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Abstract 

As more and more new genome sequences were 

reported nowadays, analyzing the functions of a new 

genome sequence becomes more and more desirable 

and compelling. However, the determination of the 

functions of a genomic sequence is not an easy task. 

Even with several bioinformatic tools, the task is still a 

labor-intensive one. This is because human experts have 

to intervene during the processing of using these tools. 

For efficiency, immediacy and reduction of human 

labor, a system of automating the analyzing process is 

proposed. We take the automated determination of Open 

Reading Frames of a genomic sequence as the domain 

tasks that involve using a number of computational tools 

and interpreting the results returned from the tools. A 

service-oriented approach is taken, in which analyzing 

tools are wrapped as Web services and described in 

Semantic Web languages including OWL and OWL-S. 

The SARS Coronavirus genomic sequence is taken as a 

test case for our approaches. We are in the process of 

building an agent-based system for automating the 

tasks, in which an intelligent agent is responsible for 

understanding purposes of the Web services by parsing 

the service descriptions, and carrying out the 

interpretation tasks according to a workflow. 

1. Introduction 

Modern advancement in bioinformatics has resulted 

in computational tools that help analyze gene or protein 

sequences and match similar sequences in the database.  

Biologists can run these tools to gain information 

about an unknown sequence and predict its 

functionalities before conducting actual laboratory work.  

Although computational tools enable fast sequence 

analysis, they alone do not make the analyzing process 

automatic because operating the tools requires intense 

human attention. For example, to find out the 

functionalities of the genome sequence of SARS 

Coronavirus [1] [2], its RNA (in FASTA format) can be 

sliced into more than 100 open reading frames, each of 

which is then sent to Blastp to find out the matching 

protein. Running an analyzing process like this can be 

tedious for the human operator. Hence it is desirable to 

automate the process at least partially. Besides 

alleviating human workload, automation also speeds up 

the analysis. In urgent situations such as the appearance 

of a new disease caused by an unidentified virus, quick 

information about the virus is useful even if the 

information is not complete. 

This requirement of automating analyzing processes 

is compatible with the recent research theme of Web 

services [3]. A sequence processing tool, once wrapped 

as a Web service, is syntactically interoperable since it 

can be accessed by programs written in any 

programming language. Moreover, a Web service can be 

semantically interoperable if it is described with 

semantic markups in languages such as OWL-S [4]. 

Semantic interoperability means that the usage and 

functionalities of the service can be understood by 

parsing the semantic annotations. Given biological tools 

wrapped as Web services and described with semantic 

markups, an intelligent agent can utilize the tools to 

carry out the processing task. More specifically, the 

agent looks up in the service directory for potentially 

useful Web services after delegated the processing goal 

of the biologist. The agent then search for Web services 

that fits in the workflow and choose among them by 

reading the semantic markups. Finally the agent accesses 

the chosen services either sequentially or in parallel 
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according to the workflow specification, and then output 

the results. Furthermore, the agent can arrange the 

results and interpret them in a way useful for biologists 

by referring to domain ontologies. The construction of 

good domain ontologies and service descriptions relies 

on the knowledge and experience of biology experts. 

This paper is organized as follows. Section 2 

elaborates on the motivation, which is to automate the 

analyzing process of SARS Coronavirus. Section 3 

describes the workflow of the analysis in detail. Section 

4 describes the Web-service-based approach. Section 5 

reports the work in progress. Section 6 concludes this 

paper.

2. Background and motivation 

The analysis of SARS Coronavirus from [1] is taken 

as the topic of our initial study because of its public 

familiarity due to the SARS outbreak in the year of 

2003. Since SARS Coronavirus has a shorter genome 

sequence than germs or more complicated life forms, the 

processing steps are relatively simple. We take this 

analysis as a starting point; once it can be successfully 

automated, the approach and techniques can be extended 

to apply on complicated biological analyses such as 

those on E. coli. 

Thus, the motivation of this work is to reconstruct the 

analysis in [1]. The first step is to understand the 

workflow of the analysis, which involvers a workflow 

consisting of sequence processing tools such as ORF 

finder, Blastp and Pfam. Then an agent-based system is 

build to perform the analysis automatically. However, 

instead of being restricted to a single purpose, the agent-

based system must be flexible and extensible. By being 

flexible the system can accept different goals from the 

biologist if the goal is compatible with the capabilities 

of the analyzing tools. By being extensible the system 

can be enhanced with additional tools and knowledge 

without need to change the system architecture. The 

Web service approach is introduced to satisfy these two 

desirable properties. Information about how to operate a 

tool and what the tool does should be distributed to the 

description of each service rather than hard coded within 

the agent code. The agent must be able to consult an 

external biological ontology, written in OWL [5], to 

understand the meanings of the service descriptions, 

written in OWL-S.  

