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Abstract As the largest RNA virus, coronavirus replication employs complex mecha-
nisms and involves various viral and cellular proteins. The first open reading frame
of the coronavirus genome encodes a large polyprotein, which is processed into a
number of viral proteins required for viral replication directly or indirectly. These
proteins include the RNA-dependent RNA polymerase (RdRp), RNA helicase, pro-
teases, metal-binding proteins, and a number of other proteins of unknown func-
tion. Genetic studies suggest that most of these proteins are involved in viral RNA
replication. In addition to viral proteins, several cellular proteins, such as heteroge-
neous nuclear ribonucleoprotein (hnRNP) A1, polypyrimidine-tract-binding (PTB)
protein, poly(A)-binding protein (PABP), and mitochondrial aconitase (m-aconi-
tase), have been identified to interact with the critical cis-acting elements of corona-
virus replication. Like many other RNA viruses, coronavirus may subvert these cellu-



lar proteins from cellular RNA processing or translation machineries to play a role
in viral replication.

1
Introduction

Studies of diverse groups of positive-stranded RNA viruses reveal that
they employ common strategies for replication, although the precise na-
ture of these proteins varies for each virus (Pogue et al. 1994). In gener-
al, the formation of viral translation and RNA replication complexes re-
quire multiple viral and cellular proteins. By analogy with the phage Qb,
which recruits four host (bacterial) proteins to be an integral part of the
replicase complex together with the viral polymerase (Blumenthal and
Carmichael 1979), it is likely that replication complexes of positive-
stranded RNA viruses consist of both virus- and host-encoded proteins.
In addition, viral and cellular proteins interact with various cis-acting el-
ements on viral RNAs and play essential roles in the regulation of viral
replication. They may mediate the cross talk between the 50 and 30 ends
of the viral RNA and bring other distant cis-acting elements close to-
gether to carry out complex processes, such as subgenomic RNA tran-
scription, coupling between translation and RNA replication, and asym-
metric production of excess genomic positive- over negative-strand
RNAs. The switch between translation and replication in poliovirus has
been shown to involve the cellular protein poly(rC)-binding protein
(PCBP), which upregulates viral translation, and the viral protein 3CD,
which represses viral translation and promotes negative-strand synthesis
(Gamarnik and Andino 1998). Identification of the roles of viral and cel-
lular proteins should provide valuable insights into the mechanisms of
viral replication.

The replication of the genome is considered as the most fundamental
aspect of the biology of positive-stranded RNA viruses. Like all other
positive-stranded RNA viruses, coronavirus replicates its genome
through the synthesis of a complementary negative-strand RNA using
the genomic RNA as a template. The negative-strand RNA, in turn,
serves as the template for synthesizing more progeny positive-strand
RNAs. Analysis of the structure of mouse hepatitis virus (MHV) defec-
tive-interfering (DI) RNAs indicates that approximately 470 nucleotides
(nt) at the 50 terminus, 436 nt at the 30 terminus, and about 135 internal
nt are required for coronavirus DI RNA replication and suggests that
these sequences contain signals necessary for viral RNA replication
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(Kim et al. 1993; Kim and Makino 1995b; Lin and Lai 1993; Lin et al.
1996). Both of the 50 and 30 ends of the genome are necessary for posi-
tive-strand synthesis (Kim et al. 1993; Lin and Lai 1993), whereas the
cis-acting signals for the synthesis of negative-strand RNA exist within
the last 55 nt and the poly(A) tail at the 30 end of the MHV genome (Lin
et al. 1994). One unique feature of coronaviruses is the expression of
their genetic information by transcription of a 30 coterminal nested set
of subgenomic mRNAs that contain a common 50 leader sequence de-
rived from the 50 end of the RNA genome. The interaction between the
leader sequence and an intergenic (IG) sequence upstream of each open
reading frame (ORF), also named transcription-regulating sequence
(TRS), is required for the transcription of subgenomic mRNAs (Chang
et al. 1994; Liao and Lai 1994; Zhang and Lai 1995b). Logically, these cis-
acting sequences for viral genomic RNA replication and subgenomic
RNA transcription serve as ideal signals to recruit viral factors and pos-
sibly cellular proteins for the formation of the RNA replication and tran-
scription complex.

Apart from the findings that continuous synthesis of viral proteins is
a prerequisite for the synthesis of both positive- and negative-strand
RNA and subgenomic mRNAs (Perlman et al. 1986; Sawicki and Sawicki
1986), little information is currently available concerning the identities
and functions of the viral proteins that participate in coronavirus repli-
cation. Because of the unparalleled size of the coronavirus RNA genome,
genetic approaches to the analysis of replicase gene function have been
limited to date. Nevertheless, studies of the temperature-sensitive mu-
tants of coronavirus demonstrate the importance of ORF 1 polyprotein
(also known as the polymerase or replicase protein) in coronavirus RNA
synthesis and suggest that different domains of this polyprotein are in-
volved in different steps of viral RNA synthesis (Baric et al. 1990a; Fu
and Baric 1994; Leibowitz et al. 1982; Schaad et al. 1990). Evolutionarily,
the virus genome is composed of relatively constant replicative genes
that are indispensable for viral replication and more flexible genes
coding for virion structural proteins and various accessory proteins
(Koonin and Dolja 1993). Despite the high mutation frequency that is
typical of RNA viruses, viral proteins mediating the replication and ex-
pression of virus genomes contain arrays of conserved sequence motifs.
Proteins with such motifs include RdRp, putative RNA helicase, chymo-
trypsin-like and papain-like proteases, and metal-binding proteins, all
of which are present in the coronavirus ORF 1 polyprotein as shown
by sequence comparisons (Bonilla et al. 1994; Bredenbeek et al. 1990;
Gorbalenya et al. 1989b; Lee et al. 1991). Strategically located as the
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50-most gene in the viral genome, the coronavirus ORF 1 is translated
into a large polyprotein immediately upon virus entry and processed by
viral proteases into functional proteins, which are responsible for RNA
replication and transcription. The processing scheme of the coronavirus
ORF 1 polyprotein has been largely delineated by a number of recent
studies. As a result, the functions of the domains that have not been
identified before are beginning to emerge. In addition to the proteins
with apparent enzymatic activities required for viral RNA synthesis, a
number of other coronavirus proteins have also been implicated in viral
replication.

Many studies have shown that viruses use cellular proteins for multi-
ple purposes in their replication cycles, including the attachment and
entry into the cells, the initiation and regulation of RNA replication/
transcription, the translation of their mRNAs, and the assembly of prog-
eny virions. Because many aspects of the replication cycles of different
types of viruses are unique, the cellular proteins used by different types
of viruses also differ. Nevertheless, viruses typically subvert the normal
components of cellular RNA processing or translation machineries to
play an integral or regulatory role in the replication/transcription and
translation of viral RNA (Lai 1998). These cellular proteins include, but
are not limited to:

1. Heterogeneous nuclear ribonucleoproteins and other RNA processing
factors: hnRNP A1 (Black et al. 1995, 1996; Li et al. 1997; Shi et al. 2000;
Wang et al. 1997) and other hnRNP type A/B proteins (Bilodeau et al.
2001; Caputi et al. 1999; Shi et al. 2003), hnRNP C (Gontarek et al. 1999;
Sokolowski and Schwartz 2001; Spangberg et al. 2000), hnRNP E (PCBP)
(Gamarnik and Andino 1997; Parsley et al. 1997), hnRNP H (Caputi
and Zahler 2002), hnRNP I (PTB) (Black et al. 1995, 1996; Chung and
Kaplan 1999; Gontarek et al. 1999; Hellen et al. 1994; Ito and Lai 1997;
Li et al. 1999; Wu-Baer et al. 1996), hnRNP L (Gutierrez-Escolano et al.
2000; Hahm et al. 1998), HuR (Spangberg et al. 2000), and Lsm1p-relat-
ed protein (Diez et al. 2000).

