
Automating the Determination of Open Reading Frames in Genomic

Sequences Using the Web Service Techniques

 -- A Case Study using SARS Coronavirus

Paul Hsueh-Min Chang, Von-Wun Soo, Tai-Yu Chen, Wei-Shen Lai, Shiun-Cheng Su and

Yu-Ling Huang

Department of Computer Science, National Tsing-Hua University

101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 300, R.O.C.

pchang@cs.nthu.edu.tw, soo@cs.nthu.edu.tw, g924326@oz.nthu.edu.tw,

g926325@oz.nthu.edu.tw, d86623801@ntu.edu.tw, rebecca@ailab0.cs.nthu.edu.tw

+886-3-5715131 ext 4199

Abstract

As more and more new genome sequences were

reported nowadays, analyzing the functions of a new

genome sequence becomes more and more desirable

and compelling. However, the determination of the

functions of a genomic sequence is not an easy task.

Even with several bioinformatic tools, the task is still a

labor-intensive one. This is because human experts have

to intervene during the processing of using these tools.

For efficiency, immediacy and reduction of human

labor, a system of automating the analyzing process is

proposed. We take the automated determination of Open

Reading Frames of a genomic sequence as the domain

tasks that involve using a number of computational tools

and interpreting the results returned from the tools. A

service-oriented approach is taken, in which analyzing

tools are wrapped as Web services and described in

Semantic Web languages including OWL and OWL-S.

The SARS Coronavirus genomic sequence is taken as a

test case for our approaches. We are in the process of

building an agent-based system for automating the

tasks, in which an intelligent agent is responsible for

understanding purposes of the Web services by parsing

the service descriptions, and carrying out the

interpretation tasks according to a workflow.

1. Introduction

Modern advancement in bioinformatics has resulted

in computational tools that help analyze gene or protein

sequences and match similar sequences in the database.

Biologists can run these tools to gain information

about an unknown sequence and predict its

functionalities before conducting actual laboratory work.

Although computational tools enable fast sequence

analysis, they alone do not make the analyzing process

automatic because operating the tools requires intense

human attention. For example, to find out the

functionalities of the genome sequence of SARS

Coronavirus [1] [2], its RNA (in FASTA format) can be

sliced into more than 100 open reading frames, each of

which is then sent to Blastp to find out the matching

protein. Running an analyzing process like this can be

tedious for the human operator. Hence it is desirable to

automate the process at least partially. Besides

alleviating human workload, automation also speeds up

the analysis. In urgent situations such as the appearance

of a new disease caused by an unidentified virus, quick

information about the virus is useful even if the

information is not complete.

This requirement of automating analyzing processes

is compatible with the recent research theme of Web

services [3]. A sequence processing tool, once wrapped

as a Web service, is syntactically interoperable since it

can be accessed by programs written in any

programming language. Moreover, a Web service can be

semantically interoperable if it is described with

semantic markups in languages such as OWL-S [4].

Semantic interoperability means that the usage and

functionalities of the service can be understood by

parsing the semantic annotations. Given biological tools

wrapped as Web services and described with semantic

markups, an intelligent agent can utilize the tools to

carry out the processing task. More specifically, the

agent looks up in the service directory for potentially

useful Web services after delegated the processing goal

of the biologist. The agent then search for Web services

that fits in the workflow and choose among them by

reading the semantic markups. Finally the agent accesses

the chosen services either sequentially or in parallel

Proceedings of the Fourth IEEE Symposium on Bioinformatics and Bioengineering (BIBE’04)
0-7695-2173-8/04 $ 20.00 © 2004 IEEE

according to the workflow specification, and then output

the results. Furthermore, the agent can arrange the

results and interpret them in a way useful for biologists

by referring to domain ontologies. The construction of

good domain ontologies and service descriptions relies

on the knowledge and experience of biology experts.

This paper is organized as follows. Section 2

elaborates on the motivation, which is to automate the

analyzing process of SARS Coronavirus. Section 3

describes the workflow of the analysis in detail. Section

4 describes the Web-service-based approach. Section 5

reports the work in progress. Section 6 concludes this

paper.

2. Background and motivation

The analysis of SARS Coronavirus from [1] is taken

as the topic of our initial study because of its public

familiarity due to the SARS outbreak in the year of

2003. Since SARS Coronavirus has a shorter genome

sequence than germs or more complicated life forms, the

processing steps are relatively simple. We take this

analysis as a starting point; once it can be successfully

automated, the approach and techniques can be extended

to apply on complicated biological analyses such as

those on E. coli.

