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ABSTRACT

The �1 ribosomal frameshifting requires the exist-
ence of an in cis RNA slippery sequence and is
promoted by a downstream stimulator RNA. An atyp-
ical RNA pseudoknot with an extra stem formed
by complementary sequences within loop 2 of an
H-type pseudoknot is characterized in the severe
acute respiratory syndrome coronavirus (SARS CoV)
genome. This pseudoknot can serve as an efficient
stimulator for �1 frameshifting in vitro. Mutational
analysis of the extra stem suggests frameshift effici-
ency can be modulated via manipulation of the
secondary structure within the loop 2 of an infectious
bronchitis virus-type pseudoknot. More importantly,
an upstream RNA sequence separated by a linker
50 to the slippery site is also identified to be capable
of modulating the �1 frameshift efficiency. RNA
sequence containing this attenuation element can
downregulate�1 frameshifting promoted by an atypi-
cal pseudoknot of SARS CoV and two other pseudo-
knot stimulators. Furthermore, frameshift efficiency
can be reduced to half in the presence of the attenu-
ation signal in vivo. Therefore, this in cis RNA attenu-
ator represents a novel negative determinant of
general importance for the regulation of�1 frameshift
efficiency, and is thus a potential antiviral target.

INTRODUCTION

The �1 ribosomal frameshifting is a translational regulation
mechanism adopted by a variety of viruses to synthesize two
or more proteins at a fixed ratio starting with a single trans-
lation initiation site from the same open reading frame (ORF)
(1–4). In response to the programmed frameshifting signals in
messenger RNA (mRNA), the ribosome is induced to move

one base backward in the 50 direction, and then continues
translation in the new �1 reading frame. The ratio between
the two protein products from frameshifting can be determined
by the frameshift efficiency of the stimulation signals and can
be a key factor for the propagation of virus within the host. It
has been suggested to be a potential antiviral target for the
interference of viral propagation (5).

Efficient induction of eukaryotic �1 ribosomal frameshift-
ing requires two in cis RNA elements (1,6). The first one is a
hepta-nucleotides’ slippery site sequence of X XXY YYZ,
where the recoding occurs. Analysis indicated X can be any
three identical nucleotides whereas Y represents three A or U,
and Z is A, U or C. In addition, a downstream stimulator RNA
structure located 6–7 nt away from the slippery site is also
needed for efficient frameshifting. This downstream RNA
stimulator is usually an H-type RNA pseudoknot in which
nucleotides from a hairpin loop form base pairs with single-
stranded region outside the hairpin. This leads to a topology
featuring twohelical stems ofbase pairing region (stems1 and2)
connected by two single-stranded loops (loops 1 and 2) with
a quasi-continuous RNA double-helical structure. However,
not all RNA pseudoknots can stimulate �1 frameshifting and
non-pseudoknot RNA element has been characterized to be
responsible for inducing �1 frameshifting in HIV-1 (7,8).

The reported �1 frameshift efficiency induced by different
RNA pseudoknots range from 1 to 4% for Beet western
yellows virus (BWYV) in plant cells to 25 and 50% for
mouse mammary tumor virus (MMTV) and avian infectious
bronchitis virus (IBV), respectively, in animal cells (6,9,10).
There is no clear picture to correlate frameshift efficiency with
a specific RNA pseudoknot stimulator. However, it is thought
that resistance of a pseudoknot against deformation by a
marching ribosome can cause the elongating ribosome to
pause (3,11–13). This will position the A- and P-site transfer
RNAs (tRNAs) over the slippery site and, thus, increases
the probability for ribosome to slip its A- and P-site tRNAs
in the 50 direction by one base and resume the translation in
the new reading frame. Parameters known to affect frameshift
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efficiency include sequence identity of the slippery site and
its distance to the stimulator RNA, stability of the stimulator
and interactions among the ribosome, the mRNA template and
the associated tRNAs (1). Recently, the sequence identity of
the spacer and the E-site tRNA have both been shown to
modulate frameshift efficiency (14,15) as well. In addition,
host factors have also been implicated to involve in efficiency
modulation (16,17).

