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The Nucleocapsid Protein of the SARS

Coronavirus: Structure, Function

and Therapeutic Potential
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Abstract As in other coronaviruses, the nucleocapsid protein is one of the core

components of the SARS coronavirus (CoV). It oligomerizes to form a closed

capsule, inside which the genomic RNA is securely stored thus providing the

SARS-CoV genome with its first line of defense from the harsh conditions of the

host environment and aiding in replication and propagation of the virus. In addition

to this function, several reports have suggested that the SARS-CoV nucleocapsid

protein modulates various host cellular processes, so as to make the internal milieu

of the host more conducive for survival of the virus. This article will analyze and

discuss the available literature regarding these different properties of the nucleo-

capsid protein. Towards the end of the article, we will also discuss some recent

reports regarding the possible clinically relevant use of the nucleocapsid protein, as

a candidate diagnostic tool and vaccine against SARS-CoV infection.

9.1 Introduction

By definition, nucleocapsid is a viral protein coat that surrounds the genome (either

DNA or RNA). Nucleocapsid protein is the major constituent of a viral nucleocap-

sid. It is capable of associating with itself and with the genome, thus packaging the

genome inside a closed cavity. In some viruses, nucleocapsid protein may also be

assisted by other viral cofactors to form the capsid. However, in coronaviruses

(including SARS-CoV), the nucleocapsid protein alone is capable of forming the

capsid. The primary advantage of the virus for encoding the nucleocapsid protein is

that the latter encloses and protects the viral genome from coming into direct

contact with the harsh environment in the host. In fact, in some simple viruses
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like hepatitis E virus and polio virus, the nucleocapsid protein is the only coat that

protects the genome from the outside world. However, in complex viruses, like

hepatitis B virus and coronaviruses (including SARS-CoV), the nucleocapsid is

covered by an additional coat composed of other viral proteins (spike protein is a

major component of this coat). Besides this property, nucleocapsid proteins of

several viruses have been demonstrated to play multiple regulatory roles during

viral pathogenesis. They are equipped with specific structural motifs and/or signa-

ture sequences, by which they associate with other viral/ host factors and skew the

host cellular machinery in such a manner that it becomes more favorable for the

survival of the virus. Nucleocapsid protein is also one of the most abundantly

expressed viral proteins and it is the major antigen recognized by convalescent

antisera. Hence, it is tempting to evaluate its potential as a candidate diagnostic tool

or vaccine against the virus.

Therefore, understanding the properties of the nucleocapsid protein is of utmost

importance to any virologist in order to understand the biology of the virus and

develop effective tools to control the infection. Since the identification and isolation

of SARS-CoV in 2003, several laboratories around the world have focussed their

research on characterization of various properties of the nucleocapsid protein. An

indirect measure of the curiosity among SARS-CoV researchers to study the

nucleocapsid protein is revealed from the fact that in PubMed the number of

SARS-CoV research publications focussed on nucleocapsid protein is second

only to those on spike protein. Evidence accumulated from these articles has helped

us gain substantial understanding of the properties of this protein. In this article, we

will provide a comprehensive description of all the different properties of the

nucleocapsid protein, as established by independent workers from several labora-

tories. We will conclude this article with the discussion of some of the remaining

challenges in this field that need to be addressed in future.

9.2 N-Protein: Structure and Composition

The nucleocapsid (N) protein is encoded by the ninth ORF of SARS-CoV. The

same ORF also codes for another unique accessory protein called ORF9b, though in

a different reading frame, whose function is yet to be defined. The N-protein is a

46-kDa protein composed of 422 amino acids (Rota et al. 2003). Its N-terminal

region consists mostly of positively charged amino acids, which are responsible for

RNA binding. A lysine-rich region is present between amino acids 373 and 390 at

the C-terminus, which is predicted to be the nuclear localization signal. Besides

these, an SR-rich motif is present in the middle region encompassing amino acids

177–207. Biophysical studies done by Chang et al. (2006) have suggested that this

protein is composed of two independent structural domains and a linker region. The

first domain is present at the N-terminus, inside the putative RNA binding domain,

and the second domain consists of the C-terminal region that is capable of self-

association. Between these two structural domains, there lies a highly disordered
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region, which serves as a linker. This region has been reported to interact with the

membrane (M) protein and human cellular hnRNPA1 protein (Fang et al. 2006; Luo

et al. 2005). Besides, this region is also predicted to be a hot spot for phosphoryla-

tion. Hence, in summary, the N-protein can be classified into three distinct regions

(Fig. 9.1), which may serve completely different functions during different stages

of the viral life-cycle. A similar mode of organization has been reported for other

coronavirus nucleocapsid proteins.

