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Abstract The coronavirus membrane protein (M) is the key
player in the assembly of virions at intracellular membranes be-
tween endoplasmic-reticulum and Golgi-complex. Using a newly
established human monoclonal anti-M antibody we detected gly-
cosylated and nonglycosylated membrane-associated M in severe
acute respiratory syndrome-associated coronavirus (SARS-
CoV) infected cells and in purified virions. Further analyses
revealed that M contained a single N-glycosylation site at aspar-
agine 4. Recombinant M was transported to the plasma
membrane and gained complex-type N-glycosylation. In
SARS-CoV infected cells and in purified virions, however, N-gly-
cosylation of M remained endoglycosidase H-sensitive suggest-
ing that trimming of the N-linked sugar side chain is inhibited.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The outbreak of a new highly pathogenic severe acute respi-

ratory syndrome (SARS) in 2002/2003 in Asia led to the iden-

tification of a new virus (SARS-CoV) which was classified in

the family coronaviridae [1–3]. The coronavirus glycoprotein

M is the most abundant protein of the viral particle and plays

a crucial role in assembly and budding of virions [4–8]. In silico

analysis suggested that SARS-CoV M consists of a long cyto-

plasmic tail, three transmembrane segments and a short N-ter-

minal ectodomain harbouring one potential N-glycosylation

site. To characterize SARS-CoV M, we took advantage of a

human monoclonal antibody (S30) derived from Epstein-Barr

virus-immortalized memory B-cells of a SARS convalescent

[9]. In this study, we applied immunofluorescence analyses

and biochemical approaches to investigate glycosylation and

intracellular distribution of SARS-CoV M in infected cells

and after recombinant expression.
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2. Materials and methods

2.1. Plasmids
Sequences encoding the SARS-CoV M gene (Frankfurt strain) were

amplified by PCR using forward-primer 5 0-CGGAATTCATGGCA-
GACAACGGTACTATTACCG-3 0 and reverse-primer 5 0-CGAGG-
ATCCTTACTGTACTAGCAAAGCAATATTG-30 and the plasmid
pBluescript-M as template. The PCR fragment and the plasmid
pTM1 were cut with EcoRI and BamHI and ligated to generate the
plasmid pTM1-M, where M is under the control of the T7 RNA poly-
merase promoter. pTM1-MN4Q was generated by site-directed
mutagenesis (Quick change, Stratagene) using forward-primer 5 0-
GCCACCATGGCAGACCAAGGTACTATTACCG-3 0 and reverse-
primer 5 0-CGGTAATAGTACCTTGGTCTGCCATGGTGGC-3 0

and pTM1-M as a template.
The sequences encoding the Flag epitope were cloned either to the

N- or the C-terminus of M. The fragments were amplified by PCR
using forward-primer 5 0-CCGGAATTCATGGACTACAAGGA
CGACGATGACAAGGCAGACAACGGTACTATTACCGTTG-3 0

and reverse-primer 5 0-CGAGGATCCTTACTGTACTAGCAAAG-
CAATATTG-30 (pTM1-N-Flag-M) and forward-primer 50-CGGAAT-
TCATGGCAGACAACGGTACTATTACCG-3 0 and reverse-primer
5 0-CGAGGATCCTTACTTGTCATCGTCGTCCTTGTAGTCCTG-
TACTAGCAAAGCAATATTGTCGTTGC-3 0 (pTM1-C-Flag-M)
and cloned into pTM1 as described above.

2.2. Cell culture and virus
BHK-T7, Vero, and Huh7 cells were grown as monolayer cultures at

37 �C and 5% CO2 in Dulbecco’s modified Eagles Medium (DMEM,
Gibco) supplemented with 10% foetal calf serum (FCS), 100 U/ml pen-
icillin, and 0.1 mg/ml streptomycin. Vero cells were infected with
SARS-CoV (Frankfurt strain) at a multiplicity of infection of approx-
imately 0.1. Released virus was purified by centrifugation through a
20% sucrose cushion.