The severe acute respiratory syndrome (SARS) is an acute
respiratory illness caused by a human coronavirus (HCV).
Both SARS CoV and IBV belong to Coronaviridae
(18–20). The IBV is known to use a �1 frameshifting mecha-
nism to generate RNA-dependent RNA polymerase (RdRp)
crucial for viral RNA replication. The 50 portion of the IBV
genomic RNA that encodes the RdRp contains a slippery site
of the sequences UUUAAAC, and is followed by an H-type
RNA pseudoknot with an in-frame stop codon embedded
within stem 1 of the folded pseudoknot. An elongating
ribosome will fall from the viral RNA template without syn-
thesizing RdRp if �1 frameshifting did not occur in front of
this in-frame stop codon. Therefore, defining the biologically
relevant mRNA secondary structure, which can regulate the
�1 frameshift efficiency of the SARS CoV, may provide use-
ful information for anti-SARS strategy. In this work, we report
the identification of an atypical RNA pseudoknot of SARS
CoV as an efficient RNA stimulator in promoting �1
frameshifting in vitro, and explore the role of different stem
regions in-frameshift efficiency determination. In addition, we
will also demonstrate that particular viral RNA sequences
upstream of the slippery site possess an attenuation effect
on the overall �1 frameshift efficiency. It, thus, suggests
that �1 ribosomal frameshifting can be attenuated by an
RNA element upstream of the slippery site in addition to
being promoted by a downstream RNA stimulator.

MATERIALS AND METHODS

Construction of reporter genes and mutagenesis

Plasmid encoding the gene for ORF 1ab junction region of
SARS CoV, pCRII-SARS12 265–13 653 was a gift from Professor
Pei-Jer Chen and was used as the template for PCR cloning of
the cDNA of viral RNA fragments. The p2luc reporter was a
gift from Professor John Atkins at the University of Utah (21)
and the pRL-SV40 vector was purchased from Promega.
Forward and reverse DNA primers, respectively, carrying
the SalI and BamHI restriction sites and appropriately
designed annealing sequences were used for PCR amplifica-
tion of the desired cDNA encoding SARS CoV viral RNAs
from pCRII-SARS12 265–13 653. The amplified inserts were then
sub-cloned into the SalI/BamHI sites of p2luc using standard
procedures and the resulting recombinant vectors were trans-
formed into DH5a cell for the maintenance and selection by
ampicillin. Frameshifting stimulator sequences of the minimal
IBV and MMTV pseudoknot were chemically synthesized.
They were amplified by forward and reverse primers, respect-
ively, containing BsrGI and BsaAI site, and ligated into the
BsrGI/BsaAI site (1392/1426) of restriction enzymes treated
pRL-SV40 vectors.

All of the base pairing disruption and restoration mutants
were constructed by using the quick-change mutagenesis kit

from Stratagene according to the manufacturer’s instructions.
In contrast, PCR-based ligation approach with appropriate
primers was used to assemble different chimera, which carried
the attenuation signal (the sequences are available upon
request), and will be described briefly. Initially, two comple-
mentary oligonucleotides containing the sense and the anti-
sense sequences corresponding to the 30 end and 50 star region
of the two fragments planned to be jointed were synthesized
chemically. They were then used as forward (sense) or reverse
(antisense) primers in combination with the corresponding
reverse or forward primer carrying appropriate restriction
sites to amplify the desired pre-jointed fragments from
pCRII-SARS12 265–13 653. The two individual PCR products
with partially overlapping sequences were then assembled
by the PCR-based ligation procedure (22), and then
sub-cloned into the BamHI/EcoRI sites of p2luc vectors.
The identities of all cloned and mutated genes were confirmed
by DNA sequencing analysis.

