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Summary. Bovine coronavirus (BCoV) causes enteric and respiratory dis-
orders in calves and dysentery in cows. In this study, 51 stool samples of calves
from 10 Brazilian dairy farms were analysed by an RT-PCR that amplifies a
488-bp fragment of the hypervariable region of the spike glycoprotein gene.
Maximum parsimony genealogy with a heuristic algorithm using sequences from
15 field strains studied here and 10 sequences from GenBank and bredavirus
as an outgroup virus showed the existence of two major clusters (1 and 2) in
this viral species, the Brazilian strains segregating in both of them. The mean
nucleotide identity between the 15 Brazilian strains was 98.34%, with a mean
amino acid similarity of 98%. Strains from cluster 2 showed a deletion of 6
amino acids inside domain II of the spike protein that was also found in human
coronavirus strain OC43, supporting the recent proposal of a zoonotic spill-
over of BCoV. These results contribute to the molecular characterization of
BCoV, to the prediction of the efficiency of immunogens, and to the definition
of molecular markers useful for epidemiologic surveys on coronavirus-caused
diseases.

Introduction

Coronaviruses are classified in the order Nidovirales, family Coronaviridae,
which comprises the genera Coronavirus and Torovirus. In this same order,
one can also find the families Arteriviridae and Roniviridae [18, 54]. The
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genus Coronavirus is subdivided into three groups (I, II, and III) according
to epitopes of envelope glycoproteins, nucleotide sequences, and natural
hosts [24].

Bovine coronavirus (BCoV) belongs to group II, with a diameter up to 220 nm.
The BCoV genome is a non-segmented positive-sense single-stranded RNA of
32 kb that forms a helicoidal nucleocapsid in association with the nucleoprotein
(N), a phosphoprotein of 50–60 kDa, rich in basic amino acids. The viral envelope
consists of a lipid bilayer with four structural proteins (HE, S, E, and M) that make
the crown-like appearance of the virions [24, 30].

In cattle, the most common BCoV-caused disease is neonatal calf diarrhea,
which affects 3-to-4-week-old calves [44]. BCoV is also recognized as a causative
agent of upper respiratory tract illness and bronchopneumonia in bovines
[22, 23, 32, 51, 53]. Adult cows suffer from an enteric disease called winter
dysentery, first described in the USA, also caused by BCoV strains found in calves
[4, 8, 17].

The major envelope protein of BoCV is the spike (S) protein, formerly named
E2, organized as trimers that appear as 20-nm-long projections in the viral en-
velope and harbor domains responsible for receptor binding, haemagglutination,
and induction of neutralizing antibodies, and therefore is the most polymorphic
among coronavirus species and also among strains of the same species [13].
The BCoV S is proreolytically cleaved into S1 and S2 subunits of 90 kDa
each [11].

The carboxy-terminal S2 subunit contains the endodomain of S and forms
the stalk of the spike, responsible for membrane fusion and syncytia formation
[16, 25, 50, 52, 59]. The S1 subunit constitutes the amino-terminal ectodomain of
S, which is much more variable than S2 and harbors the receptor-binding activity
and forms the globular portion of the spike [30].

Due to its role in the formation of the globular portion of S and the fact that
it harbors most of the antigenic sites of this protein, the S1 subunit is the most
exposed to immunological selective pressures and thus most prone to polymor-
phism [1].

Since the spike glycoprotein is more sensitive to amino acid exchanges when
compared to other coronavirus proteins, and the S gene has undergone more
mutations in the past and has a greater potential for future mutations, studies
focused on the S protein and S gene are appropriate for detecting intra-specific
differences in the genus Coronavirus [14, 57].

Based on antigenic mapping with monoclonal antibodies, it is known, for
instance, that an amino acid exchange in the antigenic domain II of the S protein
may result in neutralization escape mutants [61].Analysis of the S gene sequence is
also useful for the discrimination among enteric coronaviruses detected in different
individuals and for studies on the biological properties of the spike protein, e.g.,
infectivity for cell cultures [29, 38, 56, 60].