2.3. Western blot analysis
Pelleted virions were resuspended in PBS and aliquots were sepa-

rated by 10% SDS–PAGE and blotted onto polyvinylidene difluoride
membrane, which was then incubated either with serum of a SARS-
CoV convalescent patient (dilution 1:100) or with S30-antibody (dilu-
tion 1:10). Bound antibodies were detected using POD-coupled donkey
anti human IgG (dilution 1:20000) and visualized using the SuperSig-
nal chemiluminescence substrate as described by the supplier (Pierce,
Rockford, USA).

2.4. In vitro transcription/translation assay
pTM1-M and pTM1-MN4Q were employed in the TNT T7 quick

coupled reticulocyte lysate system (Promega) according to the suppli-
ers prescription. The proteins were metabolically labelled with
[35S]methionine (GE Healthcare) and translated in the presence or ab-
sence of canine pancreatic microsomal membranes (Promega). Mem-
brane-bound proteins were pelleted at 13000 rpm for 15 min and
resuspended in PBS. Samples were split into three aliquots and
blished by Elsevier B.V. All rights reserved.
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incubated for 1 h at 37 �C either with proteinase K (Sigma; 0.15 lg/ll),
or additionally with 1% Triton X-100. Proteinase K was inactivated by
PMSF and the samples were subjected to SDS–PAGE. Radioactive
signals were visualized by exposing dried gels to BioImage plates,
which were scanned by using a bioimager analyser (BAS-1000; Fuji).
For immunoprecipitation analysis, in vitro translated M was preincu-
bated with protein-A-Sepharose (Sigma) for 1 h at 4 �C in Tris/KCl
buffer and thereafter precipitated using S30-antibody (dilution 1:10)
and protein-A-Sepharose.

2.5. Pulse-chase experiments and endoglycosidase (Endo) H and

peptide-N-glycosidase (PNGase) F treatment
BHK-T7 cells in 7 cm2 wells were transfected with M-encoding plas-

mids using Lipofectamine Plus reagent (Life technologies) according to
the manufacturer’s instructions. At 24 h post transfection (p.t.), cells
were starved for 30 min using methionine- and cysteine-deficient
DMEM and metabolically labeled with [35S]Promix (60 lCi) for
30 min. After labelling, cells were washed with DMEM and lysed at
the indicated time with lysis buffer (20 mM Tris/HCl pH 7.6,
100 mM sodium chloride, 0.4% deoxycholic acid, 1% NP-40, 5 mM
EDTA, 25 mM iodacetamide, 1 mM PMSF, and 1 mM DTT). Cell ly-
sates were subsequently sonicated and cell debris was pelleted at 13000
rpm for 15 min. Supernatants were preincubated with protein A-Se-
pharose for 1 h at 4 �C. Immunoprecipitation analysis was performed
using S30-antibody (dilution 1:10) and protein A-Sepharose. One third
of a sample was subjected for 1 h at 37 �C to Endo H- or PNGase F-
Fig. 1. Characterization of human monoclonal anti-M antibody (S30) and
SARS-CoV were separated by 10% SDS–PAGE, and subjected to Western blo
(B) Purified viral proteins were treated with Endo H or PNGase F, and subj
described above. Lane 1, purified SARS-CoV without treatment; lanes 2 and
and the mutated MN4Q were in vitro translated in the presence (lanes 2 and 3
was performed using S30-antibody (lane 4). (D) M was in vitro translated in
were treated without (lane 1), with proteinase K (lane 2), and with proteina
SDS–PAGE.
digestions (both from New England Biolabs), respectively. The sam-
ples were then subjected to SDS–PAGE and analyzed by autoradiog-
raphy as described above.
Vero cells were infected with SARS-CoV (Frankfurt strain) at a mul-

tiplicity of infection of approximately 1 plaque forming unit per cell or
mock infected. At 24 h p.i., pulse-chase-experiments and subsequent
Endo H- and PNGase F-treatment were performed as described above.