RNA structure probing

RNA transcripts spanning the SARS13 377–13 475 region of
SARS CoV were generated by in vitro transcription using
T7 RNA polymerase. The purified RNA of desired length
was then dephosphorylated by shrimp alkaline phosphatase
and 50 end labeled with [g-32P]ATP using T4 polynucleotide
kinase, and separated by a 12% sequencing gel. All the RNase
protection experiments were performed in 50 ml reaction vol-
umes containing 50 000–70 000 c.p.m. of 50 end labeled RNA
in the presence of RNase cleavage buffer (30 mM Tris–HCl,
pH 7.5, 3 mM EDTA and 200 mM NaCl), and 10 mM MgCl2
was included in the same buffer for RNase V1 experiments.
Before the addition of probing enzymes, the RNAs were denat-
ured by heating at 70�C for 5 min followed by instant cooling
on ice and brought back to 20�C for structural mapping. The
following amounts of RNases were added for each reaction:
0.0088 (1000·)–0.044 (200·) mg RNase A (USB), 0.05–10 U
RNase T1 (USB), 0.5–15 U RNase T2 (USB) and 0.01–01 U
RNase V1 (Amersham Pharmacia). The hydrolysis RNA lad-
ders were obtained by the incubation of RNA in the hydrolysis
buffer at 85�C for 10 min and parallel RNA sequencing prod-
ucts were obtained by the treatment of unfolded RNA with
RNases T1 and A. They were used as markers for the assign-
ment of guanines and pyrimidines, respectively. All the reac-
tions were incubated at 20�C for 10 min with the exception that
RNase V1 was incubated for 15 min. The reactions were
terminated by phenol–chloroform extraction, and precipitated,
washed with 70% ethanol, and dried by vacuum. Finally, the
cleavage products were loaded into a 10% denaturing gel with
different running time to resolve different parts of RNA, and
visualized by using phosphorimagery.

In vitro transcription/translation and frameshift assay

The T7-coupled transcription/translation (TNT) system
(Progema) was used for the generation of the shifted and
the non-shifted protein products according to the manufac-
turer’s instructions. In each assay, a 25 ml reaction containing
500 ng of DNA template, 12.5 ml of reticulocyte lysate and
0.8 ml of 10 mCi 35S-labeled methionine (NEN) was incubated
at 30�C for 1.5 h. The samples were then resolved by
12% SDS–PAGE and exposed to PhosphorImager screen
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for quantification after drying. The frameshift efficiency was
calculated by dividing the counts of the shifted product by sum
of the counts for both shifted and non-shifted products, with
correction of the methionine number in each product. Control
experiments with the plasmids of 100–1000 ng produce similar
results for frameshift efficiency (data not shown). For the
generation of capped mRNA templates, the mMESSAGE
mMACHINE kit (Ambion) was used according to the
manufacturer’s instructions.

Mammalian cell culture and luciferase assay

Human embryonic kidney HEK-293T cells were cultured in
the DMEM supplemented with 10% fetal bovine serum. The
transient expression was performed by LIPOFECTIN (Gibco
BRL) transfection of 500 ng of reporter plasmids into 12-wells
cultured cells. The cells were then assayed for the transient
expression of the reporter gene 24 h after transfection using
dual-luciferase assay of cell lysates, and normalized by
b-galactosidase activity as an internal control. All the
in vivo experiments were repeated three times with four
to six assays for each reaction. Luciferase activity measure-
ments for both in vitro reticulocyte lysate and in vivo trans-
fected 293T cell lysates were performed by using the
dual-luciferase� reporter assay (Promega) according to the
manufacturer’s instructions on an ABI TR 717 luminometer.
Calculation of luciferase-based frameshift efficiency was
performed with control plasmids to calibrate the ribosome
drop-off effect as described previously (21).

RESULTS

The �1 frameshifting stimulator of SARS CoV contains
an atypical H-type pseudoknot with an extra stem–loop
in loop 2

Sequence alignment of the junction regions of ORF 1ab of
SARS CoV and other coronaviruses indicated the existence
of conserved UUUAAAC slippery site followed by a stretch of
viral RNA sequences with the potential to form an H-type

RNA pseudoknot (Figure 1). This region of the SARS CoV
RNA genome, SARS13 369–13 520 (for residues 13 369–13 520)
was thus cloned into p2luc vector to examine its �1
frameshifting activity (21). To faithfully monitor frameshift
efficiency, we also arranged the terminus of the viral
sequences under investigation to keep the TAA sequences
in the N-terminal part of firefly luciferase ORF in frame to
act as a stop codon in the presence of �1 frameshifting. This
leads to premature termination of the frameshifted product
and, thus, prevents the underestimation of frameshift effici-
ency because this manipulation can minimize the ribosome
drop-off effect while translating the full-length firefly
ORF (21). A different vector, pRL-SV40 was also used as
the second reporter. Frameshift assay using either of the
reporters indicated that the selected viral RNA sequences pos-
sess a frameshift efficiency of 60% (data not shown), which
suggests that the SARS13 369–13 520 RNA contains an efficient
�1 frameshifting stimulator in vitro.

