
the different therapeutic interventions that may be re-
quired for patients bearing one or the other condition (i.e.,
antithrombotic agents in the former or hemostatic agents
in the latter). Although it is not possible to draw definite
conclusions, it is reasonable to assume that using only 1
test to rule in or out LA when the clinical history of the
patient being investigated is unknown may be risky,
particularly if only 1 test is used. Two or more positive
test results, particularly if they are from assays with
different designs, probably are more informative and
more likely to differentiate LA from anti-FVIII inhibitors.

We thank Carola Cruini (Istituto Auxologico Italiano) for
technical assistance in detecting aPL antibodies by ELISA.
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Severe acute respiratory syndrome (SARS), caused by a
novel coronavirus (SARS-CoV) (1–5), has affected 8096
people and produced 774 deaths in 29 countries/regions
(6 ). The vital step in preventing and controlling future
epidemics is to block transmission of infection through an
effective quarantine policy, which in turn hinges on early
diagnosis and confirmation of the disease, particularly by
laboratory tests (7 ). The need for rapid, ultrasensitive
assays that can detect infection very early in the course of
the disease is obvious.

The antibody response to SARS-CoV infection is detect-
able only after �10 days of illness (8 ); hence early
laboratory diagnosis rests on early detection of the virus
itself. Detection relies on reverse transcription followed
by PCR (RT-PCR) (7 ). We designed a 1-step real-time
quantitative RT-PCR assay for SARS-CoV with the use of
2 TaqMan probes, instead of 1 probe, hybridizing to the
same PCR product to further improve the sensitivity. This
simple modification using dual TaqMan probes for quan-
tification has wide applications in areas in which ultra-
sensitivity is critically required.

Our 1-step assay was designed to amplify the ORF1b
regions of the SARS-CoV by TaqMan EZ RT-PCR Kit in a
7500 Real Time PCR System (Applied Biosystems). We
compared assays using 1 and 2 TaqMan probes (Fig. 1, A
and B). The 25-�L reaction mixture contained 1� TaqMan
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Fig.1. RT-PCR assay design and performance.
(A), 1-step RT-PCR assays with 1 (assay P1) or 2 TaqMan probes (assays P2a to P2c). The length of each amplicon is indicated in parentheses. The same forward primer was
used for the 3 dual-probe assays and was upstream of that for the 1-probe assay. The arrowheads indicate the 3� end of a primer or probe. (B), names and sequences of the
primers and the TaqMan MGB probes shown together with the symbols used in A. Note that the TaqMan MGB probes (Applied Biosystems) are labeled with a 5� reporter dye,
6-carboxyfluorescein (FAM), and a 3� nonfluorescent quencher (NFQ) plus a minor grove binder (MGB) that stabilizes the probe–target duplex by binding the minor groove of
double-stranded DNA (31). (C), amplification plot of FAM fluorescence intensity against the PCR cycle for the P1 one-probe assay. Delta Rn (y axis) indicates the magnitude
of the signal intensity generated by a given set of PCR conditions and is obtained from the equation: delta Rn � (Rn�) � (Rn�). The Rn� value is obtained as a ratio of FAM
fluorescence intensity to the fluorescence intensity of the passive reference dye (ROX) included in the reaction mixture for a PCR with template. The Rn� value is similarly
obtained as a ratio for a PCR without template (the no-template control). The RNA copy numbers per reaction are indicated on the right for each curve. (D), amplification plot
of FAM fluorescence intensity against the PCR cycle for the P2a dual-probe assay. Assays P2b and P2c produced similar amplification plots (data not shown). (E), calibration
curves for the P1 one-probe assay and the P2a dual-probe assay. Assays P2b and P2c produced calibration curves very similar to that for assay P2a (data not shown). (F),
comparison of the RNA copy number per mL of input RNA sample determined by Artus assay (x axis) and the P2a dual-probe assay (y axis). The RNA samples were extracted
from 18 confirmed SARS cases with 6 cases each providing stool, nasopharyngeal aspirate, and serum specimens.
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EZ Buffer, 3 mM manganese acetate, 0.3 mM each de-
oxynucleotide triphosphate (except 1.2 mM for dUTP),
0.25 U of AmpErase UNG, 2.5 U of rTth DNA polymerase,
0.8 �M each primer, 0.4 �M each probe, and 10 �L of
extracted RNA (4 �L for the 1-probe assay). The 1-probe
assay was based on a previous report (9 ), but with slight
modifications. Reactions were started by incubation at
50 °C for 2 min, followed by reverse transcription at 60 °C
for 30 min, denaturation at 95 °C for 5 min, and amplifi-
cation comprising 50 cycles of 95 °C for 15 s and 58 °C for
1 min. Calibrators were prepared from a concentrated
RNA stock extracted from a SARS-CoV culture with the
QIAamp Viral RNA Mini Kit (Qiagen) and quantified by
RealArt HPA-Coronavirus LC RT-PCR Kit (Artus) in the
Public Health Laboratory Centre. A no-template control
was included in each run.