2.6. Immunofluorescence analysis
Subconfluent Huh-7-cells were transfected with pTM1-M and differ-

ent plasmids expressing ER-, Golgi-, or endosomal-specific marker
proteins, respectively, fused to enhanced cyan fluorescent protein (Liv-
ing Colors� Subcellular Localization Vectors, Clontech; pCFP-ER,
pCFP-Golgi, and pCFP-Endo;) using Fugene 6 (Roche) according to
manufacturers’ instructions. The overall amount of transfected plas-
mids was held constant by adding vector (pTM1). At 24 h p.t., cells
were washed with DMEM, fixed with 4% PFA/DMEM for 15 min,
and permeabilized for 10 min with 0.1% Triton X-100. After blocking
with 3% BSA/PBS, the cells were incubated with the S30-antibody
(dilution 1:10) and then with the secondary goat anti-human rhoda-
mine-coupled antibody (Dianova). ERGIC was detected using a
mouse monoclonal anti-ERGIC-53 antibody and an anti-mouse
FITC-labelled secondary antibody. Microscopic analysis was per-
formed using an Axiomat fluorescence microscope (Zeiss). SARS-
CoV-infected Vero cells were fixed and permeabilized at 24 h p.i. and
subjected to immunofluorescence analysis as described above.
analysis of glycosylation of SARS-CoV M. (A) Proteins of purified
t analysis using human serum (lane 1) or anti-M antibody S30 (lane 2).
ected to SDS–PAGE and Western Blot analysis using S30-antibody as
3, SARS-CoV digested with Endo H or PNGase F, respectively. (C) M
) or absence (lane 1) of microsomal membranes. Immunoprecipitation
the presence of pancreatic microsomes and membrane-bound proteins
se K and 1% Triton X-100 (lane 3) and the samples were subjected to
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Flag-tagged mutants of M were expressed in subconfluent Huh-7-
cells by transfection of pTM1-N-Flag-M or pTM1-C-Flag-M and the
plasmid pCAGGS-T7, which expresses the phage T7 DNA-dependent
RNA-polymerase, using Fugene 6 according to manufacturers’ instruc-
tions. At 24 h p.t., cells were put on ice and then successively incubated
with a polyclonal anti-Flag antibody (Sigma, dilution 1:200) and a sec-
ondary anti-rabbit rhodamine-coupled antibody (Dianova). Then, fixed
and permeabilized cells were additionally incubated for 1 h with a rabbit
polyclonal anti-Flag antibody and a FITC-coupled secondary anti-rab-
bit antibody (Dianova) at room temperature. Confocal images were
generated using laser scanning microscope 510 META (Zeiss).
3. Results and discussion

In Western blot analysis of purified virions, S30 recognized

two viral structural proteins with an approximate molecular

mass of 22 and 27 kDa (Fig. 1A, lane 2). The two proteins were

also recognized by the serum of a convalescent (Fig. 1A, lane

1). Based on the molecular weight, it was suggested that these

bands represented two different forms of M. Upon treatment

of SARS-CoV structural proteins with Endo H and PNGase

F, the 27 K-band disappeared while the migration pattern of

the 22 K-band was unaltered (Fig. 1B, lanes 2 and 3). To verify

the specificity of S30, M was in vitro translated from a plas-

mid, pTM1-M. In the absence of canine pancreatic micro-

somes in the translation reaction, one protein could be

detected migrating at 22 kDa. Expression of M in the presence

of microsomes gave rise to an additional protein with an

apparent molecular mass of 27 kDa (Fig. 1C, lanes 1 and 2).
Fig. 2. Immunoprecipitation of recombinant M and M in SARS-CoV infecte
lysed at the indicated time. Immunoprecipitation was performed using S30-
subjected to SDS–PAGE and analyzed by autoradiography as described abo
were performed as described above.
Both forms of M could be precipitated using S30 and pro-

tein-A sepharose (Fig. 1C, lane 4). Next, asparagine at position

four of M was substituted by glutamine and the protein was

expressed in the presence of microsomes which led to only

one protein product migrating at 22 kDa (Fig. 1C, lane 3).

These results demonstrated that SARS-CoV M is exclusively

N-glycosylated at asparagine 4 and, in addition, a nonglyco-

sylated M is incorporated into the virion.

To analyze whether the nonglycosylated form of M (22 kDa)

was soluble or attached to lipid membranes, we performed

proteinase K-digestion of M, which was in vitro translated in

the presence of membranes. This treatment led to a shift of

both M-specific bands to 18 and 23 kDa, respectively, suggest-

ing that glycosylated and nonglycosylated M are partially pro-

tected against the proteinase K digestion (Fig. 1D, lanes 1 and

2). The molecular weight of the two proteolytic peptides was

slightly larger than expected if the complete cytoplasmic do-

main (�11 kDa) was removed. Possibly, hydrophobic residues

located near the third transmembrane domain are peripherally

attached to the microsomal membrane and thereby protected

against protease treatment [4]. The addition of the detergent

Triton X-100 to the protease K digestion led to the complete

proteolysis of both forms of M (Fig. 1D, lane 3). These results

are consistent with the presumption of a long cytoplasmic do-

main of M. The potential Nexo–Cexo-topology of TGEV-M

[10,11] seems not to appear in M of SARS-CoV.

To investigate intracellular glycosylation of recombinant

M, BHK-T7 cells were transfected with the M-encoding
d cells. (A) M-expressing BHK-T7 cells were metabolically labeled and
antibody. The samples were treated with Endo H- or PNGase F, and
ve. (B) Pulse-chase experiment of M in SARS-CoV-infected Vero cells



Fig. 3. Intracellular distribution of recombinant M and of M in
SARS-CoV-infected cells. (A) M-expressing (left panel) or SARS-
CoV-infected Vero cells (right panel) were incubated with S30-
antibody. Bound antibody was detected using a FITC-coupled
anti-human antibody. (B) Huh-7 cells simultaneously expressing M
and different self-fluorescent subcellular marker proteins were incubated
with S30-antibody to monitor intracellular distribution of M. ERGIC
was detected using a mouse monoclonal anti-ERGIC-53 antibody.
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plasmid, metabolically labelled for 30 min and subsequently

chased for the indicated time. Cell lysates were analysed by

immunoprecipitation using S30-antibody and SDS–PAGE

(Fig. 2A). Right after labelling both, glycosylated and non-

glycosylated M was detectable (lane 4). The amount of non-

glycosylated M remained constant throughout the chase

period whereas the level of Endo H-sensitive M decreased

(Fig. 2A ‘‘MER’’). Concomitantly, Endo H-resistant forms

ranging from 29 to 35 kDa appeared and their amount in-

creased during the chase (Fig. 2A ‘‘MGolgi’’). This result sug-

gested that upon recombinant expression, glycosylated M is

transported through ER and Golgi-complex and gains com-

plex-glycosylated sugar side chains a result, which confirmed

data presented by Nal et al. Expanding their experimental ap-

proach, we were able to avoid any effect of epitope tags on

the distribution and posttranslational modification and fur-

ther to analyse the glycosylation and transport of M in the vir-

al context using the M-specific human monoclonal antibody.

To this end, Vero cells were infected with SARS-CoV and

pulse-chase experiments were performed under BSL-4 condi-

tions as described before (Fig. 2B). During the chase, the ratio

between nonglycosylated and glycosylated M remained con-

stant, and no Endo H-resistant forms appeared (Fig. 2B, lanes

4–21) suggesting that processing of N-linked glycans is pre-

vented in SARS-CoV-infected cells. Completely synthesized

membrane associated nonglycosylated M is no target for N-

linked glycosylation suggesting that the protein has been trans-

ported out of the ER. This is underlined by the finding that

nonglycosylated M is incorporated into the virion. This indi-

cated that glycosylation of M is neither a prerequisite for intra-

cellular transport nor for recruitment into virions which has

been shown previously for other coronavirus M proteins

[4,12–14].

To check whether different localization of recombinant M

and M in SARS-infected cells could explain the different glyco-

sylation pattern, we examined the respective intracellular local-

ization of M by immunofluorescence analysis. Incubation of

fixed SARS-CoV-infected Vero cells with the S30-antibody

led to a perinuclear, dot-like staining pattern which was indic-

ative for Golgi-complex localization (Fig. 3A, right panel).

Upon recombinant expression in Vero cells (Fig. 3A, left pa-

nel), the distribution of M seemed to be the same as in infected

cells.

To identify the intracellular M-positive compartment, we co-

expressed M with fusion proteins consisting of enhanced cyan

fluorescent protein (ECFP) and ER- [15,16], Golgi- [17–19], or

endosomal-specific targeting sequences [20] and detected M

using S30 in immunofluorescence analysis. Alternatively, M

expressing cells were incubated with an anti-ERGIC (ER-Gol-

gi-intermediate-compartment) antibody and S30 and respec-

tive fluorescently labelled secondary antibodies. While the

signals for M and Golgi-marker or ERGIC strongly colocal-

ized, no or only a partial colocalization was observed with

ER- or endosomal-marker (Fig. 3B). These results are in line

with previous studies on SARS-CoV [21] and other coronavi-

ruses [22–24], showing that recombinant M is enriched in the

Golgi-complex region. It is therefore presumed that differences

in Endo H sensitivity of M in transfected and infected cells are

not caused by a different intracellular distribution. More likely,

trimming of the sugar side chain was prevented in the infected

cell by the presence of S which sterically hindered the access of

glycosidases. Results from Opstelten et al., showing that S and
M of mouse hepatitis virus interact during the assembly of

progeny, point into this direction [4,7,25,26].

To explore whether M is completely retained in the Golgi-

complex, we performed immunofluorescence studies of cells

expressing N- or C-terminally FLAG-tagged M (N-Flag-M,

C-Flag-M). 24 h p.t. the transfected cells were incubated with

a rabbit a-Flag and with a rhodamine-coupled a-rabbit anti-
body at 4 �C. Subsequently, the cells were fixed, permeabilized

and stained with the a-Flag antibody followed by FITC-conju-

gated secondary antibody to detect intracellular M. N-Flag-M

was recognized at the surface and intracellularly (Fig. 4, upper

panels). The C-Flag-M, however, was only detectable in per-

meabilized cells confirming the intactness of the plasma mem-

brane during the staining procedure and that the C-terminus

of M, indeed, faces the cytoplasm (Fig. 4, lower panels). These



Fig. 4. Confocal microscopy analysis of M-expressing cells. Huh-7-
cells were transfected with pTM1-N-Flag-M and pTM1-C-Flag-M,
respectively. Detection of M at the plasma membrane. Native cells
were incubated with a anti-Flag antibody and a rhodamine-coupled
secondary antibody (left column). Then, cells were fixed and perme-
abilized and additionally incubated with an anti-Flag antibody and a
FITC-coupled secondary antibody (middle column). Upper panels, N-
Flag-M expressing cells; lower panels, C-Flag-M expressing cells.
Confocal images were generated using laser scanning microscope 510
META (Zeiss).
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results indicated that singly expressed M is transported to the

cell-surface and confirmed the results of the complex-type N-

glycosylation analyses. Nevertheless, although plasma mem-

brane transport took place, the steady state localization of

M was the Golgi-complex. Further experiments have to eluci-

date whether M in SARS-CoV-infected cells is also trans-

ported to the plasma membrane like M of TGEV [27].

Taken together, our results confirm existing data showing

that recombinant SARS-CoV M protein is N-glycosylated

and located at steady state in the Golgi apparatus. Our results

extend existing data in showing that Asp at position 4 is the

only glycosylation attachment site of M and the recombinant

protein is transported to the plasma membrane. Due to un-

known reasons, M in SARS-CoV infected cells is not complex

glycosylated. Both, recombinant and virion incorporated M is

also present in a nonglycosylated form. Future studies have to

clarify the significance of nonglycosylated, virion incorporated

M for e.g. induction of IFN-a/b in SARS-CoV-infected cells

[28] or the release of cytokines during infection [29].
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