2. Translation factors: elongation factors EF-1a (Blackwell and Brinton
1997; Harris et al. 1994; Joshi et al. 1986), -b and -g (Das et al. 1998),
EF-Tu (Blumenthal and Carmichael 1979), and eukaryotic initiation fac-
tor eIF-3 (Osman and Buck 1997; Quadt et al. 1993).

3. Noncanonical translation factors: hnRNP A1, PTB, and La antigen
(Meerovitch et al. 1993; Pardigon and Strauss 1996; Svitkin et al. 1996).

4. Cytoskeletal or chaperone proteins: tubulin (Huang et al. 1993; Moyer
et al. 1990; Moyer et al. 1986), actin (De et al. 1991), and heat shock pro-
tein (Oglesbee et al. 1996).
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These cellular proteins typically bind to viral RNAs or polymerase to
form replication or translation complexes (Lai 1998). Remarkably, most
of them can interact with RNAs of several different viruses or bind to vi-
ral RNA in one virus but associate with viral polymerase in another.

Coronavirus RNA synthesis, including replication of viral genome
and transcription of subgenomic mRNAs, has been shown to be regulat-
ed by several viral RNA elements, including 50-untranslated region
(UTR), cis- and trans-acting leader RNAs (Liao and Lai 1994; Zhang et
al. 1994; Zhang and Lai 1995b), IG sequence (Makino et al. 1991), and
30-UTR (Lin et al. 1996). Biochemical evidence suggests that these regu-
latory sequences likely interact with each other either directly or indi-
rectly, probably through protein-RNA and protein-protein interactions
involving both viral and cellular proteins (Zhang and Lai 1995b). In-
deed, hnRNP A1 (Huang and Lai 2001; Li et al. 1997; Shi et al. 2000),
PTB (Huang and Lai 1999; Li et al. 1999), PABP (Spagnolo and Hogue
2000), and mitochondrial aconitase (Nanda and Leibowitz 2001), have
been identified as binding specifically to the known cis-acting regulatory
sequences. The functional importance of hnRNPA1 (Shi et al. 2000) and
PTB (Huang and Lai 1999) in viral RNA synthesis has also been estab-
lished, further supporting the notion that cellular proteins play an inte-
gral or regulatory role in viral replication.

Viruses invariably rely on cellular architecture as an important struc-
tural element of their replication machineries. The replication complexes
of numerous positive-stranded RNAviruses have been found to be mem-
brane associated (Bienz et al. 1994; Chambers et al. 1990; Froshauer et
al. 1988; Miller et al. 2001; Schwartz et al. 2002; van Dinten et al. 1996).
Thus, many cellular membrane proteins are expected to serve as scaf-
folds to provide support for the formation of viral replication complex-
es, for localized protein translation, and for viral assembly. Very little is
currently known about these cellular factors. In this chapter, we focus
on the proteins that are the integral parts of the replication complexes.
Left out are the cellular factors involved in other aspects of viral replica-
tion, such as virus entry and virus assembly.

2
Viral Proteins in Coronavirus Replication

Although the mechanism of coronavirus RNA replication is still contro-
versial, the consensus is that coronavirus RNA replication is directed by
cis-acting sequences present on the viral RNAs with the help of trans-
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acting factors encoded by the virus. Indeed, continuous protein synthe-
sis is required for RNA synthesis, due to the fact that the application of
inhibitors of protein synthesis at any time during the viral life cycle in-
hibits viral RNA synthesis (Perlman et al. 1986; Sawicki and Sawicki
1986). A similar observation has been made with an inhibitor of cysteine
protease, which inhibits the processing of the MHV ORF 1 (termed the
polymerase or the replicase gene) polyprotein (Kim et al. 1995), suggest-
ing that continuous production of the polymerase gene products is re-
quired for viral RNA synthesis. The precise nature of many of these
products, however, is largely unknown.

2.1
The Polymerase Gene Products

The coronavirus polymerase gene accounts for approximately two-thirds
of the genome. It contains two overlapping ORFs, ORF 1a and ORF 1b,
which overlap by 76 nt (Fig. 1). The expression of the downstream

Fig. 1. The domain structure and processing scheme of the MHV polymerase gene
products and the approximate location of genetic complementation groups (Baric et
al. 1990a). PLP, papain-like protease; 3CLP, 3C-like protease; MP, membrane protein;
RdRp, RNA-dependent RNA polymerase; Z, zinc-binding domain; HEL, helicase; C,
conserved domain. The open, hatched, and closed arrows indicate the PLP1, PLP2,
and 3CLP cleavage sites, respectively
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ORF 1b is mediated by a ribosomal frameshift event that is aided by
the formation of a pseudoknot structure within the overlapping region
(Bredenbeek et al. 1990; Brierley et al. 1987; Herold and Siddell 1993). To
date, the full-length product of ORF 1 has not been detected in coronavi-
rus-infected cells, most probably because it is cotranslationally and
auto-proteolytically processed into numerous intermediates and mature
nonstructural proteins. Based on the primary sequences of several dif-
ferent coronaviruses, the degree of amino acid identity for this gene
product is greater than that is observed for any other coronavirus gene
products. A combination of computer-based motif prediction and exper-
imental analysis has identified a number of functional domains in the
ORF 1 polyprotein (Fig. 1) (Gorbalenya et al. 1991; Lee et al. 1991). ORF
1a contains the papain-like cysteine proteases (PLPs), a chymotrypsin/
picornaviral 3C-like protease (3CLP), and membrane-associated pro-
teins (MP). The more conserved ORF 1b includes domains for an RdRp,
a zinc-finger nucleic acid-binding domain (metal-binding domain), and
a nucleoside triphosphate (NTP)-binding/helicase domain. Both the
synthesis and the processing of the ORF 1 polyprotein have been shown
to be essential throughout infection to sustain RNA synthesis and virus
replication (Denison et al. 1995b; Kim et al. 1995; Shi et al. 1999).