This study aimed to propose a genealogy for enteric strains of BCoV based
on the hypervariable region of the gene coding for the S1 subunit of the S protein
of Brazilian strains of BCoV and strains detected in other countries.
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Materials and methods

Samples

Stool samples were collected between April 2000 and June 2002 from 51 calves from
10 dairy farms from 9 cities of São Paulo and Minas Gerais States, Southeastern Brazil
(Table 1), from both diarrheic and non-diarrheic calves between 1 day and 6 months of
age. Stool samples were prepared as 20% suspensions in PBS (PBS 0.01 M/BSA 0.1% pH
7.2) and clarified at 12,000 × g/30′ at 4 ◦C, and the supernatant was stored at −80 ◦C until
analysis.

Bovine coronavirus reference strain

Bovine coronavirus Kakegawa strain [2], grown in the HmLu-1 (hamster lung) cell line, both
provided by Dr. Takeo Sakai (Nihon University, Japan), was used as positive control in the
RT-PCRs.

BCoV-specific reverse-transcription polymerase chain reaction (RT-PCR S1)

With Primer Premier 5.0 ( c©2003 Premier Biosoft International), two pairs of primers were
designed, corresponding to conserved regions flanking the hypervariable region of the S1 gene,
as described by Hasoksuz et al. [20], using BCoV S gene sequences (GenBank accession num-
bers AF058942.1, U06090.1, AF239306.1, M80844, U00735.2, M64667.1 and M64668.1)
aligned by the CLUSTAL/W method with Bioedit v. 5.0.9 [19]. Outer primers: sense S1HS
5′-CTATACCCAATGGTAGGA-3′ and anti-sense S1HA 5′-CTGAAACACGACCGCTAT-
3′, with a predicted product of 885 bp (nt 1204 to 2088 of the S gene). Inner primers: sense
S1NS 5′-GTTTCTGTTAGCAGGTTTAA-3′ and anti-sense S1NA 5′-ATATTACACCTATC
CCCTTG-3′, with a predicted fragment of 488 bp (nt 1329 to 1816 of S gene). Each primer
was submitted to BLAST/n, and no non-BCoVS gene-related sequences were retrieved.

Reverse transcription (cDNA synthesis) was carried out at 42 ◦C for 60 min in a reaction
mix with 1 × First Strand Buffer (InvitrogenTM), 1 mM of each dNTP, 10 mM DTT, 1 µM of
each primer (S1HS and S1HA), 7 µL of RNA extracted withTRIzol (InvitrogenTM) (according
to the manufacturer’s instructions and denatured at 95 ◦C for 5 min) and 200 U of M-MLV
Reverse Transcriptase (InvitrogenTM) in a 20-µL final reaction volume.

Next, 5 µL of cDNA was added to the PCR mix with 1 × PCR Buffer (InvitrogenTM),
0.2 mM of each dNTP, 0.5 µM of each primer (S1HS and S1HA), 1.5 mM MgCl2, 25.25 µL
of ultra-pure water, and 1.25 U Taq DNA polymerase (InvitrogenTM) in a 50 µL final reaction
volume and submitted to 35 cycles of 94 ◦C for 1 min, 53.4 ◦C for 1.5 min and 72 ◦C for 1 min,
followed by 72 ◦C for 10 min for final extension.

The nested step was carried out with 5 µL of the first-round amplification added to a mix
with 1 × PCR Buffer (InvitrogenTM), 0.2 mM of each dNTP, 0.5 µM of each primer S1NS
and S1NAS, 1.5 mM MgCl2, 25.25 µL of ultra-pure water and 1.25 U Taq DNA polymerase
(InvitrogenTM) in a 50 µL final reaction volume and submitted to 25 cycles of 94 ◦C for 1 min,
58.4 ◦C for 1.5 min, and 72 ◦C for 1 min, followed by 72 ◦C for 10 min.