Further examination of sequence contents of the
SARS13 369–13 520 RNA revealed a potential stem–loop struct-
ure within the loop 2 region of this IBV-type pseudoknot.
Furthermore, their primary sequences were found to be con-
served among isolated SARS CoV sequences, and similar
stem–loop structures were also identified in the loop 2 region
of bovine coronavirus and mouse hepatitis virus pseudoknot
(Figure 1). To confirm the existence of the predicted atypical
pseudoknot, enzymatic structure probing experiments were
performed on SARS13 377–13 475 RNA and some of the results
are shown in Figure 2A. As can be seen, the distribution of
cleavage patterns for ribonuclease probes sensitive to single-
strand region (such as RNase T2, T1 and A in lanes 7–12 of
Figure 2A) is in agreement with the existence of loop regions,
whereas the cleavage pattern by RNase V1 (lanes 5 and 6) that
prefers cutting of duplex and stacked conformations can be
localized to the three predicted stem regions (S1, S2 and S3).
However, co-existence of cleavage by both RNase V1 and
single-strand sensitive probes can be found for nucleotides
localized to the junction region between S2 and S3. This is
probably caused by a dynamic conformational equilibrium in
this region as non-denaturing gel analysis suggests that the

Figure 1. Characterization of the in cis RNA elements involved in �1 frameshifting for SARS CoV. Sequence alignment for a set of related coronaviruses. The
slippery site is boxed and typed in gray, whereas the complementary base pairing counterpart of stem regions 1 and 2 (S1-S1C and S2-S2C) of stimulator are
underlined and boxed by solid line, respectively. The potential base pairing scheme for the third stem (S3) is underlined by dashed line. The S2C region for HCV 229E
is not shown as it appears in further downstream region.
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SARS13 377–13 475 RNA adopts a single conformation (data not
shown). Nevertheless, these probing data are consistent with
the existence of a stem conformation within the loop 2 in this
atypical IBV-type pseudoknot as summarized in Figure 2B.
Recently, the same S3 conformation has also been proposed
and verified independently (23,24).

Disruption of the base pairing region in S3 of an atypical
pseudoknot impairs �1 frameshifting stimulation activity of
the SARS13 369–13 520 RNA. To define the contribution of dif-
ferent stem regions of this atypical IBV-type pseudoknot in
the stimulation of �1 frameshifting activity, we mutated those
nucleotides mapped onto form the duplex conformations.
Mutants expected to disrupt a stem and those expect to reform
the stem by compensatory base changes were then measured
for their efficiency in promoting �1 frameshifting in vitro
(Figure 3A). As shown in lanes 1–3 of Figure 3B, frameshift
efficiency drops from 60% for wild-type construct to <1% for
both 50 and 30 mutants that prevent the formation of base
pairing in S1. In contrast, frameshift efficiency for the mutant
with compensatory base changes to restore the base pairing
scheme in S1 (lane 2 of Figure 3C) rises back to the wild-type
level (55%). Similar results are observed for S2 with mutants
destroying or reforming base pairs in the mapped duplex
region (lanes 4 and 5 of Figure 3B and Lane 3 of
Figure 3C). These experiments complement structural map-
ping data and strongly support the idea that it is the formation
of the two typical H-type pseudoknot stems, S1 and S2, and
not their sequence identities are required for efficient �1
frameshifting stimulation.

Interestingly, lower sensitivity to base pairing disruption is
observed for mutants located in the mapped S3 region.
Mutants with disruption of base pairing in the upper or and
in the lower stem region of S3 both led to a substantial
decrease in frameshift efficiency when compared with the
wild-type construct (from 60 to 36 or 37%, respectively, in
lanes 6 and 7 of Figure 3B). However, restoring the base
pairing scheme in either portion by compensatory base
changes restored frameshift efficiency to the wild-type level
including the up-restoration mutant that even displays a com-
pletely different sequence composition (lanes 4 and 5 in
Figure 3C), suggesting that the formation of base pairing
and not the sequence contents in S3 is involved in the efficient
frameshifting activity of this atypical IBV-type pseudoknot.
Intriguingly, frameshift efficiency does not reduce further
when more bases were mutated to disrupt all the potential
base pair in S3 (lanes 8 and 9 of Figure 3B), implicating
the existence of a residual frameshift activity for the remaining
pseudoknot scaffold. Furthermore, a pseudoknot mutant lack-
ing the S3 but harboring an 8 nt loop 2 possesses a frameshift
efficiency of 53% (lane 10 in Figure 3B). As the topology and
activity of this mutant are similar to those of the minimal IBV
pseudoknot that lacks 75% of its wild-type loop 2 sequences
(25), which indicates that S3 is not absolutely required for high
frameshift efficiency. To rule out the possibility that the
observed frameshift efficiency variation in S3 mutants is