The importance of the polymerase gene products in viral replication
has been established by the study of temperature-sensitive (ts) mutants,
which are a practical tool for investigating the roles of viral proteins in
replication. The ts mutants are grouped into two categories, RNA	 and
RNA+, based on the ability of these mutants to support viral RNA syn-
thesis at the restrictive temperature (Leibowitz et al. 1982; Robb and
Bond 1979). Complementation analysis of ts mutants suggests that at
least five RNA	 complementation groups are encoded in the MHV ge-
nome (Baric et al. 1990a; Koolen et al. 1983; Leibowitz et al. 1982; Martin
et al. 1988; Schaad et al. 1990). All of the RNA	 complementation groups
are mapped within the ORF 1 region, suggesting that the coronavirus
ORF 1 encodes all of the proteins required for viral RNA replication.
Different complementation groups within MHV ORF 1 have been dem-
onstrated to affect distinct steps of RNA synthesis, including the synthe-
sis of leader RNA, negative-strand RNA, and positive-strand RNA, sug-
gesting that different steps of RNA synthesis require different viral pro-
teins (Baric et al. 1990b). Among the five RNA	 complementation
groups, A, B, C, D, and E, identified by Baric et al. (Fig. 1) (Baric et al.
1990a), groups A and B are defective in the synthesis of all viral RNAs,
whereas the rest of the groups are only defective in certain steps of viral
RNA synthesis. The group C mutants encode a function required early
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in viral transcription to synthesize negative-strand RNA, whereas the
group E mutants are blocked at a later stage in the virus growth cycle.
The group D mutants are incapable of subgenomic mRNA transcription.
Taken together, at least four cistrons are required for positive-strand
RNA synthesis whereas the group C cistron functions during negative-
strand RNA synthesis. A comparison of three disparate panels of MHV
ORF 1 mutants, one for JHM (Robb and Bond 1979) and two for A59
(Koolen et al. 1983; Schaad et al. 1990), concluded that there are at least
eight genetically complementable, trans-acting functions encoded by
ORF 1 (Stalcup et al. 1998).

Genetic recombination analysis revealed that the five RNA	 comple-
mentation groups of MHVare arranged in alphabetical order in the 50 to
30 direction, with some overlaps between the group A/B and D/E mu-
tants (Fig. 1) (Baric et al. 1990a, b). Group A most likely includes the
PLP1 and PLP2 domains, whereas group B encompasses the 3CLP do-
main. Group C spans the ORF 1a/ORF 1b junction, including the site of
ribosomal frameshifting and the N-terminal part of the putative RdRp.
Group D is mapped approximately in the middle part of the ORF 1b,
possibly encoding the C-terminal part of the putative RdRp and the heli-
case domain. Group E is located at the C terminus of ORF 1b, about
20–22 kb from the 50 end of the genome (Fu and Baric 1994). Further
characterization of the ts mutants showed that one group C mutant car-
ries a mutation in the 50 end of ORF 1b encoding the putative RdRp,
which is the only mutation found in a domain with an assigned func-
tion. Because most of the mutations in other ts mutants have not been
identified, it is still not possible to correlate all the genetic defects with
the processed products of the ORF 1 polyprotein.

Studies of the localization and interactions of MHV replicase proteins
in infected cells have also provided critical insights into the possible
roles of these proteins during viral replication. The localization of poly-
merase gene products, including PLP1 and PLP2, 3CLP, RdRp, and heli-
case, to cytoplasmic foci active in viral RNA synthesis has been well doc-
umented, suggesting that they may participate in the formation and
function of the viral replication complexes (Denison et al. 1999; Shi et al.
1999; van der Meer et al. 1999).

2.1.1
RNA-Dependent RNA Polymerase

The RdRp is the most conserved domain of all RNA viruses and is cer-
tainly the most fundamental component of the viral replication machin-
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ery. It functions as the catalytic subunit of the viral replicase required
for the replication of all positive-stranded RNA viruses (Buck 1996). The
vast majority of RdRps, including the coronavirus RdRp, have been
identified solely on the basis of sequence similarity. Most viral RNA
polymerases contain a signature GDD motif, which is considered to be
the most characteristic sequence of the RdRps of positive-stranded RNA
viruses. In coronavirus, an SDD motif is detected instead of GDD; the
effect of this substitution on the activity of coronavirus RdRp is not
clear (Gorbalenya et al. 1989b). Based on sequence analysis, the corona-
virus RdRp is encoded by the 50 end of the ORF 1b gene, synthesized as
part of the gene 1 polyprotein, and processed by cysteine proteases into
an approximately 100-kDa protein (Fig. 1) (Gorbalenya et al. 1989b; Lee
et al. 1991). The viral proteins that contain the putative RNA polymerase
domain have been detected by immunofluorescence or immunoprecipi-
tation in cells infected with MHV (Shi et al. 1999; van der Meer et al.
1999), IBV (Liu et al. 1994), and HCoV-229E(Grotzinger et al. 1996) but
it is not known whether they represent the functional RdRp.

Earlier studies on transmissible gastroenteritis virus (TGEV), bovine
coronavirus (BCV), and MHV demonstrated viral polymerase activities
in membrane fractions of virus-infected cells (Brayton et al. 1982, 1984;
Dennis and Brian 1982; Mahy et al. 1983). Two temporally and enzymat-
ically distinct RdRp activities have been detected in MHV-infected cells
(Brayton et al. 1982), suggesting that the enzyme represents two differ-
ent species of RNA polymerase that perform different roles in virus-spe-
cific RNA synthesis. The early polymerase is most likely responsible for
negative-strand RNA synthesis, whereas the late polymerase is responsi-
ble for the positive-stranded RNA synthesis (Brayton et al. 1984). It is
unknown whether the protein components of these two complexes are
different or whether the same polymerase is modified by other viral or
cellular proteins to perform distinct functions. Because coronaviruses
are known to have a unique mechanism of subgenomic RNA synthesis
quite distinct from that of genome replication, it is possible that the
viruses could have more than one RNA polymerase. After the initial de-
tection of polymerase activities in the fractions of coronavirus-infected
cells, several in vitro RNA synthesis systems were also reported (Baker
and Lai 1990; Compton et al. 1987; Leibowitz and DeVries 1988). The na-
ture of the polymerases in these systems, however, has not been charac-
terized.

The catalytic activity of the coronavirus RdRp has so far not been
demonstrated biochemically. In fact, only a handful of viral RdRps, such
as Qb replicase subunit II (Landers et al. 1974), poliovirus 3D pol pro-
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tein (Neufeld et al. 1991; Rothstein et al. 1988; Van Dyke and Flanegan
1980), hepatitis C virus NS5B protein (Behrens et al. 1996; Lohmann et
al. 1997; Yuan et al. 1997), dengue virus NS5 protein (Tan et al. 1996),
and tobacco vein mottling virus (TVMV) nuclear inclusion protein NIb
(Hong and Hunt 1996), have been shown to possess RNA replicating ac-
tivities in vitro. It is likely that the extremely hydrophobic nature of the
coronavirus RdRps prevents the purification and biochemical character-
ization of this protein. Thus, the precise role of coronavirus RdRps in vi-
ral RNA synthesis has not been established.

