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Purpose of review

The main purpose of this review is to summarize the current research (2006–2007)

concerning the development of novel anticoronaviral strategies and compounds.

Recent findings

Recent research led to the identification of several novel agents inhibiting coronavira

replication. The most promising compounds include carbohydrate-binding agents,

neutralizing antibodies and drugs targeting a coronaviral envelope protein.

Summary

Although initial outbreaks of coronavirus that causes severe acute respiratory syndrome

(SARS-CoV) were controlled by public health measures, the development of vaccines

and antiviral agents for SARS-CoV is essential for improving control and treatment o

future outbreaks. Four years after the SARS-CoV epidemic, several compounds with an

anticoronaviral activity have been identified.
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Introduction
Coronaviridae is the family of enveloped viruses with a

nonsegmented, positive-stranded RNA genome of about

30 kb. To date, five human coronaviruses (HCoV) have

been described: HCoV-229E and HCoV-OC43 were

identified in the late 1960s, severe acute respiratory

syndrome-associated coronavirus (SARS-CoV) emerged

in 2003 and two others, HCoV-NL63 and HCoV-HKU1,

have been identified recently, in 2004 and 2005, respect-

ively [1–8]. Although coronaviruses have been recog-

nized as human pathogens for about 50 years, no effective

treatment strategy has been approved. This drawback

became evident during the SARS-CoV outbreak and

triggered numerous studies. Despite that, 4 years after

the outbreak, we are still lacking an effective, commer-

cially available drug.
Coronavirus-related respiratory illness
Coronaviruses are known to cause a variety of severe

diseases in birds and mammals [9]. Human coronaviruses

are mainly associated with respiratory tract illnesses,

although some reports also suggest an association with

an enteric infection [10]. HCoV-229E and HCoV-OC43

related disease usually appears as relatively mild and self-

limiting respiratory tract illnesses, being more severe in

elderly or immunocompromised patients [11]. HCoV-

NL63 infection is related to acute respiratory dysfunction

in infected individuals, and the virus was identified as the
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major pathogen responsible for croup in young children

[12,13]. Infection with HCoV- HKU1 is mostly associated

with bronchiolitis and pneumonia [2,14].

The fifth human coronavirus – SARS-CoV – is an etio-

logic factor of the severe acute respiratory syndrome

(SARS) and causes severe lung disorder, leading in some

cases to systemic infection and eventually death in about

10% of cases [3–5]. There is no straightforward expla-

nation for the high pathogenicity of SARS-CoV, which is

in stark contrast to other members of this family.
Anticoronaviral strategies
The 50 two thirds of the genome encode one large

polyprotein (pp1ab), consisting of several domains with

enzymatic activities required for viral replication. The

polyprotein during the posttranslational processes under-

goes an autocatalytic cleavage, resulting in generation of

several functional proteins. The remaining open reading

frames (ORFs) in the 30 part of the genome encode

several structural proteins: spike (S), envelope (E), mem-

brane (M), nucleocapsid (N) and additional nonstructural

proteins varying in number and position for different

species. Additionally, the genomes of the group 2 cor-

onaviruses contain the hemagglutinin esterase gene

[15,16].

Virtually all of these genes and the encoded proteins may

constitute a target for a therapy. The major difficulties
.
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encountered are related to genetic variability of targets

within the population and their similarity to human

proteins. The perfect drug target for an anticoronaviral

therapy should be relatively conserved and unique for the

virus. Although several potential candidates have been

suggested within recent years, there is no specific anti-

coronaviral drug yet approved for clinical use.
Targeting the genome
A term RNA interference (RNAi) refers to sequence-

specific silencing of gene expression, an ancient

evolutionary conserved process based on specific recog-

nition of double-stranded RNA by the cellular Dicer

protein complex. This results in shearing of the dsRNA

template and generation of short 21–25 nt dsRNA

molecules. These short RNA fragments are further

incorporated as a template into the RNA-induced

silencing complex (RISC) that has an ability to cleave

target mRNAs and share sequence identity with the

template [17–21].

The technique to deliver the exogenous small interfering

(si)RNA molecules, which can be directly incorporated

into the RISC complex, is being used, among others, to

specifically silence viral gene expression. To facilitate the

design and development of highly effective siRNA mol-

ecules targeting viral genes, Naito et al. [22�] designed an

siVirus software, a web-based antiviral siRNA design

engine for highly divergent viral sequences.