The service descriptions and ontology enables 

reasoning about the capabilities of the tools. Thus this 

architecture is extensible because new processing tools 

can be wrapped as Web services and added to the 

system, and flexible because a Web service can be used 

in various circumstances that change with the processing 

goal. 

3. Workflow of the SARS genome analysis 

The goal of the SARS analysis is to identify 

potentially functional subsequences of SARS 

Coronavirus, and to annotate the subsequences with 

additional characters such as protein domain. Table 1 

lists all sequence processing tools used in this analysis. 

Figure 1 illustrates the workflow of the analysis. The 

analysis can be divided into five steps, each of which is 

described in detail in the following sections. 

Figure 1. The workflow of the genome sequence 

analysis of SARS Coronavirus 
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Step 1 Predict potential ORF subsequences.

A biologist may have a genome sequence in hand or 

can find a sequence through the search engine on NCBI 

web site. Then sequence must be in FASTA format 

before sent to the ORF finder. The ORF finder slices the 

sequence into potentially functional subsequences 

known as open reading frames. 

Step 2  Translate the subsequences 

The open reading frames are nucleotide sequences, 

but further analyses require amino acid sequences as 

inputs. Therefore the open reading frames must be 

translated to amino acid sequences. Each translated 

subsequence is a potential protein. The Transeq 

translation engine does the job.  

Step 3  Search for similar proteins 

The translated subsequences are then passed to 

Blastp and FASTA to perform sequence similarity 

search. Both Blastp and FASTA compare the input 

sequences with the known proteins in their data banks 

and return a list of proteins which is similar to the input 

sequence. The protein lists are sorted in descending 

order according to the scores computed by Blastp and 

FASTA. In general, we care more about the protein with 

the highest score. 

Thus the translated subsequences can be divided into 

three groups according to the highest score in the protein 

list of each subsequence. The first group contains 

subsequences with a highest score which is larger than 

200. They are believed to have a correct match, and 

therefore their importance is clear. The second group 

contains subsequences with highest scores between 200 

and 50. Deciding whether the protein with the highest 

score is a correct match is not easy. Subsequences with 

highest scores lower than 50 are believed to be have an 

incorrect match. It means that either the open reading 

frames in this group are non-functional or that they 

represent a new protein that the data banks do not 

contain. 

Step 4  Gather characters of the those proteins 

Since whether the subsequences belonging to the 

second and the third group represents a protein is not 

certain, other tools including Pfam, InterProScan, 

SignalP, TMPred and TMHMM can be used to gather 

more characteristics about these subsequences that may 

or may not be proteins. Pfam and InterProScan can be 

used to determine the domain of a protein. TMPred and 

TMHMM can predict if a protein is a membrane protein. 

SignalP can indicate the cleavage site of a protein. 

Characteristics of the low score subsequences can give 

the biologists more clues so that the biologisits can 

make the better decision. 

Step 5  Annotate and process output 

A user may need different output for different 

purposes. In this step we first integrate the outputs of 

step 3 and step 4 into a complete output. Then we 

process the output according to the biologist? need. For 

example, a biologist may need the subsequences in the 

first group if she wants to find out the functionalities of 

a new genome sequence. 

However another biologist may only need the 

subsequences in the second and the third group if she 

wants to find a new protein. 

4. Automation approach 

This section describes our approach of automating 

genome sequence analysis described in the previous 

section. 