the outcome of their differences in ribosome loading efficiency
of uncapped mRNA templates, separately transcribed capped
mRNAs were also used to examine their in vitro frameshift
efficiency as shown in Figure 3D. The data confirm the result
from transcription-coupled translation approach used above,
although lower frameshift efficiency for the wild-type con-
struct is observed. Together, these data suggest that the
roles of S3 in �1 frameshifting stimulation may be different
from those of S1 to S2.

Viral RNA sequences upstream of the slippery site can
downregulate �1 frameshift efficiency in vitro

Recently, analysis of a SARS CoV viral RNA genome con-
taining a longer viral construct has revealed a very different
frameshift efficiency from those observed in this work (26). To
resolve this issue, we constructed a series of longer viral RNA-
containing reporters with stepwise extension of viral insert in
the 50 direction upstream of the slippery site and measured
their frameshift efficiencies. As shown in Figure 4A, frame-
shift efficiency of these viral RNA constructs are all lower than
that of the shorter SARS13 369–13 520 RNA construct. Analysis
of these data suggested that the proximal 150 nt region
upstream of the slippery site, that is, the sequences
13 222–13 368 possess most of the observed downregulation
effect because addition of the other 475 nt further upstream of
it (the sequences 13 222–12 748) only lead to a 2% decrease
in frameshift efficiency (compare lane 7 with lane 3 of
Figure 4A). Together, it argues that the SARS13 222–13 368

viral RNA may possess a signal for the attenuation of �1
frameshift efficiency.

To confirm that the decrease in frameshift efficiency is
contributed by the SARS13 222–13 368 viral RNA sequence,
a reporter containing a large viral insert but lacking the
potential attenuation signal (sequences 13 222–13 368),
SARS12 748–13 368 Datt was constructed. This construct pos-
sesses a frameshift efficiency of 55% although much longer
protein is translated upstream of the slippery site and, thus,
confirming the attenuation activity of the removed domain
(compare lanes 2–4 of Figure 4B). Furthermore, the down-
regulation effect almost disappears for a chimera construct
that has the potential attenuation signal fused downstream to
the pseudoknot stimulator, arguing that this attenuation signal
need to be positioned upstream of the slippery site to execute
its function in vitro (lane 5 of Figure 4B). To examine
whether the observed downregulation effect is mediated by
polypeptide encoded by the viral RNA or by the RNA itself,
an ORF-shifted mutant was generated and tested for its
attenuation activity. In this construct, an A residue and
two U residues are separately inserted into three different
positions of the SARS13 222–13 368 viral RNA to shift the read-
ing frame, and consequently change the identity for 43
of the 50 amino acids encoded by the wild-type viral
RNA sequences (Figure 5A). The result in Figure 5A indic-
ates similar downregulation effect for this construct when

Figure 2. The SARS13 369–13 520 RNA contains an atypical H-type pseudoknot. (A) Electrophoretic analysis of probing data confirms the existence of S3. The
enzymatic cleavage result was resolved in a 10% sequencing gel with the first two lanes representing pyrimidines and guanine assignment markers, respectively. The
third and fourth wells are alkaline hydrolysis ladder and control, respectively. The concentration of the probes used and the assignment of residues are all shown on top
of the gel directly. (B) Summary of probing data supports the predicted S3 for an atypical H-type pseudoknot within the stimulator RNA. Extent of cleavage for each
probe is defined as major or minor cut as indicated by the symbols.
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compared with the wild-type construct. Taken together, these
data provide strong evidences that the upstream RNA itself
as well as its orientation to the slippery site are crucial for
the cis downregulation effect of �1 frameshift efficiency

in vitro, and the most stable structure of SARS13 222–13 368

RNA predicted by RNA structure version 4.11 (27) is
presented in Figure 5B with a calculated free energy of
�37.7 kcal/mol.