9.3 Stability of the N-Protein

In-vitro thermodynamic studies done by Luo et al. (2004b) using purified recombi-

nant N-protein have shown it to be stable between pH 7 and 10, with maximum

conformational stability near pH 9. Further, it was observed to undergo irreversible

thermal-induced denaturation. It starts to unfold at 35�C and is completely dena-

tured at 55�C (Wang et al. 2004). However, denaturation of the N-protein induced

by chemicals such as urea or guanidium chloride is a reversible process.

9.4 Posttranslational Modification

As in other coronavirus N-proteins, SARS-CoV N-protein has been predicted and

later experimentally proven to undergo various posttranslational modifications such

as acetylation, phosphorylation, and sumoylation.

Acetylation is the first modification of the N-protein to be experimentally

proven. By mass spectrometric analysis of convalescent sera from several SARS

patients, it has been shown that the N-terminal methionine of N is removed and all

1 422

GK62EE KEL105  S207PAR

177 SR 207 373 NLS 390
rich

motif

RNA binding domain
(45-181 aa)

self association domain
(285-422 aa)

S 177

Fig. 9.1 Structure of the SARS-CoV nucleocapsid protein. A schematic diagram showing differ-

ent domains identified to date. The numbers 1–422 correspond to the length in amino acids of the N
gene. GKEE represents the sumoylation motif (lysine residue). KEL is the RXL motif, responsible

for binding with cyclin D, and SPAR is the motif that gets phosphorylated by the cyclin–CDK

complex (serine residue). S177 is the serine 177 residue that gets phosphorylated by GSK3
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other methionines are oxidized and the resulting N-terminal serine is acetylated.

However, the functional relevance of this modification, if any, remains to be

elucidated (Krokhin et al. 2003).

Another unique modification of the N-protein is its ability to become sumoy-

lated. Studies done by Li et al. (2005a) have clearly established that heterologously

expressed N in mammalian cells is sumoylated. Using a site-directed mutagenesis

approach, the sumoylation motif has been mapped to the 62nd lysine residue, which

is present in a putative sumo-modification domain (GK62EE). Their data further

suggests that sumoylation may play a key role in modulating homo-oligomeriza-

tion, nucleolar translocation and cell-cycle deregulatory property of the N-protein.

Further experimental support regarding sumoylation of N-protein came from

another independent study carried out by Fan et al. (2006) wherein they have

demonstrated an association between the N-protein and Hubc9, which is a ubiquitin-

conjugating enzyme of the sumoylation system. They have also mapped the

interaction domain to the SR-rich motif, which is in agreement with the earlier

report. However, they failed to detect the involvement of the GKEE motif in

mediating this interaction (Fan et al. 2006).

Initially, the SARS-CoV N-protein was predicted to be heavily phosphorylated.

Later on, from results obtained in our laboratory as well as by other researchers, it is

now clear that the N-protein is a substrate of multiple cellular kinases. First

experimental evidence for the phosphorylation status of the N-protein came from

the study done by Zakhartchouk et al. (2005) in which, using [32P]orthophosphate

labelling, they were able to observe phosphorylation of adenovirus-vector-

expressed N-protein in 293T cells. Further studies done in our laboratory clearly

confirmed this observation. The majority of the N-protein was found to be phos-

phorylated at its serine residues (although the involvement of threonine and tyro-

sine residues could not be detected; they may be occurring in vivo). In addition,

using a variety of biochemical assays, it was proved that, at least in vitro, the