4.1. System architecture 

Table 1. The tools used in the genomic sequence 

analysis for finding ORF 

Tool Input Function Link 

ORF Finder Nucleotide 

sequence 

Find open 

reading 

frames. 

http://www.ncbi.

nih.gov/gorf/gor

f.html 

Transeq Nucleotide 

sequences 

Translate 

nucleotide 

sequences to 

amino acid 

sequences 

http://www.ebi.a

c.uk/emboss/tra

nseq/ 

Blastp Amino acid 

sequence 

Compare 

amino acid 

sequences to 

known 

proteins.  

http://www.ncbi.

nlm.nih.gov/BL

AST/Blast.cgi 

Fasta Amino acid 

sequence 

Same as 

Blastp 

http://www.ebi.a

c.uk/fasta33/ 

Pfam Amino acid 

sequence 

Compare 

amino acid 

sequences to 

known 

proteins 

http://www.sang

er.ac.uk/Softwar

e/Pfam/search.s

html 

TMpred Amino acid 

sequence 

Suggest 

models for 

transmembran

e topology 

http://www.ch.e

mbnet.org/softw

are/TMPRED_f

orm.html 

TMHMM Amino acid 

sequence 

Predict 

transmembran

e helices in 

proteins 

http://www.cbs.

dtu.dk/services/

TMHMM/ 

SignalP Amino acid 

sequence 

Indicate the 

cleavage site 

of a protein 

http://www.cbs.

dtu.dk/services/

SignalP-2.0/ 

InterProScan Amino acid 

sequence 

Same as Pfam. http://www.ebi.a

c.uk/InterProSca

n/
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The architectural overview is illustrated in Figure 2. 

Our system currently relies on existing Web-based tools 

such as those on the NCBI Web server. Although all 

tools required to analyze SARS Coronavirus can be 

found on the Web servers, they have to be accessed by 

human through a Web browser interface. Thus we wrap 

these tools as Web services on our Web server to allow 

programmatic access with SOAP protocol. Each Web 

service consists of a Web client that communicates with 

the tool website using plain HTTP Get/Post protocol. A 

Web client also contains a parser that parses the 

returned results (often in HTML) and transforms them to 

structured data. The Web service wrapper then wraps 

the Web client, so that any requests sent to the Web 

service wrapper will be transferred to the Web client and 

then redirected to the tool website for the results. Note 

that a Web service wrapper can do additional processing 

before and after the request is sent to the tool website. 

For example, the ORF finder Web service takes a 

parameter that specifies whether the input sequence is 

originated from a DNA virus, an RNA+ virus or an 

RNA- virus. This parameter helps the Web service 

filtering unnecessary strands. For example, SARS 

Coronavirus is an RNA+ virus, thus only the three sense 

strands are necessary. The ORF finder Web service 

parses the result returned from the NCBI ORF finder 

tool and returns only the necessary open reading frames 

to the requester. The Web services are then described 

with usage information, both syntactically in WSDL [6] 

and semantically in OWL-S. We will discuss more on 

the method to describe services in the next subsection. 

Figure 2. Overview of the system architecture based 

on Web services. 

The experimenter agent on the client machine 

receives the data, which is the name of SARS 

Coronavirus in this example, and the processing goal, 

which is to annotate the open reading frames with 

matching proteins and other related information. The 

processing goal is written in a high-level goal language 

that allows biologists to specify the goals without going 

into great details. After receiving the processing goal 

and data, the experimenter agent contacts the 

matchmaker service to discover services needed for the 

goal. The matchmaker returns a list of URLs, through 

which the experimenter agent retrieves the description of 

each potentially useful Web service. The experimenter 

agent consults the genome ontology for unknown 

concepts in the OWL-S service descriptions to 

understand the function of each Web service. Then it 

can compose a workflow and execute that workflow by 

contacting each Web services. 

4.2. Service description 

The basic description of Web services is WSDL, 

which describes the syntax of the interface exposed by 

the service, including the service URI, operation names, 

and the name and datatype of each parameter. A client 

program can follow the instructions in the WSDL 

document to invoke the Web service. A WSDL 

document includes necessary but not sufficient 

information about a sequence processing tool wrapped as 

a Web service, because WSDL describes how to invoke 

an operation, but not the purpose and functionality of the 

operation. Take the ORF finder Web service as an 

example. WSDL describes the input to the ORF finder as 

a string and the output as an array of strings. An agent 

can follow the WSDL document to invoke the service, 

but it does not know that the input is a DNA sequence 

and the output is the collection of open reading frames in 

the sequences. 

OWL-S, the W3C successor of DAML-S, fills the 

semantic gap. OWL-S describes a service as a collection 

of processes. Each atomic process is associated with an 

operation in WSDL and is characterized by its inputs, 

outputs, preconditions and effects. The inputs and 

outputs of a service are described with concepts in the 

supporting genome ontology, as depicted in Figure 3. 

