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Abstract

Transmissible gastroenteritis coronavirus (TGEV) is one of the most destructive agents, responsible for the enteric infections that are
lethal for suckling piglets, causing enormous economic loss to the porcine fostering industry every year. Although it has been known that
TGEV spiker protein is essential for the viral entry for many years, the detail knowledge of the TGEV fusion protein core is still very
limited. Here, we report that TGEV fusion core (HR1-SGGRGG-HR2), in vitro expressed in GST prokaryotic expression system, shares
the typical properties of the trimer of coiled-coil heterodimer (six a-helix bundle), which has been confirmed by a combined series of
biochemical and biophysical evidences including size exclusion chromatography (gel-filtration), chemical crossing, and circular diagram.
The 3D homologous structure model presents its most likely structure, extremely similar to those of the coronaviruses documented.
Taken together, TGEV spiker protein belongs to the class I fusion protein, characterized by the existence of two heptad-repeat (HR)
regions, HR1 and HR2, and the present knowledge about the truncated TGEV fusion protein core may facilitate in the design of the
small molecule or polypeptide drugs targeting the membrane fusion between TGEV and its host.
� 2005 Elsevier Inc. All rights reserved.
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Porcine transmissible gastroenteritis (TGE) is an acute,
highly prevalent enteric infectious disease, which is associ-
ated with high morbidity in animals of all ages and with
high mortality in suckling piglets, causing extremely enor-
mous economic loss to piglet cultivation in the world every
year [1,2]. Transmissible gastroenteritis virus of swine
(TGEV), a member of group I of coronaviruses, has been
identified to be the key causative agent responsible for
the TGE [1,3]. To date, the only solution to prevent the dis-
ease only is to inoculate ordinary vaccines, which are either
inactivated or tissue culture ones with lot of disadvantages,
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such as high cost, low effectiveness, etc. [2,3]. Since none of
the effective vaccines or drugs could be available, it seems
to be very urgent to develop some genetic engineering vac-
cines or drugs specific for TGE [2].

Coronaviruses are enveloped, positive-strand RNA
viruses with largest genomes among the RNA viruses and
are characterized by 3–4 enveloped proteins which embed-
ded on the surface [3,4]. Both the receptor binding and the
subsequent membrane fusion process of coronavirus are
mediated by the spiker glycoprotein (S protein) [3–5]. It
is generally believed that enveloped virus might adopt a
similar molecular apparatus of virus membrane fusion in
which two types have been proposed [3]. In type I, human
immunodeficiency virus (HIV) [6–8], influenza virus [9],
Ebola virus [10], and human respiratory syncytial virus
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(hRSV) [11,12] may be several typical ones of those exam-
ples with deeply structural insights, while in type II, flavivi-
rus is an example lacking much knowledge in molecular
mechanism of virus membrane fusion [3].

The fusion with the host cell membrane is the crucial
step in the life cycle of all enveloped viruses, because it is
necessary to facilitate the intracellular deposition of the vir-
al genome followed by its replication [3,5]. It has been
known that the envelope protein undergoes a series of con-
formational changes during the virus fusion process [3–6,9–
11]. Two highly conserved heptad-repeat regions (HR1 and
HR2) of S protein function as important modules/domains
in this process and show different conformations in differ-
ent fusion states [3,6,9]. Under the model given above,
there are at least three conformational states of the enve-
lope fusion protein, which include pre-fusion native state,
pre-hairpin intermediate state, and post-hairpin state
[3,9,10]. During these state transitions, the HR1 and HR2
are exposed to an intermediate conformational state but
bind to each other to form the coiled-coil structure in an
anti-parallel mode in the post-fusion stage. This coiled-coil
bundle conformation is proposed to be important for
bringing two lipid membranes (cellular and viral) into
proximity with each other allowing the membrane fusion
for viral entry into host cells [6,9,10].

The HR1/HR2 coiled-coil bundle is so called the virus
fusion core [11]. In this structure, as presented by several
crystal structures of fusion cores, including HIV [6–8],
influenza virus A [9], Ebola virus [10], and hRSV [11,12],
three HR1 bind to each other to form a trimeric core
whereas three HR2 surround this core. As both HR1 and
HR2 are structurally a-helical in the fusion core, the struc-
ture is also called 6-helix coiled-coil bundle [3].