Thus, the motivation of this work is to reconstruct the

analysis in [1]. The first step is to understand the

workflow of the analysis, which involvers a workflow

consisting of sequence processing tools such as ORF

finder, Blastp and Pfam. Then an agent-based system is

build to perform the analysis automatically. However,

instead of being restricted to a single purpose, the agent-

based system must be flexible and extensible. By being

flexible the system can accept different goals from the

biologist if the goal is compatible with the capabilities

of the analyzing tools. By being extensible the system

can be enhanced with additional tools and knowledge

without need to change the system architecture. The

Web service approach is introduced to satisfy these two

desirable properties. Information about how to operate a

tool and what the tool does should be distributed to the

description of each service rather than hard coded within

the agent code. The agent must be able to consult an

external biological ontology, written in OWL [5], to

understand the meanings of the service descriptions,

written in OWL-S.

The service descriptions and ontology enables

reasoning about the capabilities of the tools. Thus this

architecture is extensible because new processing tools

can be wrapped as Web services and added to the

system, and flexible because a Web service can be used

in various circumstances that change with the processing

goal.

3. Workflow of the SARS genome analysis

The goal of the SARS analysis is to identify

potentially functional subsequences of SARS

Coronavirus, and to annotate the subsequences with

additional characters such as protein domain. Table 1

lists all sequence processing tools used in this analysis.

Figure 1 illustrates the workflow of the analysis. The

analysis can be divided into five steps, each of which is

described in detail in the following sections.

Figure 1. The workflow of the genome sequence

analysis of SARS Coronavirus

Proceedings of the Fourth IEEE Symposium on Bioinformatics and Bioengineering (BIBE’04)
0-7695-2173-8/04 $ 20.00 © 2004 IEEE

Step 1 Predict potential ORF subsequences.

A biologist may have a genome sequence in hand or

can find a sequence through the search engine on NCBI

web site. Then sequence must be in FASTA format

before sent to the ORF finder. The ORF finder slices the

sequence into potentially functional subsequences

known as open reading frames.

Step 2 Translate the subsequences

The open reading frames are nucleotide sequences,

but further analyses require amino acid sequences as

inputs. Therefore the open reading frames must be

translated to amino acid sequences. Each translated

subsequence is a potential protein. The Transeq

translation engine does the job.

Step 3 Search for similar proteins

The translated subsequences are then passed to

Blastp and FASTA to perform sequence similarity

search. Both Blastp and FASTA compare the input

sequences with the known proteins in their data banks

and return a list of proteins which is similar to the input

sequence. The protein lists are sorted in descending

order according to the scores computed by Blastp and

FASTA. In general, we care more about the protein with

the highest score.

Thus the translated subsequences can be divided into

three groups according to the highest score in the protein

list of each subsequence. The first group contains

subsequences with a highest score which is larger than

200. They are believed to have a correct match, and

therefore their importance is clear. The second group

contains subsequences with highest scores between 200

and 50. Deciding whether the protein with the highest

score is a correct match is not easy. Subsequences with

highest scores lower than 50 are believed to be have an

incorrect match. It means that either the open reading

frames in this group are non-functional or that they

represent a new protein that the data banks do not

contain.

Step 4 Gather characters of the those proteins

Since whether the subsequences belonging to the

second and the third group represents a protein is not

certain, other tools including Pfam, InterProScan,

SignalP, TMPred and TMHMM can be used to gather

more characteristics about these subsequences that may

or may not be proteins. Pfam and InterProScan can be

used to determine the domain of a protein. TMPred and

TMHMM can predict if a protein is a membrane protein.

SignalP can indicate the cleavage site of a protein.

Characteristics of the low score subsequences can give

the biologists more clues so that the biologisits can

make the better decision.

Step 5 Annotate and process output

A user may need different output for different

purposes. In this step we first integrate the outputs of

step 3 and step 4 into a complete output. Then we

process the output according to the biologist? need. For

example, a biologist may need the subsequences in the

first group if she wants to find out the functionalities of

a new genome sequence.

However another biologist may only need the

subsequences in the second and the third group if she

wants to find a new protein.

4. Automation approach

This section describes our approach of automating

genome sequence analysis described in the previous

section.