As expected, the final fluorescence intensity was up to
twice as high and the threshold cycle number (Ct) smaller
in the dual-probe assay (P2a; Fig. 1A) than in the 1-probe
assay (P1; Fig. 1A) for a given input RNA copy number
per reaction (Fig. 1, C and D). Comparison was made on
the basis of copy number per reaction to account for the
different input RNA volumes for the 2 assays. Moreover,
the calibrator containing 1 RNA copy per reaction was
detected 16 times out of 20 by the dual-probe assay but
only 5 times out of 10 by the 1-probe assay (Fig. 1E). The
improved sensitivity was not attributable to the change in
the forward primer. On the contrary, assay P1a (Fig. 1A),
which used the same forward primer as P2a but only the
same 1 probe as in P1, hardly detected the calibrator
containing 100 copies per reaction although it gave a
calibration curve almost overlapping with that of P1 (Fig.
1E). This simple modification of using dual probes, in-
stead of 1 probe, increased the sensitivity of the assay.

We further investigated the effect on the assay when the
2 probes hybridized to complementary target strands or
to the same strand. In the P2a dual-probe assay, the 2
probes hybridized to complementary strands. In assay
P2b, the 2 antisense probes hybridized to the same sense
target strand, whereas the 2 sense probes in assay P2c
hybridized to the same antisense target strand (Fig. 1A).
Assays P2b and P2c gave the same results as assay P2a
when the same series of calibrators was used. Thus, both
cleavage efficiency and assay sensitivity were not affected
whether the 2 probes were cleaved by the same polymer-
ase molecule (as in assays P2b and P2c) or by 2 different
polymerase molecules (as in assay P2a) for a given pair of
complementary target strands in any single cycle. This in
turn allows more flexible probe design even within a
short stretch of sequences, provided that the 2 probes do
not hybridize to each other.

We analyzed archived RNA samples from 18 SARS
cases that were confirmed during the outbreak: 6 were
extracted from stool (collected 3–21 days after onset of
illness), 6 from nasopharyngeal aspirate (1–9 days after
onset), and 6 from serum (1–10 days after onset). These
RNA samples had previously been assayed by the Artus
assay (concentrations, 7.7 � 101 to 2.1 � 108 per mL of

RNA sample) in the Public Health Laboratory Centre, and
all tested positive with our dual-probe assay P2a (concen-
trations, 6.9 � 101 to 3.7 � 108 per mL of RNA sample; Fig.
1F). This suggests that our dual-probe assay is at least as
sensitive as the Artus assay because both could detect the
SARS-CoV in clinical specimens collected in the early
days after disease onset. To further evaluate the specificity
of the P2a dual-probe assay, we analyzed RNA samples
extracted from confirmed cases of influenza A (n � 10
each for H3N2 and H1N1), norovirus (n � 5), and from 2
other human coronaviruses (OC43 and 229E). All of these
samples tested negative.