Recently, two research papers have separately presented
the crystal structure of the fusion protein cores of the severe
acute respiratory syndrome coronavirus (SARS-CoV)
[16,17] and murine coronavirus (mouse hepatitis virus,
MHV) [18], which both belongs to the Family coronaviri-
dae. The two above 3D structures drew the following pic-
ture: a 6-helix bundle with three HR2 helices packed
against the hydrophobic grooves on the surface of central
coiled-coil formed by three parallel HR1 helices in an obli-
que anti-parallel manner, indicating that both SARS-CoV
and MHV adopt the so-called type I virus membrane fu-
sion mechanism. Moreover, the soluble HR2 derived from
SARS-CoV and MHV are demonstrated to possess the
inhibitory activities for viral fusion, extremely similar to
the peptide inhibitor for HIV, Enfuvirtide or T20 [4,8,13].

To our knowledge, none of any experimental evidences
have been presented to support that the TGEV fusion core
shares the same features as those of well-known coronavi-
ruses, although it is a member of group I of Family corona-

viridae differing from both SARS-CoV and MHV [3,5]. In
this study, we intended to investigate the structural basis of
TGEV fusion through providing the biochemical and bio-
physical traits of its fusion core, especially the possibility of
the molecular apparatus of TGEV fusion applied in fusion
inhibitor design for the treatment of TGE. Here, we de-
ployed bio-engineering technique to design and prepare
the protein of the TGEV fusion core (denoted as 2-Helix).
The results of gel-filtration combined with circular dichro-
ism (CD), chemical cross-linking, indicated that it is of tri-
mer of heterodimer, coiled-coil bundle, implying that
TGEV may adopt type I membrane fusion mechanism fur-
thermore, the 3D structure model of TGEV fusion core
clearly represented its most likely stereo configuration
extremely similar to those of coronaviruses including
HIV, etc. [6–12,17,18]. In conclusion, the presented knowl-
edge about the truncated TGEV fusion protein core will
facilitate to design the small molecules or polypeptide
drugs targeting the crucial step of TGEV membrane fusion,
similar to T20 specific for HIV which has been successfully
applied for the treatment of HIV infection.
Materials and methods

Prediction of the heptad-repeat regions and construction of the TGEV

fusion core. The porcine transmissible gastroenteritis virus (TGEV) spiker
gene used in this work was cloned from the Chinese isolate TH-98
(GenBank Accession No. AF494337). As shown in Fig. 1, the TGEV S
protein is a typical type I membrane protein. The HR1 and HR2 regions
were predicted by using the computer software of LearnCoil-VMF, freely
available from the website (http://night-ingale.lcs.mit.edu/cgi-bin/
vmf)[19]. The predicted HR1 region covers amino acids 1045–1184,
whereas the relevant HR2 includes the amino acids 1339–1378 (Fig. 1).
Considering the feasibility of the soluble expression of the fusion core
generated in this experiment, the HR1 and HR2 regions of TGEV were
adequately truncated and extended, respectively, on the basis of the
multiple alignment of TGEV with the other coronaviruses in the conserved
regions. Finally, the TGEV fusion core (2-Helix construct) was made by
linking the modified HR1 (1057–1119) and HR2 (1326–1383) with a
flexible linker (SGGRGG, single amino acid abbreviation used here), and
then was inserted directionally into the prokaryotic expression vector
pGEX-6P-1(Pharmacia) via the restriction sites BamHI and XhoI (intro-
duced by PCR primers). The acquired recombinant expression plasmid,
which harbored the interested DNA fragment of the TGEV fusion core
was verified by direct DNA sequencing.

Protein expression and purification. The candidate positive recombinant
clones were transformed into Escherichia coli strain BL21 (DE3) competent
cells and the single colony was inoculated into Luria–Bertani (LB) medium
containing 50 mg/L ampicillin (Sigma, USA) at 37 �C for overnight. Fol-
lowing, the overnight culture was transferred into the fresh LB medium for
large-scale protein production at 37 �C. When the culture density (OD600)
added up to 0.6–0.8, the culture was induced with 0.15 mM isopropyl-b-D-
thiogalactopyranoside (IPTG) (Sigma, USA) and grown for another�12 h
at 16 �C until the bacterial cells were harvested.