N-protein could become phosphorylated by mitogen-activated protein kinase (MAP

kinase), cyclin-dependent kinase (CDK), glycogen synthase kinase 3 (GSK3), and

casein kinase 2 (CK2). Also, this data provided preliminary indication regarding

phosphorylation-dependent nucleo-cytoplasmic shuttling of the N-protein (Surjit

et al. 2005). A recent report published byWu et al. (2008) has further confirmed that

N-protein is a substrate of GSK3 enzyme, both in vitro and in vivo. Using a variety

of biochemical and genetic assays, it was clearly demonstrated that serine 177

residue of N-protein was phosphorylated by GSK3. An antibody specific to phos-

pho 177 residue of the N-protein could efficiently detect the phospho N-protein

both in vitro and in SARS-CoV infected cells. Interestingly, biochemically

mediated inhibition of GSK3 activity in SARS-CoV infected cells also leads to

around 80% reduction in viral titer and subsequent induction of a virus-induced

cytopathic effect. The authors proposed that GSK3 may be a major regulator of

SARS-CoV replication, possibly by virtue of its ability to phosphorylate the

N-protein. However, phosphorylation of other viral and/or host proteins by GSK3

may also be a determinant of the observed cytopathic effect.
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9.5 Localization of the N-Protein

In contrast to the N-protein of many other coronaviruses, the SARS-CoV N-protein

is predominantly distributed in the cytoplasm, when expressed heterologously or in

infected cells (Surjit et al. 2005; You et al. 2005; Rowland et al. 2005). In infected

cells, a few cells exhibited nucleolar localization (You et al. 2005). As reported by

You et al. (2005), the N-protein contains pat4, pat7 and bipartite-type nuclear

localization signals. It has also been predicted to possess a potential CRM-1-

dependent nuclear export signal. However, no clear experimental evidence could

be obtained regarding the involvement of these signature sequences in regulating the

localization of the N-protein. Interestingly, studies done in our laboratory revealed

that the majority of N-protein localized to the nucleus in serum-starved cells. This

phenomenon could be reproducibly observed both in biochemical fractionation as

well as immunofluorescence studies. In addition, treatment of cells with specific

inhibitors of different cellular kinases such as CK2 inhibitor and CDK inhibitor

resulted in retention of a fraction of the N-protein in the nucleus, whereas GSK3 and

MAPK inhibitor had very little effect. Further, N-protein was found to be efficiently

phosphorylated by the cyclin–CDK complex, which is known to be active only in

the nucleus. The N-protein was also found to associate with 14-3-3 protein in a

phospho-specific manner and inhibition of the 14-3-3y protein level by siRNA

resulted in nuclear accumulation of the N-protein. Although these experiments are

too preliminary to conclusively provide any answer regarding the intracellular

localization of N-protein, nevertheless they do provide substantial clues regarding

the physical presence of the N-protein in the nucleus, under certain circumstances,

which may be a very dynamic phenomenon. Another study done by Timani et al.

(2005) using different deletion mutants of the N-protein fused to EGFP showed that

the N-terminal of N-protein, which contains the NLS 1 (aa 38–44), localizes to the

nucleus, whereas the C-terminal region containing both NLS 2 (aa 257–265) and

NLS 3 (aa 369–390) localizes to the cytoplasm and nucleolus. Using a combination

of different deletion mutants, they concluded that the N-protein may act as a shuttle

protein between cytoplasm–nucleus and nucleolus. Taken together, all these results

further suggest that the N-protein per se has the physical ability to localize to the

nucleus. Whether this localization is regulated through phosphorylation-mediated

activation of a potential NLS or piggy-backing by association with another cellular

nuclear protein or through any other mechanism remains to be established.

9.6 Genome Encapsidation: Primary Function of a Viral

Capsid Protein

Being the capsid protein, the primary function of the N-protein is to package the

genomic RNA in a protective covering. In order to achieve this structure, the

N-protein must be equipped with two different characteristic properties; such as
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(1) being able to recognize the genomic RNA and associate with it, and (2) self-

associate into an oligomer to form the capsid. The N-protein of SARS-CoV has

been experimentally proven to possess these properties in vitro, as discussed below.