2.1.2
Helicase

The RNA helicase is the second most conserved component of the RNA
virus replication machinery (Gorbalenya et al. 1988, 1989a; Gorbalenya
and Koonin 1989; Koonin and Dolja 1993). Nearly all double-stranded
and positive-stranded RNA viruses are predicted to encode putative heli-
cases (Gorbalenya and Koonin 1989). RNA helicases are a diverse class
of enzymes that use the energy of NTP hydrolysis to unwind duplex
RNA. There is extensive genetic evidence suggesting a key function for
helicases in the life cycle of positive-stranded RNA viruses (Buck 1996;
Kadare and Haenni 1997). They are involved in virtually every aspect of
RNA metabolism, including transcription, splicing, translation, export,
ribosome biogenesis, mitochondrial gene expression, and the regulation
of mRNA stability (de la Cruz et al. 1999; Linder and Daugeron 2000;
Lohman and Bjornson 1996; Schmid and Linder 1992). The idea of in-
volvement of RNA helicase in RNA replication came from the observa-
tion that helicase mutants of BMV are defective in template recruitment
for RNA replication and the synthesis of negative-strand or subgenomic
RNA (Ahola et al. 2000).

The RNA helicase domains of coronaviruses are encoded by ORF 1b
and processed by 3CLP (Denison et al. 1999). They have been proposed
to represent a separate phylogenetic lineage of the RNA virus superfami-
ly 1 (SF1) helicases, which include the majority of putative RNA virus
helicases (Gorbalenya and Koonin 1989; Kadare and Haenni 1997;
Koonin and Dolja 1993). The putative MHV RNA helicase, which is pro-
cessed from the ORF 1b polyprotein by 3CLP, has been detected in
MHV-infected cells throughout the viral life cycle (Denison et al. 1999).
Numerous attempts to detect the predicted RNA duplex-unwinding ac-
tivity of these proteins have failed until recently when duplex-unwinding
activity was observed for the human coronavirus (HCoV) helicase, pro-
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viding valuable insights into the functions of this protein in viral replica-
tion (Seybert et al. 2000). Biochemical characterization revealed that this
helicase has both RNA and DNA duplex-unwinding activities with a 50

to 30 polarity, in contrast to the previously characterized RNA virus SF2
helicases. A zinc finger/nucleic acid-binding domain, which has been
found in numerous cellular helicases (Fig. 1) (Gorbalenya and Koonin
1993), is also present in the coronavirus ORF 1b, upstream of the heli-
case domain, but it is not known whether it contributes to the activity of
the coronavirus helicase.

Although there is no direct evidence indicating the involvement of
the helicase in coronavirus RNA replication and transcription, the heli-
case was localized to the perinuclear sites where active viral RNA syn-
thesis was observed (Denison et al. 1999). It was further detected by bio-
chemical analysis in membrane fractions that contain viral RNAs, sug-
gesting that helicase is a component of the viral replication complex
(Bost et al. 2000, 2001; Denison et al. 1999; Sims et al. 2000). Further-
more, because double-stranded replicative intermediates are believed to
be the predominant RNA structures in coronavirus RNA synthesis, it is
tempting to speculate that, in analogy to models described for the DNA
replisome (Baker and Bell 1998), the coronavirus helicase cooperates
with the RdRp by providing the single-stranded RNA template for pro-
cessive RNA synthesis. It is noteworthy that the vaccinia virus NPH-II
RNA helicase was recently shown to be a highly processive enzyme that
unwinds long duplex RNA structures, supporting the hypothesis that at
least some viral RNA helicases might be directly involved in RNA repli-
cation (Jankowsky et al. 2000).

2.1.3
Proteases

The coronavirus replicase is translated from the genomic RNA as a large
precursor polyprotein, which is then processed by viral proteases to
generate functional replicase proteins. Whereas the RdRp and RNA heli-
case play direct roles in viral RNA synthesis, the proteases are involved
in viral replication through the processing of viral polyproteins into ma-
ture products critical for the appropriate localization, assembly, and
function of the replicase complex. They also play an important regulato-
ry role in the generation of specific protein functions at certain stages of
the viral life cycle. This controlled proteolysis is thought to be deter-
mined mainly by the substrate specificity of the proteases and the acces-
sibility of cleavage sites in the context of specific intermediate products
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(van Dinten et al. 1997, 1999; Ziebuhr and Siddell 1999). Sequence anal-
ysis of coronavirus genomic RNA led to the prediction of two or three
protease domains in ORF 1a: one or two PLPs and a 3CLP (Gorbalenya
et al. 1991; Lee et al. 1991). All of these proteases have been shown to
function during viral replication and drive the processing of the MHV
ORF 1 replicase polyprotein into at least 15 products (Fig. 1) (Baker et
al. 1989, 1993; Bonilla et al. 1994, 1995; Bost et al. 2000; Denison et al.
1992, 1995a, 1999; Gao et al. 1996; Lu et al. 1995, 1996, 1998; Lu and
Denison 1997; Pinon et al. 1999; Schiller et al. 1998; Shi et al. 1999).
Comparable, but distinct, proteolytic processing pathways have also
been reported for some other coronaviruses, most notably IBV (Liu et
al. 1994, 1998; Liu and Brown 1995) and HCoV-229E (Ziebuhr et al.
2000).

The coronavirus ORF 1 polyprotein can be divided into an N-termi-
nal region that is processed by one or two PLPs and a C-terminal region
that is processed by the 3CLP (Ziebuhr et al. 2000). The N-terminal re-
gion of the polyprotein spans from the initiator Met to the N terminus
of the hydrophobic domain MP1 (Fig. 1). All coronaviruses, except IBV,
encode two paralogous and sequentially positioned PLP1 and PLP2 that
flank a conserved X domain from both sides (Fig. 1) (Gorbalenya et al.
1991; Lee et al. 1991). At least three proteins, p28, p65, and p210 (also
known as p240), are produced from this region of the ORF 1a polypro-
tein in MHV (Denison and Perlman 1987; Denison et al. 1995a; Schiller
et al. 1998). The MHV p210 protein is autocatalytically released through
cleavages mediated by PLP1 at the N-terminal site (Bonilla et al. 1995,
1997) and PLP2 at the C-terminal site (Kanjanahaluethai and Baker
2000). PLP1 also cleaves the p28-p65 junction (Baker et al. 1989, 1993;
Dong and Baker 1994; Hughes et al. 1995), which, except for IBV, is con-
served in all coronaviruses (Herold et al. 1998). Accordingly, a PLP1-me-
diated cleavage at this site, resulting in the production of a small N-ter-
minal protein (p9, p28 equivalent), was also detected in HCoV-infected
cells (Herold et al. 1998). The single IBV PLP corresponds to the PLP2
domain of other coronaviruses. It is part of a p195 protein, which is
cleaved to produce an N-terminal product, p87 (Lim and Liu 1998; Lim
et al. 2000).

Coronavirus PLPs contain a transcription factor-like zinc finger
(Herold et al. 1999), suggesting that they might also be directly involved
in coronavirus RNA synthesis. This hypothesis is strongly supported by
a recent report showing the equine arteritis virus (EAV) nonstructural
protein 1, which is likely a distant homolog of the coronavirus PLPs, to
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be a transcriptional factor indispensable for subgenomic mRNA synthe-
sis (Tijms et al. 2001).