The harvested culture was centrifuged at 5000 rpm for 12 min at 4 �C,
and the bacterial cell pellet was resuspended in the iced PBS (140 mM
NaCl, 2.7 mM KCl, 10 mM Na2HPO4, and 1.8 mM KH2PO4) and
homogenized by sonication. The lysate was centrifuged at 18,600 rpm for
20 min at 4 �C and subsequently filtered through 0.22 lm membrane for
clarification. Then the supernatant was loaded onto a glutathione–Se-
pharose 4B column (Pharmacia). When the protein-loaded column was
then washed with six times of column volume of PBS, the GST-fusion
protein was eluted by 20 mM reduced glutathione (Pharmacia). To obtain
the GST-removed protein, the GST-3C rhinovirus protease (kindly pro-
vided by Drs. J. Heath and K. Hudson) was added into the resin and then
the mixture was incubated with gentle agitation for about 10 h at 4 �C.
The target protein was eluted with 10 ml PBS.

Gel-filtration analysis. The target protein (2-Helix) loaded on a
Superdex 75 column (Pharmacia) with an Akta Purifier System
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Fig. 1. Prediction of the HR regions of TGEV S protein. Schematic diagram of S protein (amino acids 1–1447 for the full length) is shown in the upper
panel. The cleavage of S1 and S2 is indicated by a vertical arrow. SS, signal peptide; HR1 and HR2, heptad-repeat regions 1, 2; TM, transmembrane
region. In the lower panel, the likelihood of HR1 and HR2 predicted by LearnCoil-VMF program [19] is represented.
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(Pharmacia) after it was concentrated by ultra-filtration (10 kDa cut-off)
and exchanged from PBS buffer into the exclusion buffer. The fraction of
the peak was collected and analyzed by a 17% SDS–PAGE, and the
molecular weight of the interested peak was estimated by comparison with
the GST protein run on the same gel.

Circular dichroism spectroscopic analysis. Circular dichroism (CD)
spectra were performed on a Jasco J-715 spectrophotometer in PBS.
Wavelength spectra were recorded at 25 �C using a 0.1 cm path-length
cuvette. Thermodynamic stability was measured at 222 nm by recording
the CD signals at the temperature which varied from 25 to 90 �C with a
scan rate of 5 �C/min.

Chemical cross-linking of the fusion core. The purified 2-Helix protein
after the gel-filtration was dialyzed against cross-linking buffer (50 mM
Herpes, pH 8.3; 100 mM NaCl) and concentrated to approximately 5
mg/L by ultra-filtration (10 kDa cut-off). The resultant proteins were
subjected to chemical cross-linking reaction with ethylene glycol bis-
succinimidylsuccinate (EGS) (Pierce). The reactions were incubated for 1 h
at room temperature at different concentrations of EGS, respectively (0.0,
0.2, 0.5, 1.0, 1.5, and 2.0 mM EGS), and quenched with 50 mM glycine.
Eventually, the cross-linked samples were analyzed by 17% SDS–PAGE.

3D structural model building of the fusion core. The deduced amino acid
sequence of the TGEV fusion core was sent into the CPHmodels 2.0
Server [23] and then was processed. Finally, the acquired coordinates were
used to generate the 3D structure of the TGEV fusion core with the aid of
the program of DeepView/SwissPdb-Viewer 3.7 (SPS).

Results and discussion

Design of the TGEV fusion core

Based on the prediction of the LearnCoil-VMF program
(Fig. 1) and the multiple alignments of the putative heptad-
repeat regions of TGEV with those of several other coro-
naviruses (Fig. 2), the final version of the TGEV fusion
core used in this study has been determined. The fusion
core consisted of HR1, a truncated type of the Learn-
Coil-VMF predicted HR1, connected with HR2, an
extended version of the LearnCoil-VMF predicted HR2,
by a flexible linker (SGGRGG). The fusion core designed
here shared the feature of the helix wheels, a typical char-
acteristic of class I fusion protein (Fig. 3).

Soluble expression of the TGEV fusion core

The TGEV fusion core was synthesized by using over-
lapping PCR and then cloned into the prokaryotic expres-
sion vector, pGEX-6P-1, through the restriction sites
(BamHI and XhoI) introduced by PCR. Ideally, the fusion
core should be 127 aa in length with an ideal molecular
mass of about 13.0 kDa. Luckily, the GST fused fusion
core protein in the soluble form was observed in the super-
natant of the bacteria lysate, and the GST removed fusion
core protein run on the 17% SDS–PAGE showed at the po-
sition of the expected size (Fig. 4). The availability of much
soluble TGEV fusion core protein made it possible to per-
form the subsequent experiments to classify and character-
ize the TGEV fusion core.