4.1. System architecture

Table 1. The tools used in the genomic sequence

analysis for finding ORF

Tool Input Function Link

ORF Finder Nucleotide

sequence

Find open

reading

frames.

http://www.ncbi.

nih.gov/gorf/gor

f.html

Transeq Nucleotide

sequences

Translate

nucleotide

sequences to

amino acid

sequences

http://www.ebi.a

c.uk/emboss/tra

nseq/

Blastp Amino acid

sequence

Compare

amino acid

sequences to

known

proteins.

http://www.ncbi.

nlm.nih.gov/BL

AST/Blast.cgi

Fasta Amino acid

sequence

Same as

Blastp

http://www.ebi.a

c.uk/fasta33/

Pfam Amino acid

sequence

Compare

amino acid

sequences to

known

proteins

http://www.sang

er.ac.uk/Softwar

e/Pfam/search.s

html

TMpred Amino acid

sequence

Suggest

models for

transmembran

e topology

http://www.ch.e

mbnet.org/softw

are/TMPRED_f

orm.html

TMHMM Amino acid

sequence

Predict

transmembran

e helices in

proteins

http://www.cbs.

dtu.dk/services/

TMHMM/

SignalP Amino acid

sequence

Indicate the

cleavage site

of a protein

http://www.cbs.

dtu.dk/services/

SignalP-2.0/

InterProScan Amino acid

sequence

Same as Pfam. http://www.ebi.a

c.uk/InterProSca

n/

Proceedings of the Fourth IEEE Symposium on Bioinformatics and Bioengineering (BIBE’04)
0-7695-2173-8/04 $ 20.00 © 2004 IEEE

The architectural overview is illustrated in Figure 2.

Our system currently relies on existing Web-based tools

such as those on the NCBI Web server. Although all

tools required to analyze SARS Coronavirus can be

found on the Web servers, they have to be accessed by

human through a Web browser interface. Thus we wrap

these tools as Web services on our Web server to allow

programmatic access with SOAP protocol. Each Web

service consists of a Web client that communicates with

the tool website using plain HTTP Get/Post protocol. A

Web client also contains a parser that parses the

returned results (often in HTML) and transforms them to

structured data. The Web service wrapper then wraps

the Web client, so that any requests sent to the Web

service wrapper will be transferred to the Web client and

then redirected to the tool website for the results. Note

that a Web service wrapper can do additional processing

before and after the request is sent to the tool website.

For example, the ORF finder Web service takes a

parameter that specifies whether the input sequence is

originated from a DNA virus, an RNA+ virus or an

RNA- virus. This parameter helps the Web service

filtering unnecessary strands. For example, SARS

Coronavirus is an RNA+ virus, thus only the three sense

strands are necessary. The ORF finder Web service

parses the result returned from the NCBI ORF finder

tool and returns only the necessary open reading frames

to the requester. The Web services are then described

with usage information, both syntactically in WSDL [6]

and semantically in OWL-S. We will discuss more on

the method to describe services in the next subsection.

Figure 2. Overview of the system architecture based

on Web services.

The experimenter agent on the client machine

receives the data, which is the name of SARS

Coronavirus in this example, and the processing goal,

which is to annotate the open reading frames with

matching proteins and other related information. The

processing goal is written in a high-level goal language

that allows biologists to specify the goals without going

into great details. After receiving the processing goal

and data, the experimenter agent contacts the

matchmaker service to discover services needed for the

goal. The matchmaker returns a list of URLs, through

which the experimenter agent retrieves the description of

each potentially useful Web service. The experimenter

agent consults the genome ontology for unknown

concepts in the OWL-S service descriptions to

understand the function of each Web service. Then it

can compose a workflow and execute that workflow by

contacting each Web services.

4.2. Service description

The basic description of Web services is WSDL,

which describes the syntax of the interface exposed by

the service, including the service URI, operation names,

and the name and datatype of each parameter. A client

program can follow the instructions in the WSDL

document to invoke the Web service. A WSDL

document includes necessary but not sufficient

information about a sequence processing tool wrapped as

a Web service, because WSDL describes how to invoke

an operation, but not the purpose and functionality of the

operation. Take the ORF finder Web service as an

example. WSDL describes the input to the ORF finder as

a string and the output as an array of strings. An agent

can follow the WSDL document to invoke the service,

but it does not know that the input is a DNA sequence

and the output is the collection of open reading frames in

the sequences.

OWL-S, the W3C successor of DAML-S, fills the

semantic gap. OWL-S describes a service as a collection

of processes. Each atomic process is associated with an

operation in WSDL and is characterized by its inputs,

outputs, preconditions and effects. The inputs and

outputs of a service are described with concepts in the

supporting genome ontology, as depicted in Figure 3.