9.6.1 Recognition and Binding with the Genomic RNA

The first experimental evidence regarding the RNA binding property of the

N-protein came from the work of Huang et al. (2004), in which, by NMR studies,

they proved the ability of the N-terminal domain to associate with several viral 30

untranslated RNA sequences. Additionally, Chen et al. (2007) reported the presence

of another RNA binding domain at the C-terminal region (residues 248–365) of the

N-protein, which was proposed to be a stronger interaction than that at the N

terminus. Based on structural analysis of the RNA–protein interaction, they have

further suggested that the genomic RNA is packaged in a helical manner by the

N-protein. In another report published by Luo et al. (2006), the RNA binding motif

of the N-protein was mapped to amino acid residues 363–382. In summary, the RNA

binding ability of the N-protein was attributed to its two distinct structural domains:

the N-terminal domain (residues 45–181) and the C-terminal dimerization domain

(residues 248–365). These two domains are spatially separated by long stretches of

disordered region. A recent study done by Chang et al. (2008) has demonstrated

RNA binding ability of these disordered regions. They have proposed that different

RNA binding domains of the N-protein may cooperate to enhance the overall RNA

binding efficiency of the N-protein and may also serve as interaction hubs for the

association of N-protein with other viral and/or host nucleic acid and/or proteins.

Perhaps the most convincing proof to date regarding the ability of the N-protein

to package the genomic RNA came from the work of Hsieh et al. (2005). They have

established a system to produce SARS-CoV VLPs by cotransfection of spike,

membrane, and envelope and nucleocapsid cDNAs into Vero E6 cells. While

testing the packaging of an RNA-bearing GFP fused to SARS-CoV packaging

signal into this particle, they observed that presence of the N-protein is an absolute

requirement. However, the N-protein was not essential for the assembly of the

empty particle per se. Further, by performing a filter binding assay using recombi-

nant N-protein, they were able to identify two independent RNA binding domains

in the N-protein; one at the N terminus (aa 1–235) and the other at the C terminus

(aa 236–384). These results are in agreement with previous findings and further

suggest that these two regions may be functional in vivo. Future experiments using

a model infection system will confirm these observations.

9.6.2 Formation of the Capsid

One of the most crucial properties required by the N-protein for genome encapsida-

tion is its ability to self-associate. Therefore, many laboratories have focused on
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characterizing this phenomenon, with an eye on developing possible interference

strategies that may help in limiting virus propagation.

Initial studies done in our laboratory using a yeast two-hybrid assay revealed that

N-protein is able to self-associate through its C-terminal amino acid 209 residues

(Surjit et al. 2004a). A parallel study done by He et al. (2004) using the mammalian

two-hybrid system and sucrose gradient fractionation also proved the ability of the

N-protein to self-associate to form an oligomer. They further mapped the interaction

region to amino acid 184–196 residues, encompassing the SR-rich motif. However,

there were some discrepancies regarding the interaction domain mapped in these

two studies. Later on, extensive biophysical and biochemical analysis done by

Chen’s laboratory (Yu et al. 2005, 2006) and Jiang’s laboratory (Luo et al. 2006,

2005) have enriched our understanding of the oligomerization process of the N-

protein. In summary, the SR-rich motif does possess binding affinity, but this is

specific for the central region (aa 211–290) of another molecule of N-protein,

instead of the SR-rich motif itself. The C-terminal region (aa 283–422) possesses

binding affinity for itself and to associate into a dimer, trimer, tetramer or hexamer,

in a concentration-dependent manner. The essential sequence for oligomerization of

the N-protein was identified to be residues 343–402. Interestingly, this region also

encompasses the RNA binding motif of the N-protein, which prompts us to specu-

late that there might be mutual interplay between RNA binding and oligomerization

activities of the N-protein. Further, the oligomerization was observed to be inde-

pendent of electrostatic interactions and addition of single strand DNA to the

reaction mixture containing tetramers of the N-protein promoted oligomerization.

Thus, it has been proposed that once the tetramer is formed by protein–protein

interaction between nucleocapsid molecules, binding with genomic RNA prompts

further assembly of the complete nucleocapsid structure.

