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Aryl diketoacids have been identified as the first SARS-CoV NTPase/helicase inhibitors with a distinct
pharmacophore featuring an arylmethyl group attached to a diketoacid. In order to search for the phar-
macophore space around the diketoacid core, three classes of dihydroxychromone derivatives were pre-
pared. Based on SAR study, an extended feature of the pharmacophore model of SARS-CoV NTPase/
helicase was proposed which is constituted of a diketoacid core, a hydrophobic arylmethyl substituent,
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In 2002, SARS (Severe Acute Respiratory Syndrome) caused by
coronavirus (SARS-CoV) quickly spread to nearly 30 countries lead-
ing to infection over 8000 people, and almost 800 deaths world-
wide.! Although new cases of the infection have not been
reported since 2004, SARS remains as a global health threat due
to its high mortality and lack of therapeutic agents.?

In our previous study,> we have identified aryl diketoacids
(ADKs) as novel anti-SARS agents with selective inhibition
(IC50 =5.4-13.6 pM) against duplex DNA-unwinding activity of
SARS-CoV NTPase/helicase without significant impact on the ATP-
ase activity. It is of particular interest that, among the SARS-CoV
NTPase/helicase inhibitors reported to date>* ADK is the only
example with distinct structure-activity relationship to provide
an initial feature of the pharmacophore model composed of a dike-
toacid core with an appropriately positioned arylmethyl substitu-
ent (1, Fig. 1).

In this study, as a part of our ongoing efforts to delineate a com-
plete pharmacophore model via structural variation on ADK, we
designed several dihydroxychromone derivatives as a bioisostere
of ADK in which the diketoacid moiety of ADK with poor drug-like
property is replaced with a dihydroxychromone scaffold (Fig. 1).
Dihydroxychromones, a class of naturally-occurring flavonoids
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with proven stability and safety,® share the similar structural motif
to the diketoacid of an ADK: two phenolic hydroxyl groups and a
carbonyl oxygen serve together as an excellent mimic for the dike-
toacid functionality (Fig. 1). In addition, compared with an ADK
with substituents attached only on one side of the diketoacid, var-
ious functionalities can be introduced to both sides of the
dihydroxychromone core to allow extended investigation of the
pharmacophore space. Thus, we designed novel dihydroxychro-
mone derivatives with an arylmethyl functionality shown to play
a critical role in inhibitory activity of ADKs> as well as a catechol
moiety known to be responsible for various biological activities
of flavonols® on either side (2 and 3, Fig. 2) or both sides (4,
Fig. 2) of the dihydroxychromone scaffold. Herein, we present a
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Figure 1. Comparison of ADK and dihydroxychromone.
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Figure 2. Design of dihydroxychromone derivatives with mono- (2 and 3) and di-substituents (4) on the dihydroxychromone scaffold.
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Scheme 1. Syntheses of 2-[N-(arylmethyl)methyl]-5,6-dihydroxy chromone derivatives (2a: R=4-Cl, 2b: R =3-Cl, 2c: R=3-CN). Reagents and conditions: BnBr, K,COs,
acetone, 60 °C; (b) AcCl, Pyr, 60 °C; (c) LIHMDS, THF, —78 °C; (d) SeO,, bromobenzene, 160 °C; (e) (R-Ph)CH,NH,, AcOH, MeOH, NaBH3CN, rt; (f) BBR3, CH,Cl,, rt.

novel pharmacophore model of SARS-CoV NTPase/helicase inhibi-
tors via syntheses and biological evaluation of three classes of
dihydroxychromone derivatives.

2-|N-(Arylmethylamino)methyl]-5,6-dihydroxychromones (2,
Fig. 2) superimposable to ADK were prepared starting from aceto-
phenone 5 (Scheme 1).” Regioselective benzylation of 52 followed
by acetylation provided the fully protected acetophenone 7 (71%
yield for two steps), which underwent cyclization (48% yield) and
subsequent oxidation to give the aldehyde 9 in 91% yield. The de-
sired dihydroxychromone derivatives 2a-2c were prepared from
the intermediate 9 by reductive amination followed by deprotec-
tion with BBr3 in CH,Cl, (31-38% yield).

Free or protected catechol was introduced at the other side
of the dihydrochromone to give flavonol derivatives (3, Scheme
2). The free catechol derivative [quercetin (3a)] was obtained
from commercial source and the 3,6-dihydroxychromone deriv-
ative with protected catechol functionality at 2 position (3b)
was synthesized starting from the phenol 10 which was

prepared by degradation of pentabenzylated quercetin® (65%
yield, Scheme 2). Esterification of phenol 10 with piperonyloyl
chloride gave the corresponding ester. Cyclization of the ester
in the presence of K,CO; and phase transfer catalyst,'® followed
by hydrogenolysis provided the flavonol 3b (72% yield for two
steps).