Recently, He et al. [23�] presented the synergistic effect

of multiple siRNAs directed to various genes of SARS-

CoV. Application of several siRNAs targeting various

regions of the genome is believed to limit the chance

of generation of escape mutants. Pyrc et al. [24�] ident-

ified two synthetic siRNAs targeting the S gene and

potently inhibiting HCoV-NL63 replication in vitro.

Another approach employs adenoviral vectors to deliver

the short hairpin RNA (shRNA) targeting SARS-CoV.

The major advantages of such a system rely on the

possibility of including several shRNA sequences in a

single adenoviral vector and the lack of additional trans-

fection agent [25�].
Viral infection
During a productive coronavirus infection, at the first step

of the replication cycle, protein S attaches to its specific

receptor on the host cell surface and subsequently under-

goes a series of conformational changes, facilitating the

fusion process of viral and cellular membranes [26].

Human coronaviruses are using several surface molecules

during the entry process. HCoV-OC43 uses O-acetylated

sialic acid [27], HCoV-229E employs CD13 (aminopep-
opyright © Lippincott Williams & Wilkins. Unauth
tidase N) [28], whereas HCoV-NL63 and SARS-CoV

engage angiotensin-converting enzyme 2 (ACE2)

[29,30] to enter the host cell. Several groups reported

the inhibition of virus entry using techniques varying

from blocking the highly glycosylated viral proteins with

plant lectins to locking the structural shift in the S protein

with synthetic peptides.

Carbohydrate-binding agents

The carbohydrate-binding agents (CBA) are a group of

compounds binding sugar moieties. CBAs were shown to

interfere with the viral entry process and inhibit the

replication of several viruses, by interaction with highly

N-glycosylated viral proteins [31]. Recently, novel com-

pounds were recognized and some insight into the mech-

anism of action has been gained.

Van der Meer et al. [32��] evaluated plant lectins [Hip-
peastrum hybrid agglutinin (HHA), Galanthus nivalis
agglutinin (GNA), Cymbidium sp. agglutinin and Urtica
dioica agglutinin (UDA)] as well as nonplant derived

pradimicin-A (PRM-A; mannose-binding nonpeptidic

antibiotic) and cyanovirin-N [CV-N; a(1,2) mannose-

specific procaryotic lectin] as potential antiviral agents.

Viruses tested in this study represented several groups of

viruses belonging to the order of Nidovirales (murine

hepatitis virus, feline infectious peritonitis virus, feline

coronavirus, infectious bronchitis virus, transmissible gas-

troenteritis virus, Berne virus and equine arteritis virus).

All these agents offered a high anticoronaviral activity.

Plant lectins and pradimicin A interact with coronaviral

envelope proteins, not only during cell attachment

process causing steric hindrance but also during fusion

and exocytosis or viral egress from the cell. The antiviral

potential of these compounds is highly dependent on the

host cell type and the level of glycosylation. Presented

low in-vivo toxicity and high in-vitro efficacy is encoura-

ging to continue the exploration of these compounds as

antivirals [33��].

Neutralizing antibodies

Coronavirus entry at the level of attachment may also be

hindered by specific monoclonal or polyclonal antibodies

directed to the coronaviral proteins [34–36].

Zhou et al. [37,38�] reported an activity of equine anti-

bodies, reducing infection with SARS-CoV in aged mice.

In a therapeutic setting, treatment with anti-SARS-CoV

F(ab0)2 decreased viral load in the lungs several thousand

fold. Subsequently, this antibody has been tested in

Syrian hamster, Chinese hamster, rat and macaque

models, and protected animals from SARS-CoV infection

[39,40].

The immunogenicity of nonhuman-derived antibodies

may result in their rapid clearance and reduce their
orized reproduction of this article is prohibited.
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efficacy [41]. To prevent such a decrease in antibody

efficacy, Kang et al. [42�] constructed a human antibody

library by the phage display technique and used the S

protein of SARS-CoV as the target to screen the phage

antibody library. Authors identified monoclonal anti-

bodies specific for the S protein of SARS-CoV that

completely inhibited virus activity, with an absence of

cytopathic effect for 7 days.