9.7 Perturbation of Host Cellular Process by the N-Protein

Besides being the capsid protein of the virus, the N-protein of many coronaviruses

is known to double up as a regulatory protein. The N-protein of the SARS-CoV too

has been shown to modulate the host cellular machinery in vitro, thereby indicating

its possible regulatory role during its viral life-cycle. Some of the major cellular

processes perturbed by heterologous expression of the N-protein are discussed

below.

9.7.1 Deregulation of Host Cell Cycle

Three different groups have reported the ability of the N-protein to interfere with

the host cell cycle in vitro. Work done by Li et al. (2005a, 2005b) proved that

mutation of the sumoylation motif in the N-protein leads to cell cycle arrest.
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Work done in our laboratory has shown the inhibition of S phase progression in

cells expressing the N-protein (Surjit et al. 2006). Further, S-phase specific gene

products like cyclin E and CDK2 were found to be downregulated in SARS-CoV

infected cell lysate, which suggested that the observed phenomenon may be

relevant in vivo. In an attempt to further characterize the mechanism of cell

cycle blockage induced by the N-protein, several biochemical and mutational

analysis were carried out. Results thus obtained demonstrated that the N-protein

directly inhibits the activity of the cyclin–CDK complex, resulting in hypopho-

sphorylation of retinoblastoma protein with a concomitant downregulation of

E2F1-mediated transactivation. Analysis of RXL and CDK phosphorylation

mutant N-protein identified the mechanisms of inhibition of CDK4 and CDK2

activity to be different. Whereas the N-protein could directly bind to cyclin D and

inhibit the activity of the CDK4–cyclinD complex, inhibition of CDK2 activity

appeared to be achieved in two different ways: indirectly by downregulation of

protein levels of CDK2, cyclin E, and cyclin A, and by direct binding of N-protein

to the CDK2–cyclin complex.

A third piee of evidence supporting the ability of N-protein to deregulate the host

cycle came from the work of Zhou et al. (2008). They observed slower transition

from S to G2/M phase and slower growth rate in N-protein-expressing 293T cells.

They also observed a similar phenomenon in human peripheral blood lymphocyte

and K 562 cells infected with a retrovirus expressing SARS-CoV N-protein.

9.7.2 Inhibition of Host Cell Cytokinesis

While searching for interaction partners for the C terminus of N-protein (aa 251–422)

by following a yeast two-hybrid library screening approach, Zhou et al. (2008)

discovered human elongation factor 1 alpha (EF1a) as a candidate partner. The

specificity of the interaction was confirmed by various in-vitro and in-vivo assays.

Further, expression of N-protein induced aggregation of EF1a. It is known that the

majority of cellular EF1a is bound to F-actin and promotes F-actin bundling, which

is a key event during cytokinesis (Kurasawa et al. 1996; Yang et al. 1990). Hence,

the authors tested whether N-protein-induced aggregation of EF1a affected F-actin

bundling and cytokinesis. As expected, they observed significantly fewer F-actin

bundles in N-protein-expressing cells. In fact, a similar F-actin distribution pattern

was also observed by Surjit et al. (2004b) in COS-1 cells. Further, the authors

observed multinucleated cells in N-protein-expressing cells at a later time point

(72 h post-transfection), indicating inhibition of cytokinesis in those cells. Specific-

ity of the above data has been confirmed by the use of different deletion mutants of

the N-protein, in which only the C-terminal domain of the N-protein (responsible for

binding with EF1a) was able to reproduce the above results. Thus, it has been

suggested that EF1a binding by the N-protein leads to its aggregation, resulting in

inhibition of F-actin bundling and subsequent blocking of cytokinesis.
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9.7.3 Inhibition of Host Cell Translation Machinery

EF1a is known to play a key role during the peptide elongation stage of translation.

Therefore, it is an attractive candidate for pathogen proteins to manipulate its

activity in order to skew the host translation machinery. For example, HIV-type 1

gag polyprotein has been shown to interact with EF1a and impair translation

in vitro (Cimarelli and Luban 1999). Since Zhou et al. (2008) observed an interac-

tion between EF1a and SARS-CoV N-protein, they further tested whether it inter-

fered with the host translation machinery. Indeed, presence of the N-protein

inhibited total cellular translation, both in vitro and in vivo, in a dose-dependent

manner. Moreover, exogenous addition of excess EF1a could reverse the N-protein-

induced translation inhibition, thus suggesting that N-protein exerts its effect by

interfering with EF1a function. However, it remains to be confirmed whether a

similar effect is recapitulated in vivo.

