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Abstract
Background: SARS coronavirus (SARS-CoV) is the etiologic agent of the severe acute respiratory
syndrome. SARS-CoV mainly infects tissues of non-lymphatic origin, and the cytokine profile of
those cells can determine the course of disease. Here, we investigated the cytokine response of
two human non-lymphatic cell lines, Caco-2 and HEK 293, which are fully permissive for SARS-
CoV.

Results: A comparison with established cytokine-inducing viruses revealed that SARS-CoV only
weakly triggered a cytokine response. In particular, SARS-CoV did not activate significant
transcription of the interferons IFN-α, IFN-β, IFN-λ1, IFN-λ2/3, as well as of the interferon-
induced antiviral genes ISG56 and MxA, the chemokine RANTES and the interleukine IL-6.
Interestingly, however, SARS-CoV strongly induced the chemokines IP-10 and IL-8 in the colon
carcinoma cell line Caco-2, but not in the embryonic kidney cell line 293.

Conclusion: Our data indicate that SARS-CoV suppresses the antiviral cytokine system of non-
immune cells to a large extent, thus buying time for dissemination in the host. However, synthesis
of IP-10 and IL-8, which are established markers for acute-stage SARS, escapes the virus-induced
silencing at least in some cell types. Therefore, the progressive infiltration of immune cells into the
infected lungs observed in SARS patients could be due to the production of these chemokines by
the infected tissue cells.

Background
For most viruses, the initial encounter with the host takes
place in cells of non-lymphatic origin. The outcome of
this primary infection can determine the course of disease,
and the cytokine response of the infected cell plays a vital
part. Type I interferons (IFN-α/β) are potent, antivirally
active cytokines which can be produced by most, if not all,
body cells in response to virus infection. IFNs not only
trigger the synthesis of antivirally active proteins, they also
activate the innate immune system and help to shape
adaptive immunity [1]. Other virus-induced cytokines

and chemokines activate the adaptive immune system
and direct the migration of leukocytes [2]. Viruses, on the
other hand, have evolved various mechanisms to counter-
act the host's cytokine response [3], and their ability to
induce or inhibit cytokine production in infected cells has
direct consequences for the balance between host defense
and virus propagation.

SARS coronavirus (SARS-CoV) is the etiologic agent of
severe acute respiratory syndrome (SARS), a life-threaten-
ing new human disease which recently emerged in China
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[4-7]. Characteristic SARS symptoms are high fever, myal-
gia, dry cough and lymphopenia, and in around 30% of
cases patients also developed an atypical form of pneu-
monia [8].

The mechanisms underlying SARS-CoV-mediated patho-
genesis remain largely unexplained. Autopsies from
deceased patients revealed severe damage of the lungs and
lymphatic tissues, accompanied by infiltrations of mono-
cytic cells [9-11]. This may indicate that immunopatho-
genesis is involved in the severe outcome of the disease,
providing the rationale for SARS therapy with immuno-
suppressant corticosteroids [12]. On the other hand, there
is evidence that cell damages could be directly caused by
the virus, since SARS-CoV is cytolytic [13] and capable to
systemically infect human hosts [14-16]. In addition,
virus particles and signs of necrosis were found in affected
tissues [11], and high viral loads are predictive of adverse
clinical outcome [17]. Interestingly, however, the acute
lung injuries and respiratory failure observed in severe
cases occured while viral loads were declining [16], again
favouring the hypothesis of immune-mediated lung dam-
age.

Virus-induced cytokines not only play a significant role in
host defense, but also in immunopathogenesis. Investiga-
tions of the cytokine profiles of SARS patients have shown
that the proinflammatory cytokines and chemokines IL-6,
IL-8 and IP-10 (CXCL10) are strongly upregulated [18-
23]. Cell culture studies, by contrast, did not reveal a clear
picture of SARS-CoV-induced cytokines. In some cases

both IL-8 and IP-10 were upregulated [24], whereas in
other cases either only IL-8 [25,26], only IP-10 [27], or no
cytokines were induced at all [28]. IL-6 was only moder-
ately upregulated [29], or not detected at all [24-26]. Thus,
it is still unclear whether the cytokine storm in SARS
patients was directly caused by the virus, i.e. produced by
SARS-CoV-infected cells, or whether it is a secondary
effect, i.e. the result of strong activation of the immune
system.

With one notable exception [24], most studies investigat-
ing the cellular cytokine response to SARS-CoV were
either based on immune cells [25,27-29] or on Huh7
hepatoma cells inoculated with unphysiologically high
amounts of virus [26]. Thus, the overall picture of the
cytokine response of non-immune cells, which are most
probably the prime targets of SARS-CoV, may still be
incomplete. To learn more about it, a human cell line
would be needed which, on one hand, can support the
complete viral replication cycle, but on the other hand is
also able to produce cytokines which are potentially anti-
viral. However, most cell lines which are permissive for
SARS-CoV have lost the ability to synthesize IFNs, the
most potent antiviral cytokines [24,30,31]. In this study,
we identified an IFN-competent human embryonic kid-
ney (HEK) 293 cell clone which supports the growth of
SARS-CoV. Using these cells as well as the established
human colon carcinoma cell line Caco-2 [24,31], we
investigated the SARS-CoV-induced production of repre-
sentative cytokines, chemokines and antiviral genes. Our
studies revealed that SARS-CoV is capable to suppress the
antiviral cytokine response of infected cells to a large
extent. Interestingly, however, induction of the chemok-
ines IP-10 and IL-8 escaped suppression by SARS-CoV in
Caco-2 cells, but not in HEK 293s. Thus, SARS-CoV effi-
ciently blocks the innate host cell defense at a very early
step of infection, buying time to colonize the host. With
the possible exception of IP-10 and IL-8, most cytokines
detected in SARS patients may therefore be produced by
the infiltrating immune cells, and not by the resident tis-
sue cells. These data may help to explain both the rapid
rise in virus titers during the initial stage of disease, caused
by the suppression of antiviral cytokines, as well as the
progressive infiltration of immune cells into the infected
lungs, which could be due to the production of chemok-
ines by the infected tissue cells.

Results
Growth of SARS-CoV in different cell lines
Vero cells, which are standard for growth of SARS-CoV
[30,31], lack type I IFN genes [32,33] and therefore are
not suitable for cytokine analyses. In search of an appro-
priate in vitro system, we tested several IFN-competent
human cell lines for SARS-CoV growth and identified a
low-passage clone of HEK 293 cells [34] as being fully per-

Virus titersFigure 1
Virus titers. Simian Vero cells (white bars), human Caco-2 
cells (grey bars), and human low-passage HEK 293 cells 
(black bars) were infected at a multiplicity of infection (MOI) 
of 5 infectious particles per cell. Virus titers in the superna-
tants were determined 24 h post-infection and 48 h post-
infection by plaque assays.
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missive. Fig. 1 shows that titers of HEK 293 cells and Vero
cells were comparable and rather high already at 24 h
post-infection. Caco-2 cells, by contrast, produce approx-
imately 100-fold less virus at 24 h post-infection, and 10-
fold less at 48 h post-infection (Fig. 1). Thus, we consid-
ered both the Caco-2 cells and the low passage HEK 293
cells as useful systems for studying the influence of SARS-

CoV on the immune system-independent induction of
cytokines.

Interferon genes and their antiviral effectors
To properly assess the cytokine profile of SARS-CoV infec-
tion, we compared it with well-characterized cytokine
inducers such as Bunyamwera delNSs virus (BdNSs [35]),

Interferon production by virus-infected human cellsFigure 2
Interferon production by virus-infected human cells. Caco-2 cells (A) and HEK 293 cells (B) were infected with SARS-
CoV or the IFN-inducing control viruses Bunyamwera delNSs (BdelNSs), Sendai virus (SeV), Newcastle disease virus (NDV), 
or were left uninfected (mock). At 8 h (left panels) or at 16 h (right panels) post-infection, total RNA was isolated and investi-
gated by RT-PCR for the presence of different IFN mRNAs. The cellular γ-actin mRNA served as loading control. Note that for 
the reliable detection of IFN-α in Caco-2 cells (A, upper right panel) the infection time had to be extended to 24 h.
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Sendai virus (SeV) and Newcastle disease virus (NDV). In
addition, we deemed it necessary to monitor cytokine syn-
thesis both at 8 h and at 16 h post-infection, since we pre-
viously found a striking difference between the early and
the late host cell response to SARS-CoV [36].

The first set of tested cytokines comprised the classical
antiviral cytokines IFN-α and IFN-β [1], and the novel
interferons IFN-λ1 and IFN-λ2/3 [37]. To test their induc-
tion in cell culture, we infected with 5 plaque-forming
units (pfu) of viruses per cell, and analyzed cytokine
mRNAs by RT-PCR. As it is shown in (Fig. 2A and 2B),
clear signals for all IFNs were detected after infection with
the control viruses BdNSs, SeV and NDV. For SARS-CoV,
by contrast, only a weak signal for IFN-α was detected in
HEK 293 cells, and none for IFN-β or the IFN-λs in either
cell line. All preparations contained similar amounts of
input RNA, since the γ-actin control mRNA was present in
equal amounts (Fig. 2A and 2B, lower panels). It was of
interest to see whether virus infection would lead to the
upregulation of antiviral, IFN-stimulated genes (ISGs). As

specific and sensitive markers we used the ISG56 gene
which is induced both by IFNs and by virus infection
[38,39] and the MxA gene which is exclusively activated
by IFNs [40]. As is evident from Fig. 3, no significant ISG
induction occurs for SARS-CoV, whereas the control
viruses activated ISG expression. Note that SeV blocks in
HEK 293 cells the synthesis of IFN-α (see Fig. 2B, upper
right panel) and of MxA (Fig. 3B, lower right panel), most
probably because of its ability to inhibit IFN-induced sig-
naling [41]. Curiously, this does not happen in Caco-2
cells (Fig. 3A, lower right panel), suggesting cell type-spe-
cific differences in cytokine signaling.

Taken together, these data demonstrate that, in contrast to
the other viruses tested, SARS-CoV suppresses the activa-
tion of the antiviral IFNs and the IFN-induced effector
genes to a large extent.

Induction of chemokines by infected cells
IP-10 and RANTES are potent chemoattractants for acti-
vated T cells and NK cells [2]. When we infected Caco-2

Interferon-stimulated genesFigure 3
Interferon-stimulated genes. RNA samples of Caco-2 cells (A) and HEK 293 cells (B) described in Fig. 2 were investigated 
by RT-PCR for the presence of ISG56 and MxA mRNAs. As for IFN-α (see Fig. 2A), for detection of MxA mRNA in Caco-2 
cells an extended infection period of 24 h was necessary (A, lower right panel).
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cells, significant amounts of IP-10 mRNA were synthe-
sized (Fig. 4A, upper panels). This strong upregulation
occurred independently of the virus, suggesting a general
response to virus infection. Although IP-10 mRNA levels
induced at 16 h p.i. by SARS-CoV are slightly lower than
by the other viruses, our data are in good agreement with
previous studies [24,27]. Induction of RANTES, by con-
trast, was restricted to the cytokine-inducing viruses,
whereas infection with SARS-CoV had no effect above
background levels (Fig. 4A, lower panels). We then tested
HEK 293 cells in a similar way. Much to our surprise, IP-
10 mRNA was not detectable early after infection with
SARS-CoV (Fig. 4B, upper left panel), and only very
weakly expressed after longer infection (Fig. 4B, upper
right panel).

RANTES mRNA again was not detectable for SARS-CoV
(Fig. 4B, lower panels). All three cytokine-inducing
viruses activated IP-10 and RANTES expression in HEK
293 cells as expected (Fig. 4B, upper and lower panels).

Thus, SARS-CoV induces IP-10 gene expression in Caco-2
cells, but not in HEK 293 cells, again suggesting that the

cytokine response is dependent on the host cell type.
RANTES expression, by contrast, is never induced by
SARS-CoV, although the cells respond normally to other
viruses.

Induction of IL-6 and IL-8
The proinflammatory cytokine IL-6 and the chemokine
IL-8 are strongly upregulated in SARS patients [18,19], but
from cell culture studies no clear picture emerged [24-
26,29]. We investigated IL-6 and IL-8 production by Caco-
2 and HEK 293 cells infected with SARS-CoV and com-
pared it with the other RNA viruses. As shown in Fig. 5, IL-
6 is induced only weakly by SARS-CoV, independent of
the cell line used (Fig. 5A and 5B, upper panels). IL-8, by
contrast, is clearly induced by SARS-CoV in Caco-2 cells,
but not in HEK 293 cells (Fig. 5A and 5B, lower panels).
The control viruses invariably induced both IL-6 and IL-8,
demonstrating that the cell lines are capable to produce
these cytokines.

Thus, SARS-CoV strongly induces IL-8, but not IL-6 in a
cell-type dependent manner. This may suggest that the IL-
8 detected in SARS patients [18,19] is directly synthesized

Chemokine productionFigure 4
Chemokine production. RNA samples of Caco-2 cells (A) and HEK 293 cells (B) described in Fig. 2 were assayed by RT-
PCR for IP-10 and RANTES mRNA levels.
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by infected resident cells, whereas IL-6 is more likely a sec-
ondary response mediated by infiltrating immune cells.

Taken together, our data demonstrate that SARS-CoV in
general is a weak inducer of cytokines and antiviral genes
in non-lymphatic cells. Chemokines like IP-10 and IL-8,
however, can be directly upregulated in SARS-CoV in a
cell-type-dependent manner.

Discussion
The activation of immune-relevant cytokines and host cell
genes by SARS-CoV in cells and patients was the subject of
several previous investigations [18,21,22,24-29,42-44].
However, most of the cell culture studies were either
based on immune cells which do not represent the major-
ity of infected cells [25,27-29], or on Huh7 hepatoma
cells which needed to be infected with 100 pfu per cell, i.e.
with unphysiologically high amounts of virus [26]. More-
over, Huh7 cells are known to be deficient in the antiviral
cytokine response [45]. Thus, it was not entirely clear
whether the patients' cytokine response was caused by

virus-infected cells, or whether it was mediated by the acti-
vated immune system. Furthermore, it was not systemati-
cally investigated how the cytokine induction by SARS-
CoV compares to other viruses. Here, we have used three
control viruses and two different cells lines to elucidate
and compare the induction of cytokines by SARS-CoV.
Our results demonstrate that SARS-CoV does not induce
significant amounts of IFNs, antiviral genes, RANTES, and
IL-6. In agreement with this finding, SARS-CoV-infected
macrophages and dendritic cells lack IFN induction
[27,29]. IP-10 and IL-8, however, can be activated by
SARS-CoV. This suggests that these chemokines, which are
reliable markers of acute-stage SARS [18,20,21,23], are
not only produced in response to IFN-γ after activation of
the immune system as suggested, but may also be directly
secreted by infected tissue cells. An upregulation of either
IP-10 and/or IL-8 was observed in several studies using
SARS-CoV-infected Caco-2 cells [24], macrophages [27],
peripheral blood mononuclear cells [25], and dendritic
cells [29]. Using HEK 293 cells, by contrast, we found that
SARS-CoV is able to downregulate also IP-10 and IL-8 pro-

Interleukin productionFigure 5
Interleukin production. RNA samples of Caco-2 cells (A) and HEK 293 cells (B) described in Fig. 2 were investigated by RT-
PCR for the presence of IL-6 and IL-8 mRNAs.
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duction. Similarly, recent studies showed that peripheral
blood monocytes from SARS patients do not produce any
cytokines [28]. Thus, chemokine induction by SARS-CoV
appears to be highly cell type-specific.

With the exception of IP-10 and IL-8, SARS-CoV is capable
to suppress the production of a wide range of cytokines.
This is in agreement with our previous finding that SARS-
CoV inhibits the crucial cytokine transcription factor IRF-
3 [36], providing a possible mechanism for the high
potential of this pathogen to suppress the host response.
Of note, SARS-CoV is highly sensitive to the antiviral
action of IFNs both in vivo and in vitro [46-51], thus
explaining why the virus needs to suppress IFN induction
in advance.

Conclusion
In the initial phase of SARS, the virus grows exponentially
and spreads to different organs, including the lungs
[8,14]. Our data may explain this rapid and efficient dis-
semination of SARS-CoV. By slowing down expression of
IFNs and their antiviral genes in the infected tissue cells,
the virus buys time during the initial, critical phase of
infection in order to grow unhindered in the host. At the
same time, however, the virus-induced chemokines IP-10
and IL-8 attract immune cells. Possibly, this mixture of
high-level virus replication followed by the invasion of
activated immune cells results in a strong inflammatory
response, leading to a cytokine storm and the severe and
potentially fatal respiratory distress which is the hallmark
of full-blown SARS.

Methods
Cells and viruses
Simian VeroE6 cells, human Caco-2 cells and human
embryonic kidney (HEK) 293 cells were maintained and
grown as described [24,36]. The low-passage HEK 293 cell
clone [34] was purchased from Microbix Biosystems,
Toronto, Canada. All experiments were performed with
HEK 293 cells between passage 38 and 48. The FFM-1 iso-
late of SARS-CoV was kindly provided by Stephan Becker,
University of Marburg, Germany. Bunyamwera delNSs
virus [35], Sendai virus and Newcastle disease virus were
used as controls.

Plaque assays
Virus plaque assays were performed as described previ-
ously [50]. Briefly, Vero cell monolayers were infected
with dilutions of supernatants from infected cells, over-
laid with soft agar, and allowed to form plaques for 72 h.
Then the agar overlay was removed and cells were stained
with a solution of 1% crystal violet, 3,6% formaldehyde,
1% methanol, and 20% ethanol.

RT-PCR analyses
Cells were infected for the indicated times, total RNA was
extracted and treated with DNase I. For reverse transcrip-
tion (RT), 1 µg of RNA was incubated with 200 U of
Superscript II reverse transcriptase (Invitrogen) and 100
ng random hexanucleotides in 20 µl of 1×RT buffer (Inv-
itrogen) supplied with 1 mM each of the four deoxynucle-
otide triphosphates, 20 U of RNasin, and 10 mM
dithiothreitol. The resulting cDNA was amplified by 35
cycles of PCR, with each cycle consisting of 30 sec at 94°C,
1 min at 58°C (using primer pairs specific for IP-10, IL-6,
IL-8 and RANTES) or at 56°C (all other primer pairs), and
1 min at 72°C, followed by 10 min at 72°C. Primer
sequences are available from the authors upon request.
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