Although the monoclonal antibodies exhibit a high

antiviral potential, viruses may easily evolve into anti-

body-resistant variants. Utilizing the human immuno-

globulin transgenic mouse, XenoMouse, Coughlin et al.
[43�] produced several fully human SARS-CoV-S-

protein-specific antibodies with a high neutralizing

potential. These monoclonal antibodies could be used

as a cocktail, simultaneously targeting several neutraliz-

ing epitopes and preventing emergence of escape

mutants. Similarly, ter Meulen et al. [44] presented

two monoclonal antibodies targeting two different

epitopes within the receptor-binding domain of S protein

of SARS-CoV. A combination of these two neutralizing

antibodies (CR3014 and CR3022) has the potential to

control SARS-CoV infection with no escape mutants

observed in the laboratory settings.

Pyrc et al. [24�] anticipated the usage of commercially

available intravenous immunoglobulins (IVIG), isolated

from healthy volunteers, as the potent inhibitors against

HCoV-NL63. IVIG was able to inhibit viral infections at

therapeutic concentration. Such an approach has already

been proposed for respiratory syncytial virus (RSV), but

its potential to limit infection with other coronaviruses

has not yet been determined.

Fusion inhibitors

The fusion of the coronaviral and cellular membrane,

depending on the species, may occur directly on the cell

surface [45] or require endocytosis [46]. The major pre-

requirement for an effective fusion is a structural switch

within the S protein, accompanied by the association of

two heptad repeat regions (HR1 and HR2) and most

likely exposition of a fusion peptide [47]. It was pre-

viously reported that interference with HR1/HR2 associ-

ation results in the inhibition of coronavirus infection

[24�,48]. Synthetic peptides homologous to heptad repeat

regions were recognized as potent inhibitors of fusion by

competitive binding to these regions. The specific inhi-

bition of heptad repeat regions association by a steric

hindrance may also be achieved by using specific anti-

bodies. Tripet et al. [49] reported that antibodies directed

to HR2 inhibited SARS-CoV replication in vitro. The

mechanistic analysis of the process also proved that the

exposition of the heptad repeat region is the key factor,
opyright © Lippincott Williams & Wilkins. Unautho
and that indeed heptad repeat-specific antibodies inhib-

ited infection at the stage of the virus entry into the

host cell.

It is assumed that as a result of the structural switch,

the fusion peptide is exposed and facilitates the mem-

brane fusion. Sainz et al. [50] identified several regions

of the S protein characterized by high hydrophobicity

with high predisposition to interact with lipid mem-

branes. Development of synthetic analogous peptides

led to the identification of highly efficient SARS-CoV

inhibitors.
Coronaviral enzymes
Coronavirus replication process employs several proteins

with enzymatic activity encoded by viral RNA. These

proteins are unique for coronaviruses and thereby may be

used as targets for potential therapy. The best studied

coronaviral enzymes are two proteases (PLpro and Mpro)

processing pp1a and pp1ab, and the majority of reports

present efficient block of coronaviral replication with

synthetic or natural compounds inhibiting Mpro (for

review see [51]). Unfortunately, for other viral proteins

such as nsp14 (ExoN) or nsp15 (NendoU), no specific

antiviral agents have been identified so far.

Main protease inhibitors

Viral Mpro is a highly conserved protein required for

maturation of functional proteins and therefore consti-

tutes a key target for the design of anticoronaviral agents

[52]. Several recent studies show novel classes of agents

inhibiting Mpro activity. The majority of identified

compounds interact directly with an active site of the

enzyme and these include stable benzotriazole esters

[53�], tetrapeptide phthalhydrazide ketones, pyridinyl

esters and their analogues [54�], peptidomimetic inhi-

bitors [55�], TG-0205221 [56�], coumarin derivative

esculetin-4-carboxylic acid ethyl ester from the tropical

marine sponge Axinella corrugata [57�], series of isatin

derivatives [58�], peptide aldehydes [59�] or quercetin-

3-b-galactoside [60�]. The majority of the described com-

pounds have been identified using the molecular dock-

ing studies, and frequently their ability to inhibit virus

replication has not been verified experimentally. In this

context, it is worth noting that several novel algorithms for

molecular docking have been developed and employed

in the discovery of potential inhibitors [61,62]. These

algorithms may be successfully used for novel drug devel-

opment during potential future epidemics.