In each reaction, the Kakegawa strain was used as the positive control and PBS as negative
control. In the nested PCR, a tube containing ultra-pure water instead of template was included
between every three tubes to monitor amplicon contamination. Furthermore, in order to
avoid any laboratory contamination, each step (RNA extraction, reverse transcription and
PCR, nested PCR, and electrophoresis) was carried out in a separate room with separate
materials.

The products of the nested PCR were resolved on a 1.5% agarose gel stained with
0.5 µg/mL ethidium bromide.
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DNA sequencing

The 488-bp fragments obtained with RT-PCR S1 were purified from agarose gels using the
Concert kit (InvitrogenTM), quantified using the Low Mass DNA Ladder (InvitrogenTM), and
sequenced with BigDye 3.1 (Applied ByosystemsTM) according to manufacturer’s instruc-
tions, without previous cloning in order to observe any signs of a quasispecies phenomenon in
the chromatograms. The sequences were resolved in ABI-310 and ABI-377 automatic DNA
sequencers (Applied BiosystemsTM).

Genealogic analysis

A genealogic tree was generated with the consensus sequences of each strain and 10 non-
redundant homologous sequences retrieved from GenBank that were related to BCoV detected
in calves from France, Canada, and the USA (Table 1), and bredavirus strain B145 as an
outgroup (GenBank accession no. AJ575373.1).

Table 1. Bovine coronavirus strains included in the present study and corresponding GenBank accession numbers,
geographical origin, detection year, literature reference, year of sequencing, and source of the sequenced strain

with passage numbers (when available)

Strain GenBank Geographical Detection year/ Sequencing Source of the sequenced
origin reference year virus

BCoVENT AF391541.1 USA 1997/[12] 2001 HRT-18G (up to 2 passages)
LY138 AF058942.1 USA 1965/[63] 2000 Calf stool
OK0514 AF058944.1 USA 1996/[46] 1998 HRT-18G (up to 5 passages)
BCQ1523 AF239307.1 Canada 1994/[27] 2000 HRT-18G (up to 5 passages)
BCQ20 U06092.1 Canada 1989/[34] 1994 HRT-18 (up to 5 passages)
BCQ9 U06091.1 Canada 1989/[34] 1994 HRT-18 (up to 5 passages)
Mebus U00735.2 USA 1971/[33] 2003 BFK, MDBK
BCQ571 U06093.2 Canada 1989/[34] 2001 HRT-18 (up to 5 passages)
BCVF15 D000731.1 France 1979/[15] 1990 HRT-18
BCV Norden M64668.1 USA [63] 1991 Vaccine strain
USP01 AY255831 Brazil/MG∗1 2001/This article 2003 Calf stool
USP02 AY606192 Brazil/MG1 2001/This article 2003 Calf stool
USP03 AY606193 Brazil/MG1 2001/This article 2003 Calf stool
USP04 AY606194 Brazil/MG1 2001/This article 2003 Calf stool
USP05 AY606195 Brazil/MG1 2001/This article 2003 Calf stool
USP06 AY606196 Brazil/SP∗∗1 2002/This article 2003 Calf stool
USP07 AY606197 Brazil/SP2 2001/This article 2003 Calf stool
USP08 AY606198 Brazil/SP2 2001/This article 2003 Calf stool
USP09 AY606199 Brazil/SP1 2002/This article 2003 Calf stool
USP10 AY606200 Brazil/SP1 2002/This article 2003 Calf stool
USP11 AY606201 Brazil/SP3 2002/This article 2003 Calf stool
USP12 AY606202 Brazil/SP3 2002/This article 2003 Calf stool
USP13 AY606203 Brazil/SP3 2002/This article 2003 Calf stool
USP14 AY606204 Brazil/SP3 2002/This article 2003 Calf stool
LYVB AY606205 Brazil/SP3 2002/This article 2003 Calf stool