Thus, sequence processing tools including ORF finder,

Blastp, FASTA, TMHMM and TMPred are all atomic

processes. However we observed that some tools are

similar in functionalities. For example, Blastp and

FASTA might perform differently in different

circumstances but their purposes are similar. So is the

case between Pfam and InterProScan. Thus, specifying

an abstract process template for a set of similar tools is

Proceedings of the Fourth IEEE Symposium on Bioinformatics and Bioengineering (BIBE’04)
0-7695-2173-8/04 $ 20.00 © 2004 IEEE

preferable to describing each tool in an ad-hoc way. The

process template can be created as Simple Process

classes in OWL-S. Figure 4 shows a simple process for

protein similarity search, which is the task to be carried

out by Blastp and FASTA. Other process templates

include the sequence lookup by name, the translation

from DNA to protein, the finding of ORF, the protein

domain analysis and the membrane analysis.

Figure 3. Part of the supporting genome ontology in

OWL.

The Protein Similarity Search simple process in

Figure 4. is an abstract process for protein similarity

search. The input is an amino acid sequence, which is

defined as the AminoAcidSequence class in the genome

ontology of Figure 3. The output is an array of

(matching protein, score) pairs. The two atomic

processes, Blastp and FASTA, are the concrete

implementation of the simple process. In other words,

they realize the Protein Similarity Search simple

process. The matchmaker service uses the simple

process to match the experimenter agent request.

That is, when the experimenter agent requests for a tool

for performing protein similarity search, the matchmaker

service returns the Web services implementing the

Protein Similarity Search simple process. In this case

they are Blastp and FASTA, but there might be more if

the system is added with new Web services with similar

functionalities.

Figure 4. Part of the OWL-S document for

describing Blastp and FASTA.

4.3. Service workflow

A workflow is specified as an OWL-S composite

process. A composite process contains several simple or

composite processes and provides control constructs.

Note that a composite process must not contain any

atomic process unless the atomic process has been

described by the simple process because the workflow

specification is abstract. The abstract workflow

specification becomes a concrete workflow if the simple

processes in the specification are realized by atomic

processes. A workflow can specify that its constituent

processes must run sequentially or in parallel, or specify

complicated control constructs such as repeat-until loops

can. For example, Blastp and FASTA can be run

simultaneously in the workflow of SARS analysis. The

workflow also involves a loop, because an open reading

frame (which is a nucleotide sequence) should be

translated to an amino acid sequence, which is then sent

to Blastp and FASTA and optionally to Pfam and other

tools before the next open reading frame can be

processed.

The workflow for the SARS analysis is currently

specified manually; nevertheless it still allows a certain

degree of flexibility. First, the agent can make decisions

at some points of the workflow. For example, it can

decide how to combine and interpret the results

Proceedings of the Fourth IEEE Symposium on Bioinformatics and Bioengineering (BIBE’04)
0-7695-2173-8/04 $ 20.00 © 2004 IEEE

Figure 5. The inputs and outputs of the partial workflow.

returned from Blastp and FASTA. Second, if a goal is

only a subgoal of the super-goal then the processing of

subgoal of the analysis in [1] can be mapped into a

partial workflow. For example, the agent system can

bypass Blast and FASTA and proceed to run TMPred

and TMHMM directly if the biologist only wants to

find out whether the DNA sequence to be analyzed

has a subsequence that can be translated to a protein

that has membrane properties.

5. Implementation status

We have wrapped all nine genome sequence

analysis tools in Table 1 as Web services. The generic

method to wrap a tool involves three steps.

Step 1: Write a Web client program to access the

tool on the tool website. The client program

automatically fills the forms on the tool webpage,

submit the form through HTTP Get or Post, and get

the results returned through HTTP Put protocol.

Step 2: Write a parser program that parses the

results returned from the tool website to extract useful

data and store the data structurally.

Step 3: Wrap the Web client and the parser as a

Web service and deploy the Web service to Apache

Tomcat servlet container.

The potential problem of this wrapping approach is

that the input/output format and even the URL of tools

can change. Among the nine tools, Blastp offers

XML-formatted output which facilitates programmatic

access. Other tools output the results in HTML; that

means the parser must change accordingly if the

layout of the output HTML changes. Fortunately,

writing the parser is not difficult. The advantage of the

wrapping approach is that the websites update and

maintain the tools and databases regularly, and

therefore we don’t need to maintain a copy of the

tools on our server.