A

B

C

D

Figure 3. Role of base pairing formation in S3 may be different from those in S1 to S2 for the promotion of�1 frameshifting. (A) Illustration of mutant constructs for
the manipulation of base pairing scheme. (B) Results of 12% SDS–PAGE analysis of frameshift efficiency for constructs of different base pairing scheme disruption
mutants (as indicated in the top). (C) Results of 12% SDS–PAGE analysis of frameshift efficiency for different stem restoration constructs (as indicated in the top).
(D) Results of 12% SDS–PAGE analysis of frameshift efficiency for different stem 3 constructs (as indicated in the top) using capped mRNA templates. The
calculated efficiency is shown in the bottom of the gel and the bands of shifted product are arrowed by �1FS.
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Downregulation effect of the attenuation signal is
general in vitro and also active in vivo

We also evaluated the generality of downregulation effect
of this attenuation signal towards other �1 frameshifting

stimulators by placing it upstream of the minimal RNA
pseudoknot from IBV and MMTV, respectively (25,28)
(Figure 6A). Results show this upstream attenuation sequence
also downregulates �1 frameshifting promoted by RNA
stimulator derived from IBV and MMTV (compare

A

B

Figure 4. An RNA attenuation signal is characterized upstream of the slippery site. (A) Results of 12% SDS–PAGE analysis of �1 frameshifting of different
upstream extension constructs with the calculated efficiency shown in the bottom of the gel. The lower and higher bands within each well belong to the shifted and the
non-shifted products, respectively. The schematic diagram on top of the gel shows the relative position of the stimulator pseudoknot, the slippery site (filled box) and
the extended upstream and downstream viral sequences for the constructs under analysis. (B) The attenuation signal need to work in cis and its orientation to the
slippery site is crucial for its downregulation activity. Cartoons are used to illustrate the relative orientation of the attenuation signal, the slippery site and the
stimulator within the inserts under analysis. The identity of insert within each reporter construct and the calculated frameshift efficiency are shown in top and bottom
of the gel, respectively.
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lanes 2–5 of Figure 6A). However, a weaker downregulation
effect is observed when the attenuation signal is coupled to the
minimal MMTV pseudoknot comparing with the minimal
IBV pseudoknot. Therefore, the attenuation effect of this
upstream signal can vary with the identity of the downstream
stimulator. Finally, capped mRNA templates with or without
the attenuation signal for the minimal IBV construct used
above as well as a SARS viral construct carrying residues
12 265–13 652 and lacking any luciferase-related segment

were also created to analyze their in vitro frameshift
efficiencies. The results shown in Figure 6B reveal parallel
results with the previous study in Figures 4A and 6A, and
further rule out the involvement of ribosome loading differ-
ence in the observed attenuation effect. Furthermore, it
demonstrates that such attenuation activity is not an artifact
caused by the reporter system used because the inhibitory
effect also functions within an all-viral context (compare
lanes 2 with 3 of Figure 6B).

B

A

Figure 5. The SARS13 222–13 368 viral RNA possesses most of the attenuation activity in vitro. (A) Changing amino acids identity encoded by SARS13 222–13 368 RNA
cannot abolish attenuation activity. The RNA sequences and the amino acids of polypeptide encoded by the reading frameshifted mutant are shown. The three inserted
nucleotides are underlined and the encoded amino acids that remain unchanged are typed in bold face. (B) The most stable secondary structure of residue 13 222–
13 368 RNA predicted by RNAstructure version 4.11 (27).
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To evaluate the biological significance of this attenuation
signal in the regulation of �1 frameshifting, we constructed
several p2luc-based reporters for inserts possessing or lacking
SARS13 222–13 368 viral RNA without shifting the stop codon
located before firefly luciferase ORF to utilize the dual-
luciferase activity to monitor frameshift efficiency in vivo
(21). The in vitro frameshift efficiency of these constructs
were calculated from dual-luciferase assay result of the
TNT products of both plasmids (lane 1 in Figure 6C), and
reveals parallel results with the frameshift efficiency reported
above (lanes 2 and 3 of Figure 4A). Similarly, calculation from
the in vivo dual-luciferase assay result for cells transfected
with the reporter constructs indicates that the frameshift effi-
ciency reduces almost in half in the presence of attenuation
signal comparing with the one lacking the attenuation signal
(lane 2 in Figure 6C). Thus, this upstream attenuation signal
also functions in vivo.