Thus, sequence processing tools including ORF finder, 

Blastp, FASTA, TMHMM and TMPred are all atomic 

processes. However we observed that some tools are 

similar in functionalities. For example, Blastp and 

FASTA might perform differently in different 

circumstances but their purposes are similar. So is the 

case between Pfam and InterProScan. Thus, specifying 

an abstract process template for a set of similar tools is 
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preferable to describing each tool in an ad-hoc way. The 

process template can be created as Simple Process 

classes in OWL-S. Figure 4 shows a simple process for 

protein similarity search, which is the task to be carried 

out by Blastp and FASTA. Other process templates 

include the sequence lookup by name, the translation 

from DNA to protein, the finding of ORF, the protein 

domain analysis and the membrane analysis. 

Figure 3. Part of the supporting genome ontology in 

OWL. 

The Protein Similarity Search simple process in 

Figure 4. is an abstract process for protein similarity 

search. The input is an amino acid sequence, which is 

defined as the AminoAcidSequence class in the genome 

ontology of Figure 3. The output is an array of 

(matching protein, score) pairs. The two atomic 

processes, Blastp and FASTA, are the concrete 

implementation of the simple process. In other words, 

they realize the Protein Similarity Search simple 

process. The matchmaker service uses the simple 

process to match the experimenter agent  request. 

That is, when the experimenter agent requests for a tool 

for performing protein similarity search, the matchmaker 

service returns the Web services implementing the 

Protein Similarity Search simple process. In this case 

they are Blastp and FASTA, but there might be more if 

the system is added with new Web services with similar 

functionalities. 

Figure 4. Part of the OWL-S document for 

describing Blastp and FASTA. 

4.3. Service workflow 

A workflow is specified as an OWL-S composite 

process. A composite process contains several simple or 

composite processes and provides control constructs. 

Note that a composite process must not contain any 

atomic process unless the atomic process has been 

described by the simple process because the workflow 

specification is abstract. The abstract workflow 

specification becomes a concrete workflow if the simple 

processes in the specification are realized by atomic 

processes. A workflow can specify that its constituent 

processes must run sequentially or in parallel, or specify 

complicated control constructs such as repeat-until loops 

can. For example, Blastp and FASTA can be run 

simultaneously in the workflow of SARS analysis. The 

workflow also involves a loop, because an open reading 

frame (which is a nucleotide sequence) should be 

translated to an amino acid sequence, which is then sent 

to Blastp and FASTA and optionally to Pfam and other 

tools before the next open reading frame can be 

processed. 

The workflow for the SARS analysis is currently 

specified manually; nevertheless it still allows a certain 

degree of flexibility. First, the agent can make decisions 

at some points of the workflow. For example, it can 

decide how to combine and interpret the results 
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Figure 5. The inputs and outputs of the partial workflow. 

returned from Blastp and FASTA. Second, if a goal is 

only a subgoal of the super-goal then the processing of 

subgoal of the analysis in [1] can be mapped into a 

partial workflow. For example, the agent system can 

bypass Blast and FASTA and proceed to run TMPred 

and TMHMM directly if the biologist only wants to 

find out whether the DNA sequence to be analyzed 

has a subsequence that can be translated to a protein 

that has membrane properties. 

5. Implementation status 

We have wrapped all nine genome sequence 

analysis tools in Table 1 as Web services. The generic 

method to wrap a tool involves three steps. 

Step 1: Write a Web client program to access the 

tool on the tool website. The client program 

automatically fills the forms on the tool webpage, 

submit the form through HTTP Get or Post, and get 

the results returned through HTTP Put protocol. 

Step 2: Write a parser program that parses the 

results returned from the tool website to extract useful 

data and store the data structurally. 

Step 3: Wrap the Web client and the parser as a 

Web service and deploy the Web service to Apache 

Tomcat servlet container. 

The potential problem of this wrapping approach is 

that the input/output format and even the URL of tools 

can change. Among the nine tools, Blastp offers 

XML-formatted output which facilitates programmatic 

access. Other tools output the results in HTML; that 

means the parser must change accordingly if the 

layout of the output HTML changes. Fortunately, 

writing the parser is not difficult. The advantage of the 

wrapping approach is that the websites update and 

maintain the tools and databases regularly, and 

therefore we don’t need to maintain a copy of the 

tools on our server. 