9.7.4 Inhibition of Interferon Production

Production of interferon (IFN) is one of the primary host defense mechanisms.

However, SARS-CoV infection does not result in IFN production. Nevertheless,

pretreatment of cells with IFN blocks SARS-CoV infection (Spiegel et al. 2005;

Zheng et al. 2004). Based on this observation, Palese’s laboratory has studied the

IFN inhibitory property of different SARS-CoV proteins, which revealed that

ORF3, ORF6 as well as the N-protein have the ability to independently inhibit

IFN production through different mechanisms. The N-protein was found to inhibit

the activity of IRF3 and NFkB in host cells, resulting in inhibition of IFN synthesis.

IRF3 activity was also blocked by ORF3, ORF6 proteins, but inhibition of NFkB

activity was a property unique to the N-protein. In addition, ORF3, ORF6 pro-

teins were able to block STAT1 activity through different mechanisms (Kopecky-

Bromberg et al. 2007). All these data suggest that SARS-CoV may employ multiple

factors to check the activity of the host immune system and N-protein may be one of

the major partners in this process. It may be possible that these different factors act

independently during different stages of the viral life cycle. In that case, regulatory

activity of the N-protein will be as indispensible as its structural activity.

9.7.5 Modulation of TGFb Signaling Pathway

During the SARS outbreak, a large number of patients developed severe inflamma-

tion of the lungs, which subsequently led to acute respiratory distress syndrome

(Ding et al. 2003; Nicholls et al. 2003). Acute respiratory distress syndrome is

characterized by pulmonary fibrosis, which results in lung failure and subsequent
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death of the patient. The TGFb signaling pathway plays a critical role in pulmonary

fibrosis (Roberts et al. 2006; Border and Noble 1994). It enhances the expression of

extracellular matrix (ECM) proteins, accelerates the secretion of protease inhibitors

and reduces the secretion of proteases, thereby leading to deposition of ECM

proteins. TGFb may also induce pulmonary fibrosis directly by stimulating chemo-

tactic migration and proliferation of fibroblasts as well as by fibroblast–myofibro-

blast transition. Hence, it is worth speculating that some of the SARS-CoV encoded

factors may be modulating the TGFb signaling pathway. In fact, proteins of several

other viruses, such as hepatitis C virus core, NS3 and NS5 protein, adenovirus E1A,

human papilloma virus E7, human T-lymphotropic virus Tax and Epstein–Barr

virus LMP1, have been reported to modulate the TGFb pathway. In general, these

proteins directly bind with smad proteins and alter the innate signaling pathway.

Interestingly, a recent report published by Zhao et al. (2008) revealed that

N-protein of SARS-CoV also interacts with smad3 and modulates the activity of

the TGFb pathway. By performing a smad binding element (SBE)-driven reporter

assay, RT-PCR and immunohistological analysis of TGFb target genes such as

PAI-1 (plasminogen activator inhibitor 1) and collagen in a variety of cell lines and

SARS patients, the authors have clearly proved that N-protein indeed enhanced

the activity of the TGFb signaling pathway. Further, they observed that the effect of

N-protein on TGFb signaling was mediated through smad3 only (independent of

the involvement of smad4). While trying to unravel the mechanism behind this

phenomenon, they observed that N-protein specifically associated with the MH2

domain of smad3 (stronger binding affinity for phospho smad3) interrupted the

interaction between smad3 and smad4, and enhanced the interaction between

smad3 and transcriptional coactivator p300 in a dose-dependent manner. To further

confirm the above data, they performed a chromatin immunoprecipitation assay

at the SBE region of PAI-1 promoter in HPL1 cells and detected the presence of

N-protein in the complex of smad3 and p300. Interestingly, however, N-protein

inhibited TGFb-induced apoptosis of HPL1 cells (it is a well established fact that

smad3 activation induces apoptosis of HPL1 cells). Thus, N-protein appears to

employ a clever mechanism whereby, on the one hand, it enhances the activity of

the TGFb signaling pathway, thus leading to enhanced expression of a subset of

genes (such as ECM protein coding genes), and on the other hand, it blocks the

programmed cell death of the host cell. It would be interesting to unravel the

mechanism behind this unique property of the N-protein.