Synthesis of dihydroxychromones with substituents on both
sides (4) was accomplished by selective alkylation on 7-0O position
of the flavonol (3a and 3b) (Scheme 3). Thus, peracetylation of 3a
(or 3b) followed by selective deacetylation of 7-OAc with thiophe-
nol and imidazole in NMP at 0 °C gave the 7-O-mono deprotected
flavonol 12a (or 12b).!! Treatment of 12a (or 12b) with substituted
benzyl bromide in acetone in the presence of K;CO3 at room tem-
perature, followed by methanolysis provided the desired com-
pounds 4a-4f in 25-29% yields.

The synthesized dihydroxychromone derivatives'? were tested
for their inhibitory activities against ATPase and duplex DNA-
unwinding activities of the helicase by phosphate release assay'>
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Scheme 2. Syntheses of 3b from commercially available 3a (quercetin). Reagents and conditions: (a) piperonyloly chloride, Pyr; (b) K,CO3, TBAB, toulene, 90 °C; (c¢) H,, Pd/C,
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Scheme 3. Syntheses of dihydrochromone derivatives with substituents on both sides of the core diketoacid mimic. Reagents and conditions: Ac,0, Pyr; (b) PhSH, imidazole,

NMP, 0 °C, rt; (c) (R>-Ph)CH,Br, K,COs, acetone, rt; (d) NHs/MeOH, rt.

and FRET-based assay,'® respectively. Cloning and purification of
the SARS-CoV helicase were performed as previously described.!®

Like ADK analogues,® dihydroxychromone derivatives showed
no significant inhibition against helicase ATPase activity. Only mar-
ginal inhibition of the ATPase activity (20.9 and 25.4 uM) was ob-
served with two disubstituted dihydroxychromone derivatives (4a
and 4c, Table 1). Unexpectedly, compounds 2a-2c, superimposable
to the ADK scaffold inhibited neither ATPase nor duplex DNA-
unwinding activity of SARS-CoV ATPase/helicase. Presumably, the
high flexibility of (N-arylmethyl)methyl substituent of 2a-2c com-
pared with the ADK counterpart resulted in loss of inhibitory
activity.

A flavonol with protected catechol group (3b) also failed to
show any inhibition against ATPase/helicase. However, a flavonol
with free catechol (quercetin, 3a) selectively inhibited the duplex
DNA-unwinding activity in micromolar range (ICso = 8.1 uM, Table
1) to indicate the possible role of the free catechol moiety in the
binding interaction with the target enzyme presumably as a hydro-
gen bond donor.

Interestingly, substitution of arylmethyl functionality on 7-O
position of 3b remarkably increased the activity of the resulting
compounds (4d-4f, Table 1). The inhibitory activity of quercetin
(3a) was also improved upon introduction of arylmethyl substitu-
ent at 7-0 position (4a-4c, Table 1). It is noteworthy that flavonol
derivatives with free catechol moieties (4a-4c) are usually two to
three times more active than the protected catechol counterparts
(4d-4f). The synergistic effect of the two substituents attached to
the opposite side of the dihydrochromone core suggests the pres-
ence of two distinct binding sites on the target enzyme: a hydro-
phobic arylmethyl binding site and a catechol binding site
capable of hydrogen bonding interaction.

On the basis of this study, we hypothesize an extended pharma-
cophore model (Fig. 3) of SARS-CoV NTPase/helicase inhibitors
composed of three key components including a diketoacid core, a
hydrophobic site and a free catechol moiety.

In summary, in order to investigate the pharmacophore space
around the diketoacid core of SARS-CoV NTPase/helicase inhibitors,
three classes of dihydroxychromone derivatives were prepared in
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Table 1
ICs values of flavonol derivatives against SARS-CoV helicase ATPase activity and
duplex DNA-unwinding activity
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4c 254+15 2.7+0.1
4d >50 93+04
4e >50 15.4+0.8
af 429+54 81+03

diketoacid core

/\.

free catechol )

[ hydrophobic arylmethyl ]

Figure 3. The proposed pharmacophore model of SARS-CoV helicase inhibitors.

which two different substituents, arylmethyl and catechol, are at-
tached on opposite ends. The synthesized dihydroxychromones
showed selective inhibition against duplex DNA-unwinding activ-
ity of SARS-CoV NTPase/helicase. Moreover, the inhibitory activity
was enhanced by combination of the two spatially separated sub-
stituents, which indicates two different binding sites in the target
enzyme. Taken together, an extended feature of the pharmaco-
phore model was proposed which is constituted of a diketoacid
core, a hydrophobic arylmethyl substituent, and a free catechol
unit. Further structure-activity study around the proposed phar-
macophore model is warranted for discovery of more potent inhib-
itors of SARS-CoV NTPase/helicase.
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