We have also composed ORF finder, Transeq and 

Blastp Web services into a partial workflow. Given an 

input DNA sequence, the workflow outputs the top 

three proteins that are similar to the amino acid 

sequences translated from the input. Figure 5 shows 

the user interface. The input sequence may be either a 

DNA sequence or an RNA sequence translated to a 

DNA sequence because Genbank stores all nucleotide 

sequences in the form of DNA. Therefore, the user 

must specify whether the sequence comes from a 

DNA virus, an RNA+ virus or an RNA- virus. Since 

ORF finder does not recognize whether the input 

sequence is originated from a DNA or RNA, the 

parser inside the ORF finder Web service must 

interpret the result according to the viral type. If it is 

Proceedings of the Fourth IEEE Symposium on Bioinformatics and Bioengineering (BIBE’04) 
0-7695-2173-8/04 $ 20.00 © 2004 IEEE 



an RNA+ virus, the three antisense strands are 

filtered. If it is an RNA- virus, the three sense strands 

are filtered, and the antisense strands are reversed and 

complemented before returned to the user. If it is a 

double strand virus, all six strands returned from ORF 

finder website is returned to the user with three 

antisense strands reversed and complemented. Each 

resulting open reading frame is then sent one by one 

to the Transeq Web service to be translated as an 

amino acid sequence, which is then passed to the 

Blastp Web service. The output shows the name of the 

matching proteins and their score, computed by 

Blastp. We have verified that the output is the same as 

the result gathered from manual operation. 

We have written OWL-S descriptions for the ORF, 

Blastp and Transeq Web services. We have also 

developed a supporting genome ontology. The 

ontology can help the Web services processing user 

request. For example, if the user does not know that 

SARS Coronavirus is an RNA+ virus, the sequence 

search engine shown in Figure 1 can use the ontology 

to infer the fact, because SARS Coronavirus an 

instance of Coronavirus which is a subclass of RNA+ 

virus. 

6. Related work 

There are some research works that use agents to 

manage workflow for the bioinformatics domain. 

Corradini et al. [8] propose an agent-based approach 

to integrate bioinformatic tools. The system is 

composed of three layers. The top layer is called User 

Layer, which provides interfaces allowing users to 

specify user-level workflow using UML Notes. The 

middle layer, called the System Layer, has a System 

Compiler that parses the user-level workflow and 

decomposes it into several agent-level workflows via 

mapping techniques and databases that contain 

correlations between user-level and agent-level 

workflows specifications. The System Compiler also 

creates agents that monitor the workflows. The bottom 

layer called Run-Time Layer, executes all activities 

that are specified in the agent-level workflow by 

triggering corresponding agents. Although the tool 

integration approach of [8] has the merits of being 

modular and reusable, it lacks several desirable 

properties of our approach. First, its agents are 

automatically generated and thus cannot make 

complex decisions during workflow execution. 

Second, it does not adopt an open and interoperable 

standard such as web service standards, which enable 

dynamic sharing and composition of tools. In this 

aspect, the myGrid project [9] is an ongoing effort to 

establish a computation infrastructure for 

bioinformatics based on Web service and Grid 

computing technologies. 

7. Conclusion and future work 

Since genome sequence analysis often requires 

significant human efforts, a system that automates the 

analysis is desirable. Users of such a system do not 

need to manually operate each tool, nor do they need 

to know the details about tools. Instead of simply 

connecting the sequence processing tools with a 

program for a particular analysis, an agent-oriented 

approach is taken. Each sequence processing tool is 

wrapped as a Web service and described with agent-

readable semantic annotations. 

Compared to hard-coding the workflow in a 

program, this approach has several merits of being 

open and flexible. First, service descriptions allow the 

experimenter agent to dynamically choose the most 

appropriate tools for the analysis. Second, new tools 

can be easily added to the system if they are wrapped 

as Web services. Third, users are allowed to assign 

different processing goals to the experimenter agent 

who will then execute the part of the workflow needed 

for the goal. This paper has demonstrated the 

feasibility of integrated web service technologies and 

has successfully applied the technologies in the real 

tasks of automating the analysis of genomic 

sequences. We are currently investigating the 

possibility of automatically and dynamically 

composing a workflow according to the biologist’s 

need.  

Currently, the Web services are wrappers of web-

based tools on well-known servers such as the NCBI 

server. Since these web servers are accessed 

simultaneously by biologists and other researchers, the 

performance of our system cannot be controlled. 

Nevertheless, we are looking into workflow 

scheduling techniques that balance the workloads of 

the web services while satisfying users’ workflows. 
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