Interestingly, one study by Wei et al. [63�] describes the

identification of the Mpro inhibitor not interacting with an

active center, but with the N-terminal region of the Mpro,

interfering with the protein dimerization.
rized reproduction of this article is prohibited.
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Helicase inhibitors

The coronaviral helicase is a motor protein, using the

energy derived from nucleotide triphosphate hydrolysis

to separate long stretches of double-stranded nucleic

acids [64]. Helicase represents a promising target for

antiviral therapy because of its pivotal role in viral repli-

cation and high conservancy. In spite of this, the devel-

opment of selective coronavirus helicase inhibitors is

considerably difficult, due to a large number of cellular

helicases and thereby drug-related cytotoxicity. Earlier,

the adamantane-derived bananins were shown to be

effective inhibitors of both the ATPase and helicase

activities of the SARS-CoV helicase [65]. Recently,

employing molecular docking studies, Hoffmann et al.
[66] identified compounds bearing two phosphonic acid

moieties or phosphates located at the distal ends of a

molecule, which bind to the catalytic site with higher

affinity than ATP. Unfortunately, no biological assays

have been performed so far to confirm these findings.

Another report presents development of several bismuth-

based compounds (bismuth nitrilotriacetate, bismuth

nitrate, bismuth tricysteine complex and ranitidine bis-

muth citrate) inhibiting the ATPase activity and replica-

tion of SARS-CoV at micromolar concentrations.
Inhibition of ion channel formation
The coronaviral E protein is a small structural protein

that forms the selective ion channels in the lipid bilayer

[67]. The exact functions of the coronavirus E protein

are still not elucidated but the E protein has been

shown to be vital for coronavirus replication, being

involved in virus assembly and morphogenesis. Wilson

et al. [68�] identified hexamethylene amiloride as a

potent inhibitor of several coronaviruses. The antiviral

potential of this compound has been previously

described and is related to hexamethylene amiloride-

mediated inhibition of ion channel formation. This

compound is currently in use for the clinical treatment

of influenza A infections [69,70].
Host proteins involved in coronavirus
replication
Although coronaviruses carry in their genome proteins

essential for their replication, they also require cellular

proteins. Recently, some studies have shown that

specific interference with cellular proteins can result

in the coronavirus replication arrest. de Lang et al.
[71�] have demonstrated that the downregulation of

ACE2 with IL-4 and IFN-g resulted in inhibition of

SARS-CoV replication, whereas Raaben et al. [72�]

presented inhibition of murine hepatitis virus with

cyclooxygenase inhibitors. Although such an approach

is attractive because it limits the chance of resist-

ance development by the virus and has been used with
opyright © Lippincott Williams & Wilkins. Unauth
some success during SARS-CoV epidemics [73], exten-

sive studies on potential cytotoxicity of these com-

pounds have to be performed.
Conclusion
Despite the lethal potential of the Coronaviridae family

members residing in animals, the danger was neglected

for many years [74,75]. SARS-CoV emergence and the

epidemic gave us a warning that we should study more

carefully the pathogens residing within the animal popu-

lation. At present, even though great progress has been

made in the past 4 years, we still lack an approved drug or

efficient therapy strategy. In the authors’ opinion, current

research on antiviral drug discovery should focus on

development and validation of existing compounds.

The most promising for a standard use are the CBAs,

especially plant-derived lectins, and the siRNAs target-

ing the coronaviral genome, as both can be administered

orally. The first group of compounds is characterized by

broad specificity and low cytotoxicity. The latter may

be potentially prepared as an siRNA cocktail, targeting

broad range of respiratory viruses, delivered either as

naked RNA or in, for example, adenoviral vectors. The

successful inhibition of virus replication and arrest of

disease progression in macaques further suggest high

antiviral potential of these treatment strategies [76,77].

Another treatment strategy for potentially emerging

coronaviruses would be the employment of passive

immunity. This approach may provide us the precious

time for the preparation of more specific anti-CoV agents

such as antiviral drugs and vaccines.
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