Characteristic 6-helix bundle formed by the TGEV fusion

core

The purified TGEV fusion core proteins (2-Helix) were
concentrated to 10–20 mg/ml in the size exclusion buffer
and analyzed by gel-filtration and chemical cross-linking
for estimation of the molecular weight. The 2-Helix
protein was eluted at the volume of �10 ml which fol-
lowed the position of GST dimer (52 kDa) presented by
the Superdex 75 Column (Fig. 5). In comparison, the
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Fig. 3. The helical-wheel representation of the final type of HR regions of TGEV spiker protein.
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computed molecular mass of the 2-Helix protein was
about 13.0 kDa, and then it indicated that the 2-Helix
might form oligomers (�40 kDa). Subsequently, the
chemical cross-linking experiment demonstrated the 2-He-
lix protein oligomer to be a trimer (Fig. 7), and at the
same time, that the transitional states (monomer and di-
mer) could be observed clearly. In addition, the content
of the trimer increased with the concentration increase
of the chemical cross-linker (EGS).
CD spectroscopic profile of the fusion core (2-Helix)
presented an absorption curve of the typical a-helix struc-
ture, with double minima at 208 and 222 nm (Fig. 6A),
which was completely consistent with the previously pub-
lished data of some other virus fusion cores [4–
6,11,15,21]. Moreover, the thermodynamic measurement
of the fusion core protein indicated that it could keep its
advance structure up to above 85 �C (Fig. 6B), suggesting
that the 2-Helix formed trimer represents the core structure
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of the post-fusion state of the TGEV coiled-coil bundle,
which is extraordinarily stable.

Finally, 3D structural model building of the TGEV
fusion core was conducted with the program of Swiss-Pdb-
Viewer 3.7 (SPS) and showed clearly the typical character-
istic of the 2-Helix in molecular level (Fig. 8).

In summary, the TGEV fusion core actually formed a
6-helix bundle, a trimer of heterodimer, implying that
TGEV may adopt the type I membrane fusion mechanism.

Potential implication for antiviral strategies

Similar to human coronavirus 229E (hCoV 229E),
TGEV has also been identified as a member of group I in
Family coronaviridae, which do not include SARS-CoV,
MHV, etc. [3,5]. Importantly, it has been confirmed to be
a severe pathogen responsible for the porcine transmissible
gastroenteritis (TGE), an acute and highly epidemic enteric
infectious disease, which is associated with high morbidity
in animals of all ages and with high mortality in suckling
piglets [1,2]. There is no doubt that it may result in an
extremely enormous economic loss to piglet cultivation in
the world every year, and thereby has attracted the atten-
tion of several virologists in the world to research the path-
ogenic mechanism of TGEV, and even interaction between
TGEV and the host, porcine. In fact, so far, the only way
used to prevent the disease is to inoculate ordinary vac-
cines, which are either inactivated or tissue culture ones
with much disadvantages, such as high cost, low effective-
ness, etc. Just due to lacking of effective vaccines or drugs,
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it seems to be very urgent and important to rationally de-
sign and eventually develop some genetically engineered
vaccines or drugs specific for TGE [2].

Our results here showed a reasonable version of TGEV
fusion core, which is a typical stable 6-helix coiled-coil bun-
dle. Different experiment evidences all supported that
TGEV belongs to Class I envelope virus, sharing the simi-
lar molecular mechanism of membrane fusion to those of
both retrovirus and paramyxovirus. Moreover, a 3D struc-
ture of TGEV fusion core, with maximum likelihood, was
proposed by the homologous model. The current knowl-
edge has told us that HR1 or its derivatives of NDV
[20,21], HR2 or its derivative coming from HR2 (HIV,
SARS-CoV, MHV, Hendra virus, Nipah virus, etc.) [4–
8,15,22], and even both HR1 and HR2 of hRSV
[11,12,14] can inhibit the membrane fusion during the virus
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entry into its host, perturbing the successful infection of
virus. It will be of interest to test whether HR1 or HR2
has the inhibitory activity in the next work. Anyway, it
did first provide us the biochemical and biophysical basis
of the TGEV fusion core, pointing out a novel direction
to design the polypeptide or small molecule drugs, perturb-
ing TGEV fusion with its host membrane, for the preven-
tion and therapeutics of TGE.
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