∗MG = Minas Gerais State
∗∗SP = São Paulo State
Numbers after States represent Municipalities in each State
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All sequences in their respective reading frames were aligned by the CLUSTAL/W method
with Bioedit v. 5.0.9 [19] and used to generate the consensus rooted maximum parsimony
tree with the tree-bisection-reconnection (TBR) branch-swapping heuristic algorithm with
1000 bootstrap replicates using PAUP 4.0 b10 ( c©2000 Smithsonian Institution), with the
gaps considered as a fifth nucleotide.

Nucleotide identities and amino acid similarities of the translated sequences aligned with
the BLOSUM62 matrix were calculated with Bioedit v. 5.0.9 [19].

Analysis of protein secondary structures

The secondary structure of the putative S1 hypervariable region was predicted with NNPredict
at http://www.cmpharm.ucsf.edu/nomi/nnpredict.html.

Results

Seventeen out of the 51 stool samples were positive in the BCoV-specific RT-
PCR targeting the S1 gene, and no spurious bands were found. PBS and nested
internal controls demonstrated the specificity of the reactions and the absence of
laboratory contamination.

Fifteen fragments out of the 17 samples produced by RT-PCR S1 resulted in
BCoV-related sequences (Table 1). The two remaining fragments could not be
sequenced due to low DNA concentrations. Alignment of each of these sequences
with that described by Hasoksuz et al. [20] (accession number U00735.2) and
BLAST/n analysis confirmed that they corresponded to the hypervariable region
of the S1-encoding gene. Mean nucleotide identities to a stretch of 330 nucleotides
with alignment to nucleotides 1381 to 1710 of the S gene of the Mebus strain
(accession number U00735.2) are shown in Table 2.

The nucleotide alignment (Fig. 1) revealed a gap of 18 nucleotides (ATGC
TGC(C/T) CAATGT(A/G)(A/G)TT), which corresponds to nucleotides 1577 to
1594 of the S gene. This gap begins at the second nucleotide of codon 526 (AAT)
and finishes at the first nucleotide of codon 531 (TGT) of the S gene and was found
in 14 out of the 15 sequenced field strains. Strain USP01, the only Brazilian one

Table 2. Mean, maximum, and minimum nucleotide identities to the alignment region of a
330-bp-long segment of the hypervariable region of the S1 subunit-coding region of 15 field
strains of BCoV included in the present study, and 10 BCoV S gene sequences from Table 1,

corresponding to nucleotides 1381 to 1710 of Mebus strain S gene (U00735.2)

Brazil USA Canada France Japan

Brazil 98.34% 92.74% 91.59% 93.32% 99.17%
(89.1–100%) (90.3–97.8%) (89.7%–96.3%) (92.4–95.7%) (90–100%)

USA – 97.26% 97.09% 97.92% 92.64%
(96.3–99.3%) (95.7–98.4%) (96.9–98.7%) (91.2–94.2%)

Canada – – 97.35% 97.12% 91.42%
(96–98.7%) (96.3–98.1%) (90.6–92.1%)

France – – – 100% 93.3%
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Fig. 1. Section of the alignment of 330 nt of the hypervariable region of the S1 subunit-coding
region of the S gene of BCoV, corresponding to nucleotides 1381 to 1710 of the Mebus strain
S gene (U00735.2). Strains USP01, -2, -3, -7, and -9 refer to BCoV field strains from the
present study. Sequences for USP04, -05, -06, -08, -10 to -14, and strain LYVB were identical

to USP03 and are therefore not included in this figure

Fig. 2. Section of the alignment of the deduced 110 amino acids of the analysed hypervariable
region of the S1 subunit of BCoV S protein corresponding to residues 461 to 570 of the Mebus
strain S protein. Strains USP01, -2, -3, -7, and -9 refer to BCoV field strains from the present
study. Sequences for USP04, -05, -06, -08, -10 to -14, and strain LYVB were identical to

USP03 and are therefore not included in this figure

that lacks this gap, showed a nucleotide identity of 100% within the gap region
with the sequences retrieved from the GenBank.