The C-terminal part of the ORF 1 polyprotein encompasses all of the
major conserved domains starting from the hydrophobic domain MP1
and extending to the C terminus of the replicase polyprotein. The 3CLP,
flanked on either side by membrane-spanning regions MP1 and MP2
(Bonilla et al. 1994; Lee et al. 1991; Lu et al. 1995), is believed to be the
principal viral protease responsible for the processing events leading to
the formation of the viral replicase complex. At least 12 processing
products, including the 3CLP itself, RdRp, and helicase, are generated by
3CLP-mediated cleavage (Fig. 1) (Gorbalenya et al. 1991; Lee et al. 1991).
Treatment of infected cells with E64d, a known inhibitor of the 3CLP, re-
sults in the inhibition of viral RNA replication in these cells (Kim et al.
1995), demonstrating the importance of the action of the 3CLP in the
events leading to viral replication. The importance of 3CLP cleavages
was demonstrated with an infectious clone of the related arterivirus EAV
(van Dinten et al. 1999). Introduction of mutations into the candidate
ORF 1b 3CLP cleavage sites had drastic effects on RNA synthesis and vi-
rus replication. 3CLP has also been localized to the site of viral RNA
synthesis by immunofluorescence staining and biochemical fraction-
ation studies (Bost et al. 2000, 2001; Denison et al. 1999; Shi et al. 1999;
Sims et al. 2000).

2.1.4
Other Polymerase Gene Proteins

Apart from the RdRp, helicase, and proteases, the identities of many of
the ORF 1 products have not been established. Thus, their roles in viral
replication remain unknown. By immunofluorescence staining and con-
focal microscopy, several studies have shown that a number of ORF 1a
products, p65, p10, p22, p12, and p15, and an ORF 1b product, p35, are
associated with the site of viral RNA synthesis (Fig. 1) (Bost et al. 2000;
Shi et al. 1999). However, biochemical studies revealed two distinct but
tightly associated membrane populations, only one of which appears to
be a site for viral RNA synthesis (Sims et al. 2000). p28, helicase, 3CLP,
and nucleocapsid (N) protein cosegregated with the viral RNA and,
therefore, are likely to be the components of the viral replication com-
plexes, whereas p65 and p22 are present in different membrane fractions
and may serve roles during infection that are distinct from viral RNA
transcription or replication (Sims et al. 2000).
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The hydrophobic domains, MP1 and MP2, within the ORF 1a
polyprotein were postulated to mediate the association of the coronavi-
rus replicase with cellular membrane structures. MP1 has indeed been
detected in microsomal membranes (Pinon et al. 1997), but its role in
membrane association and coronavirus replication is largely speculative.
A recent study on the related arterivirus demonstrated that the EAV
nonstructural proteins (nsp) 2 and 3, which contain one or two hydro-
phobic regions, induce the formation of double-membrane structures
where EAV RNA synthesis takes place (Snijder et al. 2001). Similarly, the
membrane proteins of coronavirus may serve to alter the cell architec-
ture so that it is more favorable for viral replication.

2.2
The N Protein

The coronavirus N protein associates with the genomic RNA to form a
helical nucleocapsid. In addition to its role as a major structural compo-
nent of virions, N may also be involved in viral RNA replication and
translation control. In an in vitro replication system for MHV, it was
demonstrated that antibodies against the N protein could inhibit RNA
synthesis (Compton et al. 1987). Optimal replication of the bovine coro-
navirus (BCV) DI RNA also requires the translation of most, if not all, of
the N protein in cis (Chang and Brian 1996). Structural analysis of DI
RNAs shows that the presence of gene 1 and N gene is sufficient for viral
RNA replication (Kim and Makino 1995a). In addition, the MHV N pro-
tein was detected in membrane fractions containing viral RNA (Sims
et al. 2000) and colocalized with putative replicase proteins in virus-
infected cells, providing further support that N may be involved in RNA
replication (Denison et al. 1999; van der Meer et al. 1999). However, a
mutational study of an infectious cDNA clone of EAV, a close relative of
coronavirus, reported that all structural proteins, including N, are dis-
pensable for genome replication and subgenomic mRNA transcription
(Molenkamp et al. 2000). The coronavirus replicase gene products were
also shown to be sufficient for discontinuous subgenomic mRNA tran-
scription with a partial cDNA clone representing the 50 and 30 ends of
the HCoV-229E genome, the HCoV-229E replicase gene, and a reporter
gene located downstream of a regulatory element for coronavirus mRNA
transcription (Thiel et al. 2001). The RNA replication levels observed in
these systems are much lower than those containing the wild-type full-
length viral genome, indicating that factors other than the replicase
polyprotein are required for efficient RNA replication.
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Because the N protein has the ability to interact with viral RNA, it
most likely functions in viral RNA synthesis by binding to RNA and
forming a ribonucleoprotein (RNP) complex. The N protein binds to the
leader RNA sequences present at the 50 end of genomic RNA and all six
subgenomic mRNAs in MHV-infected cells (Baric et al. 1988; Nelson
et al. 2000). Biochemical analysis measured a dissociation constant of
14 nM for bacterially expressed MHV N-binding to the leader RNA
(Nelson et al. 2000). The MHV negative-stranded RNA was also immu-
noprecipitated by the anti-N monoclonal antibody. These data indicate
that the MHV N protein is associated with MHV-specific RNAs and RNA
intermediates and may play an important functional role during MHV
transcription and replication. Furthermore, the N-leader-RNA-contain-
ing RNP complexes were also immunoprecipitated from BCV-infected
cells (Cologna et al. 2000). The interactions between the N protein and
the RNA encompassing the N ORF may also contribute to the formation
of the N-RNA complexes that are present in coronavirus-infected cells
(Cologna et al. 2000).

The N protein of MHV is also involved in positive translational con-
trol (Tahara et al. 1993, 1998). It stimulated translation of a chimeric re-
porter mRNA containing an intact MHV 50-untranslated region and the
chloramphenicol acetyltransferase (CAT)-coding sequence. Preferential
translation of viral mRNA in MHV-infected cells is stimulated in part by
the interaction between the N protein and a 12-nt tract at the 30 end of
the leader.

Other coronavirus proteins, including structural protein hemaggluti-
nin-esterase (HE) (Luytjes et al. 1988; Yokomori et al. 1991) and non-
structural proteins NS2 (Schwarz et al. 1990), NS4 and NS5 (Yokomori
and Lai 1991), are not essential for coronavirus replication. However, it
is not clear whether any of these proteins can modulate viral replication.

3
Cellular Proteins in Coronavirus Replication

Coronavirus replication involves not only the viral proteins, but also cel-
lular proteins, which are subverted from the normal functions of the
host to play roles in the viral replication cycle. No coronavirus proteins
in the infected cell extract could be cross-linked to the viral RNA in vit-
ro, suggesting that viral proteins may interact with viral RNA only indi-
rectly through cellular proteins. Several cellular proteins have been
shown to bind to the regulatory elements of MHV RNA, including the 50
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and 30 ends of the genomic RNA and the 30 end of the negative-strand
RNA and IG sites. So far, only a handful of them have been identified,
among which hnRNPA1 and PTB are the only two proteins found to in-
teract with regions other than the 30 end of the coronavirus genome.
These proteins are likely to serve as mediators to bring the cis-regulato-
ry regions together to form viral replication complexes. They may also
help recruit and stabilize the RdRp to the initiation sites of viral RNA
synthesis.