DISCUSSION

Manipulation of loop 2 conformation can modulate the
�1 frameshift efficiency of IBV-type pseudoknot

The pseudoknot of short S1 with a bent helical junction such
as the one in MMTV and the IBV-type pseudoknot of long
S1 with a stringent length-requirement of 11 bp represent two
distinct classes of frameshift-stimulating pseudoknot
(25,28–30). In either case, the ability to resist deformation
by the translocating ribosome is thought to determine the
frameshift efficiency stimulated by a specific pseudoknot
(8,11,13,31). Alternatively, optimal contacts between the
activity in ribosome and the stimulator for its efficient
unwinding may also play roles in pseudoknot-stimulated
�1 frameshifting (32). The impairment of �1 frameshifting
for mutants with the disruption of S1 or S2 in SARS CoV
pseudoknot can be rationalized by the formation of two

A
B

C

Figure 6. The general attenuation signal embedded in SARS13 222–13 368 RNA is a novel negative determinant for �1 frameshifting. (A) The attenuation signal also
downregulates �1 frameshifting promoted by other pseudoknot stimulators. In this study, the Prl-SV40 reporter was used with the insertion of minimal IBV or
MMTV pseudoknot containing or lacking the upstream attenuation signal as indicated on top of the gel. The calculated frameshift efficiency is shown in the bottom of
the gel. The predicted secondary structure of the minimal IBV and MMTV pseudoknot are shown in the bottom as indicated and the slippery site is underlined. (B)
Results of 12% SDS–PAGE analysis of frameshift efficiency for capped mRNA templates. The Xef1 represents Xenopus elongation factor 1a protein and is used as a
protein marker control. The calculated efficiency is shown in the bottom of the gel and the bands of shifted product are arrowed by�1FS in both (A) and (B). (C) The
attenuation activity of SARS13 222–13 368 RNA also functions in vivo. Comparison of frameshift efficiency for reporter constructs in the presence or absence of
attenuation signal. The data are calculated from the results of dual-luciferase assay in vitro (lane 1) and in vivo (lane 2), respectively. The plotted values are the mean
value calculated from three independent experiments with the error bars representing SD.
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separated hairpins and the coupled destruction of pseudoknot
configuration. In contrast, disruption of the base pair in S3 is
expected to be less important as the long loop 2 of the
IBV-type pseudoknot has been thought to play a connection
role to link the two stems (25). This is consistent with the
wild-type like frameshift efficiency for the mutant lacking S3
in this study. Interestingly, the minimal IBV pseudoknot
lacking most of its wild-type loop 2 sequences promotes
�1 frameshifting better than its wild-type counterpart
(10,25), whereas reverse trend is observed here for similar
study on the SARS CoV pseudoknot. However, the medium
frameshift efficiency for the two IBV-type mutants generated
by complete base pairing disruption of S3 in SARS CoV
pseudoknot suggest that the integrity of these base pairs in
S3 may contribute extra �1 frameshifting activity in a deli-
cate manner. We also note that existences of two extra base
pair in the up-restoration mutants does not further enhance
frameshift efficiency, implicating only a threshold value of
stability is required. Taken together, they indicate that dif-
ferent secondary structure compositions within the loop 2 of
IBV-type pseudoknot may modulate the frameshift efficiency
of this type of pseudoknot, and implicate that the frameshift
efficiency might be tunable by modulation of the S3 forma-
tion in vivo. Alternatively, the formation of S3 may also serve
to prevent formation of unfavorable conformations that may
interfere with frameshifting process as the long loop 2 could
be merely constraint imposed by the encoded amino acids
required for the RdRp activity.

