYSTE	AR-TDNLSEQ	EKLLH-MV
human-f	TGWVFY-VRV	KHGDFSAV	SSPMSNMTEN	ERLLH-FF

porcine-g	TGWAFY-VRS	KHGDYSAV	SNPSAVLTDS	EKVLH-LV
Bovine-h	SGFAVY-VKS	KVGNYRLP	ST-QKGSGLD	TALLRNNI
Turkey-i	SGFAVY-VKS	KVGNYRLP	ST-QKGSGMD	TALLRNNI
Avian-j	KRFATF-VYA	KQSVDTGELE	SV-ATGGS	SLYT

References

nese Science Bulletin, 2003, 48(10): 941-948.

- [1] Ksiazek T G, et al. A novel coronavirus associated with Severe Acute Respiratory Syndrome, The New England Journal of Medicine, 2003, April 10.
- [2] Qin E'de, et al. A complete sequence and comparative analysis of a SARS-associated virus (isolate BJ01), Chi-
- [3] Durbin S, et al. Biological sequence analysis: Probabilistic models of proteins and nucleic acids, London: Cambridge University Press, 1998.
- [4] Schwarz G. Estimating the dimension of a model, Annuals of Statistics, 1978, 6: 461 - 464.

(Executive editor SHEN Mei-Fang)