3.1
HNRNP A1

UV cross-linking experiments using cytoplasmic extracts of uninfected
cells and the IG sequence showed that three different cellular proteins
bind to IG of the template RNA (Zhang and Lai 1995a). Deletion analy-
ses and site-directed mutagenesis of IG further demonstrated a correla-
tion between protein binding and transcription efficiency, suggesting
that these RNA-binding proteins are involved in the regulation of coro-
navirus mRNA transcription. One of these proteins was identified by
partial peptide sequencing to be hnRNP A1 (Li et al. 1997). hnRNP A1
is an RNA-binding protein that contains two RNA-binding domains
(RBDs) and a glycine-rich domain responsible for protein-protein in-
teraction. It is predominantly a nuclear protein but also shuttles be-
tween the nucleus and the cytoplasm (Pinol-Roma and Dreyfuss 1992).
A 38-amino acid sequence, termed M9, located near the C terminus of
hnRNP A1 between amino acids 268 and 305 has been determined to
be the signal that mediates shuttling (Michael et al. 1995; Siomi and
Dreyfuss 1995; Weighardt et al. 1995). The nuclear hnRNP A1 is known
to be involved in pre-mRNA splicing and transport of cellular RNAs
(Dreyfuss et al. 1993), whereas the cytoplasmic hnRNP A1 is capable of
high-affinity binding to AU-rich elements and thus modulating mRNA
turnover and translation (Hamilton et al. 1993, 1997; Henics et al. 1994).
Another function of hnRNPA1 in the cytoplasm is to promote ribosome
binding by a cap-mediated mechanism and to prevent spurious initia-
tions at aberrant translation start sites (Svitkin et al. 1996).

hnRNP A1 binds MHV negative-strand leader and IG sequences
(Furuya and Lai 1993; Li et al. 1997), which are critical elements for the
discontinuous viral RNA transcription (Fig. 2). Site-directed mutagene-
sis of the IG sequences demonstrated that the extent of binding of hn-
RNP A1 to the IG sequences correlated with the efficiency of transcrip-
tion from the IG site (Furuya and Lai 1993; Li et al. 1997; Zhang and Lai
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1995b). Immunostaining of hnRNP A1 showed that hnRNP A1 relocated
to the cytoplasm of MHV-infected cells, where viral RNA synthesis oc-
curs (Li et al. 1997). hnRNP A1 also interacts with the MHV N protein
(Wang and Zhang 1999), which also binds to the MHV RNA directly
(Baric et al. 1988; Stohlman et al. 1988). Furthermore, hnRNP A1 medi-
ates the formation of a ribonucleoprotein complex containing the MHV
negative-strand leader and IG sequences (Zhang et al. 1999), suggesting
that it may serve as a protein mediator for distant RNA regions to inter-
act with each other to form a transcription initiation complex. Remark-
ably, hnRNP A1 has also been shown to bind the positive-stranded
30-UTR and may play a role in negative-strand RNA synthesis (Fig. 2)
(Huang and Lai 2001).

The functional importance of hnRNP A1 in coronavirus RNA replica-
tion was shown in cells stably expressing the wild-type hnRNP A1 or a
dominant-negative mutant of hnRNPA1, which lacks the C-terminal nu-
clear localization domain (Shi et al. 2000). Viral RNA synthesis was ac-
celerated by the overexpression of hnRNPA1 but delayed by the expres-
sion of the mutant hnRNP A1 in the cytoplasm. Thus, the truncation
mutant of hnRNP A1 interferes with viral RNA replication in a domi-
nant-negative fashion. In addition to the general inhibition of viral RNA
synthesis, the hnRNP A1 mutant also caused a preferential inhibition of

Fig. 2. Schematic drawings of the cellular proteins that interact with coronavirus
RNA. hnRNP A1 interacts with the negative-strand leader and IG sequences as well
as the positive-strand 30-UTR, whereas PTB interacts with the positive-strand leader
and the complementary sequence of 30-UTR. These two proteins bind to sequences
that are complementary to each other at both the 50 and 30 ends of coronavirus
RNAs. The poly(A) tail and the 30-most 42 nt of the genomic RNA serve as binding
domains for PABP and m-aconitase, respectively
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the replication of DI RNAs, suggesting that the inhibition of MHV repli-
cation by the hnRNP A1 mutant was most likely a direct effect on viral
RNA synthesis rather than an indirect effect on other aspects of cellular
or viral functions. Because hnRNP A1 binds directly to the cis-acting
MHV RNA sequences critical for MHV RNA transcription (Li et al.
1997) and replication (Huang and Lai 2001), it is most likely that hnRNP
A1 may participate in the formation of the transcription/replication
complex.

However, a mouse erythroleukemia cell line, CB3, that lacks detectable
hnRNP A1 expression (Ben-David et al. 1992) can still support efficient
MHV replication (Shen and Masters 2001). Because hnRNP A1 protein is
involved in a variety of important cellular functions, it is conceivable that
other cellular gene products may substitute for the function of hnRNP
A1 in both uninfected and virus-infected CB3 cells. Indeed, a number of
CB3 cellular proteins comparable to hnRNP A1 in size were found to in-
teract with the MHV negative-strand leader RNA. All of these proteins
were identified to be hnRNP A1-related proteins, including hnRNP A/B,
hnRNP A2/B1, and hnRNP A3 (Shi et al. 2003). These hnRNPs have pri-
mary sequence structure, biochemical properties, and function similar to
those of hnRNP A1 (Dreyfuss et al. 1993; Ma et al. 2002; Mayeda et al.
1994). They also have binding specificity and affinity similar to MHV
RNA compared with hnRNP A1 (Shi et al. 2003). One of these proteins,
hnRNP A2/B1, can substitute for hnRNP A1 in regulating the splicing of
cellular (Mayeda et al. 1994) and viral (Bilodeau et al. 2001; Caputi et al.
1999) pre-mRNAs. Together, these multiple hnRNP A1-related proteins
may perform similar functions in MHV replication.

3.2
PTB

PTB, which is also known as hnRNP I, binds to the UC-rich RNA se-
quences typically found near the 30 end of introns. Similar to hnRNPA1,
PTB shuttles between the nucleus and cytoplasm and plays a role in the
regulation of alternative splicing of pre-mRNAs and translation of cellu-
lar and viral RNAs (Kaminski et al. 1995; Svitkin et al. 1996; Valcarcel
and Gebauer 1997). Studies of picornaviruses revealed that PTB plays a
role in internal ribosome entry site (IRES)-mediated translation by
mechanisms distinct from those governing the cap-dependent transla-
tion of most eukaryotic mRNAs (Jackson and Kaminski 1995). PTB was
found to be associated with the IRES elements of encephalomyocarditis
virus and foot-and-mouth-disease virus and to stimulate translation ini-
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tiated from these IRES elements (Kaminski et al. 1995; Niepmann 1996;
Niepmann et al. 1997).