The alignment of the deduced amino acids, corresponding to residues 461 to
570 of the Mebus strain (accession number U00735.2), showed that this nucleotide
deletion results in the loss of 6 amino acids (NAAQC(D/G/N) (Fig. 2), correspond-
ing to residues 526 to 531 of the S protein. In additon, a C → S substitution was
present in the amino acid position right after this gap in all of the 14 field strains
with the deletion.

The mean amino acid homology among the 15 Brazilian field strains was 98%,
ranging from 88% to 100%. Among the sequences from the USA, the mean amino
acid homology was 97%, varying from 96 to 98%, while among the Canadian
strains the mean amino acid homology was 96.67% and varied from 96% to 98%.
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Fig. 3. Rooted consensus heuristic maximum parsimony tree for a stretch of 330 nucleotides
of the gene coding for the hypervariable region of the S1 subunit of the S protein of BCoV,
with bredavirus strain B145 as an outgroup, showing the two proposed clusters. Taxa in bold
are related to the Brazilian field strains from the present study; numbers at each node are the

bootstrap values obtained with 1000 replicates

Twenty-one out of the 37 nucleotide substitutions are exclusive to some strains,
while the other 16 are at sites that vary in more than one strain.

The tree in Fig. 3 shows that all strains in which the 18-nucleotide gap
was found grouped in an exclusive polytomic cluster, while the other strains
clustered in a separate group with a resolved genealogy, giving rise to two
major clusters among the studied strains. The two clusters of BCoV appear
as paraphyletic groups, the gap evidenced as an unique evolutive event in the
genealogy.

Analysis of the secondary structure prediction of the deduced amino acid se-
quences from the studied region of S1 of all Brazilian field strains and from strains
Mebus, Norden, and BCQ-1523, chosen because they represent the polymorphism
found in the last amino acid residue in the region that corresponds to the amino
acid gap (Fig. 2), suggests that the gap occurs inside a loop region without helices
or strands.
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Discussion

A gap of 18 nucleotides, not reported for BoCV so far, was found between positions
1577 to 1594 of the gene coding for the spike protein of enteric strains of BCoV,
resulting in the absence of amino acids 526 to 531 and the substitution of a cysteine
in the position immediately after the gap by a serine (Fig. 2) within the ectodomain
of the S protein. This gap was present in Brazilian field strains USP02 to USP14
and LYVB but not in strain USP01, whose sequence in this region is up to 100%
identical to the sequences retrieved from the GenBank. So far, the gap appears to
be present only in field strains circulating in Brazil. This conclusion is supported
by a recent study on the molecular diversity of Korean BCoV field strains based
on the hypervariable region of the S1 subunit. Jeong et al. [26] described that all
analysed strains cluster together with strains OK0514 and LY138, while a different
cluster containing the Mebus and BCVF15 strains emerged. None of the Korean
field strain lacked the sequence absent in Brazilian field strains USP02 to USP14
and LYVB.

Observing these results under a parsimony evolutive model, we suggest that
this gap is a deletion rather than an insertion, since fewer steps would be needed
to create a deletion than to create a 18-nucleotide insertion in the other strains.
Independent evolutionary events that lead to the same result are less probable, de-
creasing the number of extra-evolutionary steps, i.e., the number of homoplasies,
which could lead to similarities in character status by, for instance, convergence,
and not homology among the studied taxa, assuming that all BCoV strains share
a common origin [35, 49].

In the tree shown in Fig. 3, the Brazilian isolates have a tendency to segregate
into the “deleted” cluster 2, while the Brazilian field strain USP01 and the other,
mainly cell-culture-adapted strains, segregate into the “non-deleted” cluster 1.