We have also composed ORF finder, Transeq and

Blastp Web services into a partial workflow. Given an

input DNA sequence, the workflow outputs the top

three proteins that are similar to the amino acid

sequences translated from the input. Figure 5 shows

the user interface. The input sequence may be either a

DNA sequence or an RNA sequence translated to a

DNA sequence because Genbank stores all nucleotide

sequences in the form of DNA. Therefore, the user

must specify whether the sequence comes from a

DNA virus, an RNA+ virus or an RNA- virus. Since

ORF finder does not recognize whether the input

sequence is originated from a DNA or RNA, the

parser inside the ORF finder Web service must

interpret the result according to the viral type. If it is

Proceedings of the Fourth IEEE Symposium on Bioinformatics and Bioengineering (BIBE’04)
0-7695-2173-8/04 $ 20.00 © 2004 IEEE

an RNA+ virus, the three antisense strands are

filtered. If it is an RNA- virus, the three sense strands

are filtered, and the antisense strands are reversed and

complemented before returned to the user. If it is a

double strand virus, all six strands returned from ORF

finder website is returned to the user with three

antisense strands reversed and complemented. Each

resulting open reading frame is then sent one by one

to the Transeq Web service to be translated as an

amino acid sequence, which is then passed to the

Blastp Web service. The output shows the name of the

matching proteins and their score, computed by

Blastp. We have verified that the output is the same as

the result gathered from manual operation.

We have written OWL-S descriptions for the ORF,

Blastp and Transeq Web services. We have also

developed a supporting genome ontology. The

ontology can help the Web services processing user

request. For example, if the user does not know that

SARS Coronavirus is an RNA+ virus, the sequence

search engine shown in Figure 1 can use the ontology

to infer the fact, because SARS Coronavirus an

instance of Coronavirus which is a subclass of RNA+

virus.

6. Related work

There are some research works that use agents to

manage workflow for the bioinformatics domain.

Corradini et al. [8] propose an agent-based approach

to integrate bioinformatic tools. The system is

composed of three layers. The top layer is called User

Layer, which provides interfaces allowing users to

specify user-level workflow using UML Notes. The

middle layer, called the System Layer, has a System

Compiler that parses the user-level workflow and

decomposes it into several agent-level workflows via

mapping techniques and databases that contain

correlations between user-level and agent-level

workflows specifications. The System Compiler also

creates agents that monitor the workflows. The bottom

layer called Run-Time Layer, executes all activities

that are specified in the agent-level workflow by

triggering corresponding agents. Although the tool

integration approach of [8] has the merits of being

modular and reusable, it lacks several desirable

properties of our approach. First, its agents are

automatically generated and thus cannot make

complex decisions during workflow execution.

Second, it does not adopt an open and interoperable

standard such as web service standards, which enable

dynamic sharing and composition of tools. In this

aspect, the myGrid project [9] is an ongoing effort to

establish a computation infrastructure for

bioinformatics based on Web service and Grid

computing technologies.

7. Conclusion and future work

Since genome sequence analysis often requires

significant human efforts, a system that automates the

analysis is desirable. Users of such a system do not

need to manually operate each tool, nor do they need

to know the details about tools. Instead of simply

connecting the sequence processing tools with a

program for a particular analysis, an agent-oriented

approach is taken. Each sequence processing tool is

wrapped as a Web service and described with agent-

readable semantic annotations.

Compared to hard-coding the workflow in a

program, this approach has several merits of being

open and flexible. First, service descriptions allow the

experimenter agent to dynamically choose the most

appropriate tools for the analysis. Second, new tools

can be easily added to the system if they are wrapped

as Web services. Third, users are allowed to assign

different processing goals to the experimenter agent

who will then execute the part of the workflow needed

for the goal. This paper has demonstrated the

feasibility of integrated web service technologies and

has successfully applied the technologies in the real

tasks of automating the analysis of genomic

sequences. We are currently investigating the

possibility of automatically and dynamically

composing a workflow according to the biologist’s

need.

Currently, the Web services are wrappers of web-

based tools on well-known servers such as the NCBI

server. Since these web servers are accessed

simultaneously by biologists and other researchers, the

performance of our system cannot be controlled.

Nevertheless, we are looking into workflow

scheduling techniques that balance the workloads of

the web services while satisfying users’ workflows.

7. References

[1] Marco A. Marra, Steven J. M. Jones, Caroline R. Astell,

Robert A. Holt, Angela Brooks-Wilson, Yaron S. N.