The atypical pseudoknot found in this work is different from
those in transmissible gastroenteritis virus (TGEV) and HCV
229E, which also contain an additional stem essential for �1
frameshifting (33,34). The additional stem of 229E pseudo-
knot is formed by complementary sequences between the very
long loop 2 and the 30 end sequences following stem 2, and is
probably stacked onto stem 2 to form a quasi-continuous helix
of 24–25 bp. In contrast, the S3 of SARS CoV pseudoknot
could stack into the bottom of S1 to form a quasi-continuous
helix of 25–26 bp interrupted by two separated A-bulges.
Although our mapping data cannot provide information
about stacking configuration among these stems in the
SARS CoV pseudoknot, helical junction geometry between
S1 and S2 obviously will be coupled to the positioning of S3.
As modulation of frameshift efficiency by the modification of
junction geometry via tertiary interactions has been observed
in helical junction of BWYV pseudoknot (35,36), the modu-
lation of helical junction configuration by the additional S3 in
SARS CoV pseudoknot could also play an important role here.
Furthermore, the existence of single-strand cutter cleavage for
residues connecting S2 and S3 in probing data also suggests a
dynamic nature of the junction region. Therefore, reduced
frameshift efficiency in mutants potentially disrupting partial
or all of the base pair in S3 can thus be caused by changes in
junction geometry with the weakening or diminishing of S3 in
these mutants.

Upstream attenuation sequence is a novel determinant
for �1 frameshifting

The significant decrease in �1 frameshift efficiency by
upstream attenuation signal appears unexpected as the

major viral factors characterized to determine frameshift
efficiency all involve sequences between the slippery site
and the downstream stimulator. Interestingly, recent works
on HIV-1 and barley yellow dwarf virus (BYDV) both
reported the involvement of sequences upstream of the slip-
pery site in modulation of overall �1 frameshift efficiency
(37,38). However, only short sequences immediately upstream
of the slippery site are involved in the case of HIV-1, and the
modulation can go either way for enhancement or attenuation
without a defined activity (37). In contrast, a conserved hairpin
upstream of the slippery site was proposed to slow down the
marching ribosome and thus enhance �1 frameshift efficiency
in the case of BYDV (38). Recently, mutational study on the
nucleotide adjacent to the slippery site of the SARS CoV also
reported an increment of �1 frameshift efficiency in vivo (24).
Our finding is thus unique in which, it specifies an RNA ele-
ment of negatively regulatory activity with general applica-
tion, and suggest that it is an integral part for the �1 frameshift
efficiency determinant of SARS CoV although it is separated
from the slippery site with an intervenient spacer. Although
sequence alignment and secondary structure prediction for
both SARS13 222–13 368 and SARS13 318–13 368 RNA with the
corresponding regions of other coronavirues reveal no strong
consensus, the sequences of SARS13 318–13 368 RNA do con-
serve among different strains of SARS CoV (data not shown).
The existence of such an attenuation signal may provide the
virus a regulation point for the tuning of RdRp synthesis in
response to environmental changes. In contrast, a change in
spacer sequence identity will lead to a fixed frameshift effi-
ciency although it also reduced the efficiency. Furthermore, it
may also change the property of the encoded amino acid
composition in the N-terminal region of RdRp with dramatic
impacts on the activity of RdRp.

With respect to the mechanisms responsible for the func-
tion of this negative determinant of �1 frameshifting, the
factors known to affect frameshift efficiency should be exam-
ined in the future. However, it is less possible that it is
mediated by the encoded polypeptide because 14 out of
18 amino acids encoded within SARS13 318–13 368 RNA
were changed in the out of frame mutant and no dramatic
change in attenuation activity has been observed. In contrast,
it is more likely that the attenuation signal can contact with
and affect the factors capable of modulating the frameshift
efficiency. Indeed, interferences of dynamic interactions/con-
tacts between pseudoknot and the ribosome or auxiliary fac-
tors in mutants of BWYV pseudoknot have been proposed to
be responsible for observed frameshift efficiency variation
comparing with that of its wild-type counterpart (36). How-
ever, it is tempting to speculate that the function of this
attenuation element may be related to the extra S3 of down-
stream atypical pseudoknot. However, the fact that the
attenuation signal also downregulates �1 frameshifting pro-
moted by other stimulators suggests its function is general.
Furthermore, the requirement for an orientation upstream of
the slippery site and the stimulator in vitro indicates that
function of the attenuation signal is probably not mediated
via interactions with the downstream determinants of �1
frameshifting. Further biochemical analysis of the attenuation
element will be informative for revealing how it works and
providing insight of the mechanism of �1 ribosomal
frameshifting.
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