Interestingly, the same 18-nt deletion described for the Brazilian BCoV strains
in this study was found in human coronavirus OC43 (HCoV-OC43), a group II
coronavirus that plays a role in human colds. This deletion does not exist in other
human strains, and deletions in the gene coding for the S1 subunit have never been
reported in studies focused on genetic and antigenic properties and comparison
between human and bovine coronaviruses [36, 45].

Thus, one can speculate that strains from both BCoV and HCoV-OC43 will
segregate in a similar clustering pattern if this deletion is taken into account. This
close evolutionary relationship between these two virus species is in agreement
with the recently proposed zoonotic spillover of BCoV based on the high degree
of identity between this virus and HCoV-OC43 [55].

Although the rooted tree in Fig. 3 does not allow the common ancestor to
the BCoV strains studied herein to be identified, this role can be assigned to a
non-deleted BCoV strain (cluster 1, Fig. 3) on the onset of the spillover event that
might have originated both the human coronavirus strains with or without this
deletion and the deleted BCoV strains.

The biological implications of amino acid deletions in the spike protein of
coronaviruses might include a lower fusogenic activity [28], loss of the cleavage
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site between subunits S1 and S2 [59], and changes in tissue tropism [31]. The
6-amino-acid deletion described here occurs inside a hypervariable region of the
S1 subunit and is part of its domain II, responsible for the conformational epitopes
A and B of this subunit and thus may result in the loss of immunological cross-
reaction between the two clusters [61].

Although the amino acid deletion has not led to major alterations in the
predicted secondary structures of the proteins, it is possible that the deleted loop
may have caused a loss of conformational epitopes or the appearance of new ones
by changes in the overall structure of the protein or by bringing existing epitopes
together.

Furthermore, as the S1 ectodomain has a major role in receptor binding,
mutations in this region may be an indication of a different virus-host interaction.
For instance, for human coronavirus HCoV-229E, the domain comprised by amino
acids 417 to 547 of the S protein – the same region where the deletion described
here was found – has been shown to be essential for binding to the specific receptor,
human amino peptidase [7]. The extent of deletions in the hypervariable region
of the S1 subunit may also give raise to phenotypes with differences regarding
receptor-binding activity, cleavage of the S protein, conformational changes in the
S protein, tissue tropism, and disease patterns [62].

The ability to escape the host’s immune system may also be a result of deletions
in the epitopes of the S1 ectodomain, allowing the mutants to circumvent the action
of cytotoxic T lymphocytes [5, 10, 40]. The occurrence of viral genomes with
deletions in the S gene as, for instance, between nucleotides 1200 to 1800 of some
isolates of MHV, which corresponds to the same region where the 18-nucleotide
deletion has been detected in the present study, contributes to the quasispecies
form of coronavirus populations [43].

The divergence among the strains sequenced in the present study and those
from North America (Table 2) could be due to the geographic distance between
the surveyed areas, different cattle breeds, or even the breeding system, which
could exert selective pressure on the S1 hypervariable region during the time,
which varied up to 38 years, as in the case of the sequence corresponding to strain
LY138 (Table 1).

The mean nucleotide identities among strains from the USA and Canada
(Table 2), geographically close countries, are similar, possibly due to the cir-
culation of low-divergent BCoV strains. It is noteworthy that the expected high
nucleotide identity to other regions of the BCoV S gene, such as S1B, with a
mean of 97% [41] or the whole S gene, with 98% [58] to strains from Canada
and the USA are close to those found here among sequences from these countries
included in the analysis. Except for strain USP1, the results obtained in the present
study uphold this phylogeographical pattern of BCoV strains, since cluster 2
(Fig. 3) contains strains from two geographically contiguous Brazilian States
(Table 1).

Divergences within the S1 genes of members of the same species of corona-
virus are not uncommon. For instance, among different samples of MHV (Murine
HepatitisVirus) coronavirus, the amino terminus of S1 has an amino acid similarity
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ranging from 75 to 85% [48]. Furthermore, between some MHV and BCoV
samples, the S1 genes have up to 81% nucleotide identity [6].