With improved RNA extraction methods (10, 11), de-
tection limits of 10 copies per RT-PCR reaction are com-
mon (3, 9, 11–14), and a few studies have reported limits
of detection of 5–8 copies per reaction (15–17). An addi-
tional nested PCR step after RT-PCR (18 ) allowed detec-
tion of 1 copy per reaction but with a much reduced
dynamic detection range (19 ). Use of 2 TaqMan probes,
instead of 1, increases the assay sensitivity without com-
promising the dynamic detection range. Even for an assay
with a detection limit of 1 copy per reaction (20 ), we
speculate that the dual-probe strategy will increase the
signal strengths and hence the assay reproducibility at the
low detection range.

The use of 2 TaqMan probes labeled with 2 different
reporter dyes in a single PCR for qualitative purposes
such as allelic discrimination is well established, in which
each allele-specific probe hybridizes only to an allele-
specific amplicon but not the nonallelic amplicon (21 ). As
far as we are aware, this is the first report describing the
use of 2 TaqMan probes labeled with the same reporter
dye and hybridizing to the same amplicon for quantifica-
tion purposes, which increases the sensitivity of the
quantitative assay per se. Obviously, this strategy is
applicable to both RNA and DNA as the input templates.
This simple modification can also be applied to many
areas in which ultrasensitivity or early detection of the
target nucleic acids is of utmost importance, e.g., infec-
tions (SARS being just one example) and tumors. In-
creased assay sensitivity would counteract the dilution
effect of pooling of donor plasmas for nucleic acid testing
in the screening of transmissible infectious agents in
blood donations (22, 23). Quantification of residual tumor
cells, e.g., leukemic cells, at early remission requires a
sensitive assay (24 ). Very limited amounts of target se-
quences are also encountered in paraffin-embedded tissue
blocks (25 ), ancient specimens (26 ), forensic specimens
taken from crime scenes (26, 27), circulating nucleic acids
(28, 29), and engraftment of sex-mismatched organ trans-
plantation (30 ).

Our preliminary data indicate that the use of 3 probes
did not further enhance the assay sensitivity, but rather
increased the variability between duplicate readings. On
the other hand, it is worth investigating whether the
dual-probe strategy for quantification purposes can be
extended to molecular beacons and hybridization probes.

In conclusion, we report the use of dual TaqMan probes
for quantification purposes and apply it to the detection of
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SARS-CoV with a detection limit of 1 copy RNA per
reaction. This strategy is expected to be applicable to
many areas requiring ultrasensitivity and/or early detec-
tion of target sequences.
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Clinical Relevance of Measurement of Antibodies to
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Westhovens,2 Els Oris,1 Wolfgang Papisch,3 and Xavier
Bossuyt1* (1 Laboratory Medicine and 2 Internal Medicine,
University Hospital Leuven, Leuven, Belgium; 3 Sweden
Diagnostics, Freiburg, Germany; * address correspon-
dence to this author at: Department of Laboratory Medi-
cine, Immunology, University Hospital Leuven, Here-
straat 49, B-3000 Leuven, Belgium; fax 32-13-347042,
e-mail xavier.bossuyt@uz.kuleuven.ac.be)

Anti-ribonucleoprotein (RNP) antibodies are found in
mixed connective tissue disease (MCTD), a syndrome
characterized by features of systemic lupus erythemato-
sus (SLE), inflammatory muscle disease, and scleroderma
(1 ). High titers of anti-RNP antibodies support the diag-
nosis of MCTD, and testing should be ordered when the
diagnosis is suspected (2 ). Anti-RNP antibodies are also
found in rheumatic diseases such as SLE, Sjögren syn-
drome, rheumatoid arthritis, polymyositis, and systemic
sclerosis (2 ).
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