UV cross-linking and immunoprecipitation studies using cellular ex-
tracts and a recombinant PTB established that PTB binds specifically to
the MHV positive-strand leader RNA (Fig. 2) (Li et al. 1999), which is
required for MHV RNA synthesis (Kim et al. 1993; Liao and Lai 1994)
and regulates translation (Tahara et al. 1994). The PTB-binding sites
were mapped to the UCUAA pentanucleotide repeats within the leader
RNA; deletion of these binding sites significantly inhibits RNA tran-
scription (Li et al. 1999). Interestingly, PTB also interacts with the com-
plementary strand of the 30-UTR (c30-UTR) (Fig. 2) (Huang and Lai
1999). A strong PTB-binding site was mapped to nt 53–149, and another
weak binding site was mapped to nt 270–307 on c30-UTR. Partial substi-
tutions of the PTB-binding nucleotides reduced PTB binding in vitro.
Furthermore, DI RNAs harboring these mutations showed substantially
reduced ability to synthesize subgenomic mRNA. Remarkably, the bind-
ing of PTB to nt 53–149 caused a conformational change in the neigh-
boring RNA region. Partial deletions within the PTB-binding sequence
completely abolished the PTB-induced conformational change in the
mutant RNA even when the RNA retained partial PTB-binding activity.
Correspondingly, the MHV DI RNAs containing these deletions lost their
ability to transcribe mRNAs. Thus, the conformational change in the
c30-UTR caused by PTB binding may play a role in mRNA transcription.

It is interesting to note that hnRNP A1 and PTB bind to the precisely
complementary sites on the negative- and positive-stranded RNA, re-
spectively, of the leader region of MHV RNA, and also the 50- and 30-
ends of both the positive- and negative-strand RNAs (Fig. 2) (Huang
and Lai 2001; Huang and Lai 1999; Li et al. 1997, 1999;). Furthermore,
hnRNP A1 and PTB together mediate the formation of an RNP complex
involving the 50- and 30 end fragments of MHV RNA in vitro (Huang and
Lai 2001). The interaction between hnRNP A1 and PTB have also been
detected in a splicing complex in uninfected cells (Bothwell et al. 1991).
All of these findings support the notion that hnRNPA1 and PTB may be
involved in the formation of a ribonucleoprotein complex, which func-
tions in MHV RNA synthesis.

Most coronavirus mRNAs are capped at the 50 end and translated by a
cap-dependent mechanism. The binding of PTB to the coronavirus lead-
er RNA, which regulates MHV RNA translation (Tahara et al. 1994), sug-
gests a possible role of PTB in coronavirus mRNA translation as well.
Surprisingly, PTB was found to have no direct effect on the cap-depen-
dent MHV RNA translation (Choi and Lai, unpublished data). It is, how-
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ever, still possible that PTB may affect the IRES-mediated translation of
coronavirus ORF 5b, which encodes the envelope (E) protein (Lai and
Cavanagh 1997; Thiel and Siddell 1994). The ORF 5b IRES has been
shown to serve as a binding site for cellular proteins (Jendrach et al.
1999), although it is not known whether PTB is among these proteins.

3.3
PABP

The 30-UTRs of coronavirus RNA are necessary for the synthesis of neg-
ative-strand viral RNA (Lin et al. 1994) and both genomic and subge-
nomic positive-strand RNA synthesis (Kim et al. 1993; Lin and Lai 1993;
Lin et al. 1996). They contain structures that are conserved among diver-
gent coronaviruses (Hsue et al. 2000; Hsue and Masters 1997; Liu et al.
2001). It is possible that these secondary structural elements serve as
binding sites for cellular proteins and function in viral replication. In-
deed, the mutations at the 30 end of the viral genomic RNA that abol-
ished the binding of cellular proteins also inhibited both negative-strand
and positive-strand RNA synthesis, although the correlation between
protein binding and RNA synthesis was not absolute (Liu et al. 1997; Yu
and Leibowitz 1995a).

A number of cellular proteins have been found to interact with multi-
ple sites within the 30 end of positive-strand MHV RNA (Huang and Lai
2001; Liu et al. 1997; Spagnolo and Hogue 2000; Yu and Leibowitz 1995a,
b). Several cellular proteins have also been shown to interact with the
BCV 30-UTR [287 nt plus poly(A) tail] (Huang and Lai 2001; Liu et al.
1997; Spagnolo and Hogue 2000; Yu and Leibowitz 1995a, b). Competi-
tion with the MHV 30-UTR [301 nt plus poly(A) tail] suggests that the
interactions are conserved for the two viruses (Huang and Lai 2001; Liu
et al. 1997; Spagnolo and Hogue 2000; Yu and Leibowitz 1995a, b). Pro-
teins with molecular masses of 99, 95, 73, 40–50, and 30 kDa were de-
tected, among which the 73-kDa protein was identified to be poly(A)-
binding protein (PABP) by immunoprecipitation experiments. PABP is
known to interact specifically with poly(A), which is an important cis-
acting signal for coronavirus RNA replication (Fig. 2) (Lin et al. 1994).
RNAs with shortened poly(A) tails exhibited less in vitro PABP binding.
Furthermore, binding of PABP to the 30-UTR of the DI RNA replicons
correlated with the ability of the DI RNA to replicate, suggesting that the
interaction between PABP and the poly(A) tail may affect coronavirus
RNA replication (Huang and Lai 2001; Liu et al. 1997; Spagnolo and
Hogue 2000; Yu and Leibowitz 1995a, b).
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PABP is a highly abundant cytoplasmic protein (Gorlach et al. 1994)
that binds the 30 poly(A) tail on eukaryotic mRNAs and helps promote
both efficient translation initiation and mRNA stability. It interacts with
the translation factor eukaryotic initiation factor (eIF) 4G (Imataka et al.
1998; Le et al. 1997; Tarun and Sachs 1996; Tarun et al. 1997), which is
part of the eIF4F triple complex that binds mRNA cap structures during
translation, and PABP-interacting protein (PAIP-1), a protein with ho-
mology to eIF-4G (Craig et al. 1998). This interaction, known as the
closed-loop model of translation initiation, mediates the cross talk be-
tween the 50 and 30 ends of mRNAs (Gallie 1998; Sachs et al. 1997). Be-
cause coronavirus RNA is capped and polyadenylated like the host mR-
NAs, PABP is likely involved in the translation of the coronavirus genome
upon virus entry into the cell. Because translation is required for efficient
coronavirus RNA replication, it is conceivable that PABP can indirectly
modulate RNA synthesis through its effect on translation. It is also possi-
ble that the PABP-poly(A) interaction may play a more direct role in co-
ronavirus RNA replication in view of the apparent requirement for both
the 50 and 30 ends, including the poly(A) tail, of the coronavirus genome
for DI RNA replication and mRNA transcription (Kim et al. 1993; Lai
1998; Liao and Lai 1994; Lin et al. 1994, 1996). Indeed, hnRNP A1 and
PTB together have been shown to mediate the interaction between the 50

and 30 ends of MHV RNA (Huang and Lai 2001). PABP may be another
cellular factor that facilitates a similar interaction of the ends.