Nevertheless, strains from the USA and Canada, as well as strain BCV-F15
from France, were adapted to cell cultures, mainly in HRT-18 cells (Table 1),
while strains sequenced in the present study have been obtained directly from
fecal samples. This adaptation to cell culture may favor, by selection under similar
conditions, a given S protein to prevail among other variants, biasing the study
of the original sequences present in the original host [21]. This has already been
reported for samples of canine coronavirus (CCoV) from fecal samples and CCoV
reference strains grown in cell cultures, where the maximum nucleotide identity
found for the S gene was 86.1% [38].

This hypothesis is in agreement with the episodic evolution model proposed for
coronaviruses [3], according to which the molecular clock is accelerated during
periods of environmental changes, such as adaptation to cell cultures, that are
deleterious to the progenitor viruses, causing the viral population to evolve in short
jumps in a short time interval towards a population that is divergent from the initial
one. Populations of coronaviruses, an RNA virus with short replication times [47],
large progeny size, a mutation rate close to 10−4, and an RNA recombination rate
of 20%, are prone to a high genetic variability when the target of the selection is
not a single genotype but rather a heterogeneous population of mutants generated
by erroneous replication of the most frequent mutant. This population of mutants
is the basis of the quasispecies definition, the form that one expects to find in a
population of coronavirus from a clinical sample [3, 37, 42].

Strain USP01, grouped in cluster 1, and strains USP02, USP03, USP04,
USP05, USP11, USP12, USP13, USP14, and LYVB from cluster 2 were found in
samples from calves without clinical information; strains USP07, USP08, USP06,
USP09, and USP10 from cluster 2 were obtained from calves without diarrhea
at the time of collection. Because of this lack of information, one can only
hypothesize about pathogenicity or virulence variations among these 15 strains.
Taking into account the position of the sequences retrieved from the GenBank
in the genealogic tree (Fig. 3) – all of them isolates from animals with clinical
diarrhea – both clusters might cause enteritis and diarrhea.

Of the 37 sites in the nucleotide alignment region where substitutions have
been observed, 21 were exclusive to a given sequence, and the sequences from
strains USP02, USP09, USP07, BCQ20, Mebus, and BCQ571 showed more non-
synonymous than synonymous mutations. The other 16 sites in which nucleotide
substitutions were found, 11 of which resulted in amino acid substitutions, are
shared by two or more strains and are not single mutations, which might mean
that these are consensus positions in the respective strains and not apomorphic
conditions.

Thus, in the sequences in which the number of non-synonymous mutations
exceeded that of synonymous mutations, taking into account only the point muta-
tions exclusive to some of the strains and not those shared by two or more strains
at variable sites, there is an indication of selective advantage at the time these
mutations appeared in these sequences. This might suggest that under positive
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selection the rate of fixation of non-synonymous mutations is higher than the rate
of fixation of translationally silent nucleotide substitutions [9, 39].

It is expected that changes in the gene coding for the S protein, and mainly
in the hypervariable region studied here, may be invaluable genetic markers
for a more comprehensive understanding of BCoV-caused diseases and for the
development of studies on diagnostics and molecular characterization, as well as
for the prediction of the efficiency of immunogens. Comparing pathogenicity and
virulence between these two clusters of BCoV, based, for instance, on fusogenic
activity in cell cultures, is still a field of research, as well as investigations regarding
other regions of the BCoV genome, such as the region encoding the S2 subunit,
which plays a major role in membrane fusion.

In summary, a genealogy is proposed for enteric strains of bovine coronavirus
based on the nucleotide sequences of the region coding for the hypervariable
region of the S1 subunit of the spike protein, according to which two clusters
(1 and 2) emerged with an 18-nt deletion shared with HCoV-OC43.
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