Butterfield, Jaswinder Khattra, Jennifer K. Asano, Sarah A.

Barber, Susanna Y. Chan, Alison Cloutier, Shaun M.

Coughlin, Doug Freeman, Noreen Girn, Obi L. Griffith,

Stephen R. Leach, Michael Mayo, Helen McDonald,

Stephen B. Montgomery, Pawan K. Pandoh, Anca S.

Petrescu, A. Gordon Robertson, Jacqueline E. Schein, Asim

Siddiqui, Duane E. Smailus, Jeff M. Stott, George S. Yang,

Francis Plummer, Anton Andonov, Harvey Artsob,

Proceedings of the Fourth IEEE Symposium on Bioinformatics and Bioengineering (BIBE’04)
0-7695-2173-8/04 $ 20.00 © 2004 IEEE

Nathalie Bastien, Kathy Bernard, Timothy F. Booth,

Donnie Bowness, Martin Czub, Michael Drebot, Lisa

Fernando, Ramon Flick, Michael Garbutt, Michael Gray,

Allen Grolla, Steven Jones, Heinz Feldmann, Adrienne

Meyers, Amin Kabani, Yan Li, Susan Normand, Ute

Stroher, Graham A. Tipples, Shaun Tyler, Robert Vogrig,

Diane Ward, Brynn Watson, Robert C. Brunham, Mel

Krajden, Martin Petric, Danuta M. Skowronski, Chris

Upton, and Rachel L. Roper. The Genome Sequence of the

SARS-Associated Coronavirus. Science 300: 1399-1404,

2003.

[2] Paul A. Rota, M. Steven Oberste, Stephan S. Monroe,

W. Allan Nix, Ray Campagnoli, Joseph P. Icenogle, Silvia

Peranda, Bettina Bankamp, Kaija Maher, Min-hsin Chen,

Suxiong Tong, Azaibi Tamin, Luis Lowe, Michael Frace,

Joseph L. DeRisi, Qi Chen, David Wang, Dean D. Erdman,

Teresa C. T. Peret, Cara Burns, Thomas G. Ksiazek, Pierre

E. Rollin, Anthony Sanchez, Stephanie Liffick, Brian

Holloway, Josef Limor, Karen McCaustland, Melissa

Olsen-Rasmussen, Ron Fouchier, Stephan G ther, Albert

D. M. E. Osterhaus, Christian Drosten, Mark A. Pallansch,

Larry J. Anderson, and William J. Bellini. Characterization

of a Novel Coronavirus Associated with Severe Acute

Respiratory Syndrome. Science 300: 1394-1399, 2003.

[3] W3C homepage for Web services.

http://www.w3.org/2002/ws/

[4] The OWL Services Coalition. OWL-S: Semantic

Markup for Web Services (Technical white paper).

http://www.daml.org/services/owl-s/1.0/owl-s.html, 2003.

[5] W3C Web Ontology Working Group.

http://www.w3.org/2001/sw/WebOnt/.

[6] Web Service Description Language.

http://www.w3.org/2002/ws/desc/.

[7] Mikko Laukkanen and Heikki Helin. Composing

Workflows of Semantic Web Services. Proceedings of the

AAMAS’2003 Workshop on Web Services and Agent-based

Engineering.

[8] F.Corradini, L.Mariani and E. Merelli, An agent-based

layered middleware as tool integration, Proceedings of the

ESEC-Tool Integration Workshop, Finland, 2003.

[9] L. Moreau, S. Miles, C.A. Goble, M. Greenwood, V.

Dialani, M. Addis, N. Alpdemir, R. Cawley, D. De Roure,

J. Ferris, R. Gaizauskas, K. Glover, C. Greenhalgh, M.

Greenwood, P. Li, X. Liu, P. Lord, M. Luck, D. Marvin, T.

Oinn, N. Paton, S. Pettifer, M. Radenkovic, A. Roberts, A.

Robinson, T. Rodden, M. Senger, N. Sharman, R. Stevens,

B. Warboys, P. Watson, and C. Wroe. On the Use of

Agents in a BioInformatics Grid. Network Tools and

Applications in Biology (NETTAB'2002) - Agents in

Bioinformatics, Bologna, Italy, July 2002.

Proceedings of the Fourth IEEE Symposium on Bioinformatics and Bioengineering (BIBE’04)
0-7695-2173-8/04 $ 20.00 © 2004 IEEE

	footer1:

