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Among the structural and nonstructural proteins of severe acute respiratory syndrome coronavirus
(SARS-CoV), the nucleocapsid (N) protein plays pivotal roles in the biology and pathogenesis of
viral infection. N protein is thought to dysregulate cell signalling and the transcription of cellular
genes, including FGL2, which encodes a prothrombinase implicated in vascular thrombosis, fibrin

deposition and pneumocyte necrosis. Here, we showed that N protein expressed in cultured
human cells was predominantly found in the cytoplasm and was competent in repressing the
transcriptional activity driven by interferon-stimulated response elements. However, the
expression of N protein did not influence the transcription from the FGL2 promoter. More
importantly, N protein did not modulate the expression of FGL2 mRNA or protein in transfected or
SARS-CoV-infected cells. Taken together, our findings did not support the model in which SARS-
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CoV N protein specifically modulates transcription of the FGL2 gene to cause fibrosis and

Severe acute respiratory syndrome (SARS) is a highly lethal
infectious disease that spread in China and globally in
2003. The primary aetiological agent has been identified as
SARS coronavirus (SARS-CoV; Peiris et al., 2003), a distant
member of group 2 coronaviruses (Gorbalenya et al,
2004). Closely related SARS-CoV-like viruses have also
been found in various bats (Lau et al., 2005).

Coronaviruses are large, enveloped and positive-stranded
RNA viruses that cause a number of diseases in humans
and animals (Cheng et al., 2007). The coronavirus
nucleocapsid (N) protein is a relatively conserved struc-
tural protein that binds genomic RNA and plays an
important role in viral RNA synthesis, viral assembly and
formation of the RNA replication complex (Narayanan
et al, 2003; Almazan et al, 2004). Intracellularly,
coronavirus N protein localizes to the cytoplasm, in which
it interacts with M protein to form an icosahedral core
(Hurst et al., 2005). In addition, N proteins from mouse
hepatitis virus (MHV) and several other coronaviruses
have also been shown to localize to the nucleolus to exert
an impact on cell cycle progression (Wurm et al., 2001;
Chen et al., 2002). In line with this, MHV N protein
regulates the expression of cellular genes such as Fgl2 (Ning
et al, 1999). Fgl2 encodes a prothrombinase termed
fibrinogen-like protein 2, which causes vascular throm-
bosis, fibrin deposition and hepatocellular necrosis. MHV
N protein stimulates Fgl2 transcription through cellular

transcription factors, implicating a role in the pathogenesis
of MHV-associated hepatitis (Ning et al., 2003).

While nucleolar localization has also been suggested (You
et al, 2007), SARS-CoV N protein is more frequently
found in the cytoplasm (Rowland et al., 2005; You et al,
2005; Fan et al, 2006). Interestingly, the gene regulatory
function of this protein has also been documented in the
context of AP-1-, NF-«xB- and CCAAT/enhancer binding
protein (C/EBP)-dependent transcription (He et al., 2003;
Yan et al., 2006; Zhang et al, 2007), interferon (IFN)
production (Kopecky-Bromberg et al, 2007) and trans-
forming growth factor-f signalling (Zhao et al, 2008).
Because fibrosis and vascular thrombosis in the lung are
also observed commonly in patients with SARS (Nicholls
et al., 2003), SARS-CoV N protein has been proposed to
regulate the expression of the human FGL2 gene
(Robertson, 2003). Indeed, a recent work has demonstrated
that FGL2 transcription is stimulated by SARS-CoV N
protein in transfected cells (Han et al., 2008). Interestingly,
the association of single nucleotide polymorphisms in the
FGL2 locus with nasopharyngeal shedding of SARS-CoV
and clinical severity has recently been suggested (Chen
et al., 2006).

The important implications in pathogenesis prompted us
to re-examine the regulation of FGL2 transcription by
SARS-CoV N protein in both transfected and infected cells.
As a first step, we expressed SARS-CoV N protein in
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HEK293 cells. cDNA encoding SARS-CoV N protein was
PCR-amplified from a molecular clone of the SARS-CoV
subgenome (Chan et al, 2006) and subcloned into the
pCDNA3.1 vector. Western blot analysis indicated that N
protein was abundantly expressed in transfected cells
(Fig. 1a, compare lanes 1 and 2, and lanes 3 and 4). We
then verified the subcellular localization of N protein by

using confocal immunofluorescence microscopy as
described previously (Chin et al., 2007). Consistent with
previous reports (Rowland et al., 2005; You et al, 2005;
Fan et al., 2006), N protein localized predominantly to the
cytoplasm of transfected cells (Fig. 1b, transfected cells are
indicated by arrows, compare with neighbouring non-
transfected cells).
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Fig. 1. Expression and gene regulatory activity of SARS-CoV N protein in cultured cells. (a) Western blot analysis. HEK293
cells were mock-transfected with empty vectors (lanes 2 and 4) or transfected with pCDNAS3.1-V5-N (lane 1) or pCDNAS3.1-N
(lane 3). Lysed cells were immunoblotted with mouse monoclonal anti-V5 (Invitrogen; lanes 1 and 2) and rabbit polyclonal anti-
N (Imgenex; lanes 3 and 4). Experiments were repeated twice and similar results were obtained. (b) Confocal microscopic
analysis of subcellular localization. Vero cells were transfected with pCDNA3.1-V5-N (i-iii) and pCDNA3.1-N (iv—vi) and
stained with mouse monoclonal anti-V5 and mouse anti-N (Imgenex), respectively. Nuclei were stained with propidium iodide
(PI). Arrows indicate transfected cells. Results are representative of four independent experiments. Bar, 30 um. (c) Gene
regulatory activity. TLR3-expressing HEK293 cells were transfected with pISRE-Luc and progressively increasing amounts
(200, 400 and 600 ng; white, black and hatched bars, respectively) of expression vectors (Chan et al., 2006; Kok & Jin, 2006)
for the indicated viral proteins (S, SARS-CoV S; E, SARS-CoV E; N, SARS-CoV N; NS1, influenza A virus NS1). Twenty-four
hours after transfection, cells were stimulated with 1 pg poly (1:C) mi™" (pIC) for 12 h. The mock-treated group (Mock) was
treated with DMSO only. Results represent mean=+sD from three independent experiments. *P>0.05 by Student’s t-test,
indicating that expression of neither S nor E protein significantly influenced ISRE activity. TP<<0.05 by Student’s t-test,
indicating that the expression of either N or NS1 protein significantly inhibited ISRE-dependent expression of the luciferase

reporter.
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We next investigated whether SARS-CoV N protein
expressed in HEK293 cells might have gene regulatory
activity as it does in other cells (He et al., 2003; Yan et al.,
2006; Kopecky-Bromberg et al., 2007; Zhang et al., 2007;
Zhao et al., 2008). We used reporter plasmid pISRE-Luc, in
which the expression of firefly luciferase was driven by
IFN-stimulated response elements (ISRE). Because the
expression level of endogenous TLR3 in HEK293 cells was
very low, an expression vector for TLR3 (pCDNA3.1-TLR3;
Kok & Jin, 2006) was stably transfected into these cells.
Dual luciferase activity was assayed as described previously
(Chin et al., 2007; Choy et al., 2008) by normalizing the
readouts of firefly luciferase to those of Renilla luciferase
expressed from plasmid pRLSV40 (Promega) cotransfected
into the cells. Expression of N protein significantly
repressed ISRE-dependent transcription in a dose-depend-
ent manner (Fig. 1c), exactly as demonstrated by Kopecky-
Bromberg et al. (2007). The extent of repression induced
by N protein was comparable to that in the case of
influenza A virus NS1, another well-characterized viral IFN
antagonist (Krug et al., 2003; Kok & Jin, 2006; Siu et al.,
2009). In further support of the specificity of effect, the
repression was not seen when SARS-CoV S or E protein
was expressed (Fig. 1c). Thus, SARS-CoV N protein
expressed in HEK293 cells was able to repress ISRE
transcriptional activity, which controls IFN production.
Although only ~25% of the cells were transiently
transfected, more than 95 % of the transfected cells were
found to express both luciferase and the indicated viral
protein, as verified by confocal microscopy. Similar results
were also obtained from Vero cells (data not shown).

The stimulation of the FGL2 promoter by SARS-CoV N
protein has implications in not only the pathogenesis of
SARS but also the development of therapeutics (Robertson,
2003; Han et al., 2008). To shed light on whether and how
SARS-CoV N protein might activate transcription of the
FGL2 gene, we constructed the reporter plasmid pFGL2-
Luc, in which the expression of firefly luciferase is under

the control of the FGL2 promoter. This promoter,
containing nt —1000 to + 10 of the human FGL2 gene,
was PCR-amplified from genomic clone RP11-467H10
(ImaGenes). To confirm the activity of this construct, we
cotransfected it into HEK293 cells with an expression
plasmid for Sp1, a known activator of the FGL2 promoter
(Liu et al., 2003, 2006). Human Spl ¢cDNA was derived
from IMAGE clone 5928633 (ImaGenes) and subcloned
into pCDNA3.1. A more than threefold stimulation of
reporter expression by Spl demonstrated that pFGL2-Luc
sensitively reflected intracellular activity of the FGL2
promoter (Fig. 2a). Consistent with this result and a
previous report (Liu et al., 2006), treatment of transfected
cells with IFN-y led to approximately 4.5-fold activation of
reporter expression (Fig. 2a). Although only ~20 % of the
cells were transiently transfected, more than 90 % of the
transfected cells were found to express both luciferase and
Sp1/N protein, verified by confocal microscopy.

However, when we cotransfected pFGL2-Luc and an
expression plasmid for SARS-CoV N protein into
HEK293 cells, no induction of reporter activity was
observed (Fig. 2b). To further characterize the influence
of N protein on the expression of endogenous FGL2, we
analysed the steady-state amounts of FGL2 transcript in
HEK293 cells overexpressing Spl or N protein by
semiquantitative RT-PCR as described previously (Kok et
al., 2007; Siu et al., 2008). The glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) housekeeping gene was used as
an RT-PCR control. The relative amounts of FGL2 mRNA
normalized to the GAPDH transcript were obtained by
using Scion Image software. Primers for RT-PCR will be
provided upon request. While the expression of Spl
correlated with an elevation of the FGL2 transcript over
the basal level (Fig. 3a, compare lane 2 with lane 1),
expression of N protein did not alter the relative amount of
FGL2 mRNA in transfected HEK293 cells (Fig. 3a, lanes 3—
5 compared with lane 1). We then analysed protein
expression by using rabbit polyclonal anti-Spl, goat
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Fig. 2. Expression of SARS-CoV N protein did not stimulate the FGL2 promoter. HEK293 cells were transfected with pFGL2-
Luc (100 ng) plus progressively increasing amounts (100, 200, 400 and 600 ng) of Sp1 expression plasmid (a) or SARS-CoV
N protein expression plasmid (b). Ctrl, Control cells transfected with pFGL2-Luc and empty vector. As a positive control,
another group of cells was treated with 1000 U IFN-y for 16 h. Results represent mean+sb from three independent
experiments. P values (Student’s t-test) indicate the significance of the influence of either Sp1 or N protein expression on FGL2

promoter activity.

http://virsgmjournals.org



K.-L. Siu and others

|

(b) Vec Spi el \

kDa
100

(a) Vec  Spil

FGL2 Sp1

GAPDH

1 2 3 4 5

04 085 041 041 04 roLo KR -

Tubulin 55
1 2 3 4 5
(c) e (d)
=~ 201
> 16
G 2 12
< 84
(O 3 4 2 4l /
03 032 0.33 031 B
> T Ll 1
24 48 72
Time p.i. (h)
(9) Mock SARS-CoV (f) Mock SARS-CoV
24 48 72 24 48 72 hpi. 24 48 72 24 48 72hp..
e

FGL2 s s s S s a7 2 FGL2

o : GAPDH
KD 1 2 3 4 5 6
1 2 3 4 5 6

0.5 0.51 0.5 0.47 0.48 048

SARS-CoV

24 48 72 hp..
55

(@) Mock

24 48 72

FGL2
GAPDH

72

55
kDa

Fig. 3. SARS-CoV N protein did not induce the expression of FGL2 transcript or FGL2 protein in transfected and infected
cells. (a and b) HEK293 cells were mock-transfected with 1 ug pCDNA3.1 empty vector (Vec, lane 1) or transfected with 1 pg
pCDNAS.1-SP1 (Sp1, lane 2) or with progressively increasing amounts (0.5, 0.75 and 1 pg) of pCDNAS.1-N (lanes 3-5).
Semiquantitative RT-PCR (a) and Western blotting (b) were performed 48 h after transfection. (c) Vero cells were transfected
with increasing amounts (1, 1.5 and 2 pg) of pCDNAS.1-N and semiquantitative RT-PCR was carried out. (d) Infection of
HEK293/ACE2 (M) and Vero (A) cells with SARS-CoV (strain GZ50) at an m.o.i. of 5 in serum-free DMEM. (e—g) FGL2
expression was not induced in SARS-CoV-infected HEK293/ACE2 (e), Vero (f) or Calu3 (g) cells. Cells were either mock-
infected (lanes 1-3) or infected with SARS-CoV at an m.o.i. of 5 (lanes 4—6). Both detached and attached infected cells were
harvested at 24, 48 and 72 h p.i. Proteins were immunoblotted with antibodies against SARS-CoV N, FGL2 and a-tubulin (e, g)
or analysed by semiquantitative RT-PCR (f). Results are representative of three independent experiments. In (a), (c) and (f), the
ratio of FGL2 : GAPDH are given underneath the lane numbers.

polyclonal anti-FGL2 and mouse monoclonal anti-a-
tubulin (Santa Cruz). The accumulation of Spl protein
in the cells was consistently associated with an abrupt
increase in FGL2 protein level (Fig. 3b, lane 2 compared

with lane 1), whereas increased N protein expression had
no influence on the steady-state amounts of FGL2 (Fig. 3b,
lanes 3-5 compared with lane 1). Similar observations were
also made in Vero cells, where expression of N protein did
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not affect the level of FGL2 mRNA (Fig. 3¢). Thus, SARS-
CoV N protein did not induce the expression of FGL2
transcript or protein in transfected cells.

To clarify the influence of SARS-CoV N protein on the
expression of FGL2, we also examined the expression of
FGL2 protein in HEK293/ACE2, Vero and Calu-3 cells
infected with SARS-CoV strain GZ50 (m.o.i. of 5). The
virus was propagated in Vero cells in a biosafety level 3
laboratory as described by Chan et al. (2006). Viral RNA
copies were determined by quantitative RT-PCR as
described by Du et al. (2008). HEK293/ACE2 cells stably
express the SARS-CoV receptor angiotensin converting
enzyme 2 (Narayanan et al, 2008). Calu-3 cells are
polarized lung epithelial cells susceptible to SARS-CoV
infection and serve as a good model for the study of SARS-
CoV pathogenesis (Tseng et al, 2005; Yoshikawa et al.,
2009). Calu-3 cells were kindly provided by Dr Pingbo
Huang (Hong Kong University of Science and Technology)
and Dr Wing Hung Ko (Chinese University of Hong Kong)
and were cultured as described previously (Tseng et al.,
2005; Sun et al., 2008; Yue et al., 2008). Consistent with
previous reports (Chan et al., 2006; Narayanan et al., 2008),
the viral growth curves indicated a higher yield of progeny
virus in Vero cells than in HEK293/ACE2 cells (Fig. 3d). The
expression of N protein or mRNA in infected HEK293/
ACE2, Vero and Calu-3 cells was also verified by Western
blotting or RT-PCR (Fig. 3e—g). Next, we compared the
levels of FGL2 protein in mock- and SARS-CoV-infected
HEK293/ACE2 cells at three different time points, but no
significant difference was found (Fig. 3e, compare lanes 4-6
with 1-3). Likewise, the steady-state levels of FGL2
transcripts in mock- and SARS-CoV-infected Vero cells
were similar (Fig. 3f, compare lanes 4-6 with 1-3). Finally,
comparable amounts of FGL2 protein were also recovered
from mock- and SARS-CoV-infected Calu-3 cells (Fig. 3g,
lanes 4-6 compared with 1-3). Hence, the expression level of
FGL2 mRNA and protein in infected cells did not vary.

Here, we showed that SARS-CoV N protein did not
modulate the transcription of the human FGL2 gene. The
expression of N protein and its ability to repress ISRE-
dependent transcription in transfected cells were validated
(Fig. 1). The activity of the pFGL2-Luc reporter plasmid
was also confirmed with IFN-y and cellular transcription
factor Spl1 (Fig. 2a). Finally, the influence of N protein on
FGL2 expression was assessed with a luciferase reporter
assay (Fig. 2b), by RT-PCR (Fig. 3a, ¢ and f) and by
Western blotting (Fig. 3b, e and g). Collectively, our results
did not support the regulation of FGL2 transcription by
SARS-CoV N protein.

Our findings contradict a recent report on the induction of
the FGL2 promoter through activation of C/EBPu by
SARS-CoV N protein (Han et al., 2008). It is noteworthy
that the human FGL2 promoter used in our study contains
all of the cis regulatory elements described by Han et al.,
including the C/EBP site. In addition, the activity of our
pFGL2-Luc construct was supported experimentally by the

significant activation induced by cellular Sp1 transcription
factor (Fig. 2a). Finally, mutations were not found in the N
protein of SARS-CoV strain GZ50 used in this study (Guan
et al., 2003). While we do not understand whether different
experimental systems might explain different observations,
we would like to point out that our work was carried out in
transfected and infected HEK293, Vero and Calu-3 cells
(Figs 2 and 3), while Han et al. used only transfected CHO,
THP-1 and Vero cells in their study. We feel that our
demonstration of the unaltered expression of FGL2 protein
in infected HEK293/ACE2, Vero and Calu-3 cells (Fig. 3e—
g) might be more biologically relevant to SARS-CoV.

SARS-CoV N protein is structurally and functionally
related to MHV N protein. As such, both proteins are
capable of multimerization and RNA binding (Narayanan
et al., 2003; Luo et al., 2005; Zuniga et al, 2007). In
addition, both proteins have gene regulatory activity and
can repress IFN production (Kopecky-Bromberg et al.,
2007; Ye et al., 2007). However, SARS-CoV N protein also
possesses properties that are not shared with its MHV
counterpart. For example, SARS-CoV N protein localizes
predominantly to the cytoplasm (Rowland et al, 2005;
Surjit et al., 2005; You et al., 2005; Fan et al., 2006) and
rarely to the nucleolus (Qinfen et al., 2004; Li et al., 2005;
Timani et al., 2005; Zeng et al., 2008), whereas MHV N
protein is commonly found in the nucleolus (Wurm et al,,
2001; Chen et al., 2002). Hence, SARS-CoV N protein
probably functions in the cytoplasm to modulate cell
signalling and IFN production, but does not directly
regulate gene transcription in the nucleus. Nevertheless,
our findings that SARS-CoV N protein did not activate
FGL2 transcription suggest another important difference
between SARS-CoV N protein and its MHV homologue.
Our work also implies that FGL2 is unlikely to be involved
in the pathogenesis of SARS. In this regard, further
investigations are required to elucidate the molecular cause
of fibrin deposition and vascular thrombosis in SARS.
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