3.4
Mitochondrial Aconitase

The 30-most 42 nt of the MHV genomic RNA has been shown to interact
with host factors and form at least three RNA-protein complexes (Nanda
and Leibowitz 2001). Four proteins of approximately 90, 70, 58, and
40 kDa were resolved from these complexes, and the 90-kDa protein was
identified as mitochondrial aconitase (m-aconitase), which catalyzes ste-
reospecific interconversion of citrate into isocitrate through a cis-aconi-
tase intermediate in the Krebs cycle (Beinert and Kennedy 1993). UV
cross-linking studies indicate that the highly purified m-aconitase binds
specifically to the MHV 30 protein-binding element despite the absence
of a consensus RNA-binding domain (Fig. 2) (Burd and Dreyfuss 1994).
Colocalization of m-aconitase with the MHV N protein was observed in
virus-infected cells, suggesting a possible interaction of m-aconitase
with the MHV replication complexes (Nanda and Leibowitz 2001).
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A cytoplasmic homolog of m-aconitase, cytoplasmic aconitase (c-ac-
onitase), also known as iron regulatory protein 1, is a well-recognized
RNA-binding protein (Kennedy et al. 1992). The binding properties of
m-aconitase and the functional relevance of RNA binding appear to par-
allel those of c-aconitase. c-Aconitase is a bifunctional protein, which
has been shown to interact with iron-responsive elements located in the
50-UTR of ferritin mRNA and the 30-UTR of transferrin receptor (TfR)
mRNA and to function to coordinate posttranscriptional regulation of
cellular iron metabolism (Hentze and Kuhn 1996; Kuhn and Hentze
1992). Similarly, m-aconitase can function as a posttranscriptional regu-
lator as well (Beinert and Kennedy 1993; Klausner et al. 1993). A link be-
tween cellular iron status and m-aconitase expression has also been es-
tablished (Kim et al. 1996; Schalinske et al. 1998). Increasing the intra-
cellular level of m-aconitase of MHV-infected cells by iron supplementa-
tion resulted in increased RNA-binding activity of cell extracts and in-
creased virus production as well as viral protein synthesis at early hours
of infection (Nanda and Leibowitz 2001). It is possible that the binding
of m-aconitase to the 30-UTR increases the stability of the viral mRNAs
and hence augments the translation of viral proteins, similar to the role
of IRP in regulating TfR (Kuhn and Hentze 1992).

3.5
Other Cellular Proteins

Accumulating evidence indicates the presence of additional cellular pro-
teins that interact with coronavirus RNA. The 30-UTRs of murine and
bovine coronaviruses were reported to contain bulged stem-loop (Hsue
et al. 2000; Hsue and Masters 1997) and pseudoknot (Williams et al.
1995) structures, which are essential for viral replication. These motifs
are potential binding sites for the proteins shown to interact with the 30-
UTR. Indeed, a number of cellular proteins have been shown to interact
with different regions within the 30-UTR of MHV (Liu et al. 1997; Nanda
and Leibowitz 2001; Yu and Leibowitz 1995a, b). The 30-most 42-nt se-
quence interacts with at least four proteins 90, 70, 58, and 40 kDa in size,
among which the 90-kDa protein was identified as m-aconitase (Nanda
and Leibowitz 2001). A distinct host cellular protein-binding element
was also mapped within a 26-nt sequence at positions 154–129 from the
30 end of the MHV-JHM genome (Liu et al. 1997). The resulting RNA-
protein complex contains six host cellular proteins with one protein of
120-kDa molecular mass, two poorly resolved species approximately
55 kDa in size, a second pair of poorly resolved 40-kDa proteins, and a
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minor component of 25 kDa. This region contains multiple stem-loop
and hairpin-loop structures, which are shown by mutational analysis to
be important for efficient MHV replication (Liu et al. 2001). In the study
that identified PABP, several other proteins with molecular masses of 99,
95, 40–50, and 30 kDa were also shown to interact with the 30-UTRs of
both BCVand MHV (Spagnolo and Hogue 2000). These cellular proteins
have the potential to regulate viral RNA synthesis through their binding
to the 30 ends of the coronavirus genomes; however, their identities and
functions remain to be determined.

3.6
Proposed Functions of Cellular Proteins

The cis-acting signals for viral RNA replication or transcription often
consist of multiple distant sequences on the viral RNA. In many cases,
there appears to be a cross talk between the 50 and 30 ends of viral RNAs
so that the 30 end sequence often can regulate RNA synthesis or transla-
tion initiated from the 50 end of the RNA. The 50- and 30-UTRs of both
positive- and negative-sense RNA and the IG sequences are thought to
contain important sequence and structural elements that function in
the initiation and regulation of RNA replication, transcription, and
translation. The 30 end of the MHV RNA has been shown to regulate
mRNA synthesis starting from an upstream internal promoter (Lin et al.
1996). The poly(A) tail is also involved in coronavirus RNA synthesis
(Huang and Lai 2001; Liu et al. 1997; Spagnolo and Hogue 2000; Yu and
Leibowitz 1995a, b). Furthermore, there is an apparent interaction be-
tween the leader and IG sequences, which regulates the synthesis of co-
ronavirus subgenomic mRNAs (Lai and Cavanagh 1997; Zhang et al.
1994). When no sequence complementarity exists between the 50 and 30

ends, RNA-protein and protein-protein interactions must be involved.
hnRNP A1 and PTB have the ability to interact with each other, thus al-
lowing different RNA regions to interact (Fig. 3A). By analogy to transla-
tion regulation, the binding of PABP to the 30 end of the coronavirus ge-
nome may also facilitate the cross talk between the 30 end and the other
upstream cis-acting sequences. Furthermore, because most of the viral
RdRps do not appear to bind directly to the cis-acting regulatory or pro-
moter sequences on the RNA, their ability to initiate RNA synthesis at
specific sites probably depends on their interactions with the cellular
proteins that bind directly to the viral RNA template. These cellular pro-
teins may serve as a platform on which other proteins, both viral and
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cellular, subsequently bind to form functional replication and transcrip-
tion complexes (Fig. 3B).

Together, cellular proteins play important roles in coronavirus repli-
cation. Identification of these proteins and analysis of their functions in
virus replication are critical to furthering our understanding of virus-
host interactions and will provide clues to unveil the replication strate-
gies of other positive-stranded RNA viruses.

4
Perspectives

Although an increasing body of literature supports the importance of
various viral and cellular proteins in coronavirus replication, our cur-
rent understanding of the roles of these proteins is still limited. The
availability of the reverse genetics approach for coronaviruses is expect-
ed to greatly accelerate the understanding of coronavirus replication as
well as the functional importance of viral and cellular factors in corona-
virus replication. In addition, the growing knowledge of the properties
of the individual protein products of the coronavirus ORF 1 should help
in understanding the makeup of the replication machinery. The recent
advances in gene knockout by RNA interference (RNAi) in mammalian
cells will likely be a valuable tool in establishing the functional relevance
of these cellular proteins. Nevertheless, the ultimate unraveling of the vi-
ral and cellular proteins involved in coronavirus replication is expected

Fig. 3A, B. Proposed functions of cellular proteins in coronavirus replication. A In-
teractions between distant RNA elements are mediated by hnRNP A1, PTB, and
PABP. B Formation of coronavirus replication/transcription complexes through the
recruitment of additional viral and cellular proteins by hnRNPA1 and PTB
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to come after the purification of coronavirus RdRp and the reconstitu-
tion of virus replication in vitro.
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