9.7.6 Upregulation of COX2 Production

Another major proinflammatory factor induced during viral infection is the cyclo-

oxygenase-2 (COX2) protein. Using 293T cells expressing the N-protein, Yan et al.

(2006) have shown that expression of the N-protein leads to upregulation of COX2

protein production in a transcriptional manner. They have further demonstrated that

the N-protein directly binds to the NFkB response element present in the COX2
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promoter through a 68 aa residue binding domain (aa 136–204) and activates its

transcription.

Although the N-protein is known to associate with stretches of nucleic acids, to

date there is no other documentation or prediction of its sequence-specific DNA

binding activity (as a transcription factor). In such a scenario, the above observa-

tion, if reproducible in vivo, may really be a unique property of the N-protein and

may further add to the established regulatory functions of the N-protein.

9.7.7 Upregulation of AP1 Activity

Exogenously expressed N-protein has been reported to enhance the DNA bind-

ing activity of c-fos, ATF-2, CREB-1, and fos B in an ELISA-based assay,

thus suggesting an increase in AP1 activity in these cells (He et al. 2003). The

mechanistic details and functional significance of this phenomenon remain to be

elucidated.

9.7.8 Induction of Apoptosis

Earlier work done in our laboratory has shown that N-protein, when expressed in

Cos-1 monkey kidney cells, induces apoptosis in the absence of growth factors.

Attempts to understand the mechanism of programmed cell death revealed that the

N-protein downmodulated the activity of prosurvival factors such as extracellular

regulated kinase, Akt and bcl 2, and upregulated the activity of proapoptotic factors

like caspase-3 and caspase-7 (Surjit et al. 2004b). However, this phenomenon was

not observed in another cell line of epithelial lineage (huh7). The above observation

was further confirmed by Zhang et al. (2007). They reported that serum starvation-

induced apoptosis of N-protein-expressing COS-1 cells involved activation of

mitochondrial pathway. Another elegant study done by Diemer et al. (2008)

has further extended our understanding regarding the apoptotic property of the

N-protein. Through a series of experiments involving both a model infection system

of SARS-CoV and transient transfection of N-protein, the authors have confirmed

that N-protein induces an intrinsic apoptotic pathway resulting in activation of

caspase-9, which further leads to activation of caspase-3 and -6. Their data further

revealed that these activated caspases cleave the N-protein at residues 400 and 403

and that nuclear localization of N-protein is an absolute requirement for cleavage.

In addition, the authors have reported that the apoptosis-inducing ability of the

N-protein is highly cell type specific. Only in cells where N-protein localizes to

both nucleus and cytoplasm (Vero E6 and A549 cells), is it able to activate caspase

and become cleaved; however, in cell lines where it localizes to the cytoplasm only

(Caco2 and N-2a cells), no activation of caspase is observed. It remains to be

studied whether this phenomenon is actually recapitulated in vivo.
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9.7.9 Upregulation of Prothrombinase (hfgl2) Gene

Transcription

A recent report by Han et al. (2008) revealed that, of all the SARS-CoV structural

proteins, only N-protein specifically induced the transcription of prothrombinase

gene in THP-1 and Vero cells. By performing luciferase reporter assay of hfgl2
promoter in N-protein-expressing cells and electrophoretic mobility shift assay

using N-protein-transfected cell lysate, they demonstrated that N-protein expres-

sion induced the binding of transcription factor C/EBPa to its cognate response

element present in hfgl2 promoter, leading to enhanced transcription of hfgl2 gene.
Since lungs of SARS patients have been shown to contain high amount of fibrin, the

authors proposed that N-protein-mediated enhanced production of prothrombinase

gene may contribute to the development of thrombosis in SARS patients.

9.7.10 Association with Host Cell Proteins

Luo et al. (2005) have reported the interaction between hnRNPA1 and N-protein by

using a variety of biochemical and genetic assays. The interaction was found to be

mediated through the middle region (aa 161–210) of N-protein. If relevant in vivo,

this interaction may play a significant role in regulation of the viral RNA synthesis.

Another interesting study done by Luo et al. (2004a) has reported association

between the N-protein and human cyclophylin A. By SPR (Surface Plasmn reso-

nance) analysis they have shown it to be a high affinity interaction. Although the

significance of this interaction is not known in vivo, they have proposed that this

interaction might be crucial for viral infection. Notable is the fact that HIV-1 gag

also binds with human cyclophylin A and this interaction is crucial for HIV

infection (Gamble et al. 1996).

Recently, Zeng et al. (2008) have reported that N-protein associates with B23, a

phosphoprotein in the nucleus. By performing in vivo coimmunoprecipitation in

hela cells and GST pull-down assay using purified recombinant N-protein, the

authors have demonstrated direct interaction between B23 and N-protein. The

interaction domain has been mapped to amino acid residues 175–210 of N-protein,

which include the SR-rich motif. B23 plays a key role in centrosome duplication

during cell division. Phosphorylation of B23 at threonine-199 residue is known to

regulate its function (Okuda et al. 2000, Tokuyama et al. 2001). In order to

demonstrate the functional significance of N-protein interaction with B23 protein,

the authors tested the phosphorylation status of threonine-199 residue of B23 in the

presence of N-protein. Interestingly, N-protein was able to block threonine-199

phosphorylation. Based on this observation, the authors have proposed that

N-protein exerts its effect on cell cycle deregulation by modulating the activity of

B23 protein.
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In summary, although several regulatory roles have been proposed for the

SARS-CoV N-protein using a variety of in-vitro experimental systems, no clear

evidence exists for their occurrence in vivo. In the absence of a suitable in-vivo

experimental system, all these functions remain speculative.

9.8 N-Protein: An Efficient Diagnostic Tool

One of the most essential steps to limit the outbreak of any infectious disease is the

ability to diagnose the causative agent at the earliest possible time, which can be

achieved by detecting some of the markers that are specifically expressed by the

pathogen or by identifying some of the host factors that are specifically produced

during infection. N-protein, being one of the predominantly expressed proteins at

the early stage of SARS-CoV infection, against which a strong antibody response is

initiated by the host, has been proposed to be an attractive diagnostic tool.

In serum of SARS-CoV patients, the N-protein has been detected as early as day

one of infection by ELISA using monoclonal antibodies against it (Che et al. 2004).

Further, a comparative study to detect SARS-CoV-specific IgG, SARS-CoV RNA,

and the N-protein during early stages of infection has demonstrated that the

detection efficiency of the N-protein is significantly higher than the other two

markers (Li et al. 2005b).

Researchers have been mainly focussing on two different strategies by which

nucleocapsid can be used as a diagnostic tool: (1) development of efficient mono-

clonal antibodies against the N-protein, and (2) production of recombinantly

expressed, highly purified N-protein for detection of N-protein-specific antibody

in the host.

Using a phage display approach, Flego et al. (2005) have identified human

antibody fragments that recognize distinct epitopes of the N-protein. These may

help develop efficient reagents to detect N-protein in the infected host. Further,

several laboratories have been trying to develop efficient monoclonal antibodies

against the major immunodominant epitopes of the N-protein, that can be used in

ELISA to detect SARS-CoV at an early stage of infection (Shang et al. 2005; Liu

et al. 2003; He et al. 2005; Woo et al. 2005). In another interesting study, Liu et al.

(2005) have developed an immunofluorescence assay using antirabbit N-protein

antibody that can specifically detect N-protein from throat wash samples of SARS-

CoV patients at day two of illness.

Several other workers have focussed on economical production of highly pur-

ified recombinant N-protein using a variety of heterologous expression systems that

can be used in ELISA to detect N-protein-specific antibody in the patient sample.

N-protein has been produced in abundant quantity using a codon-optimized gene in

E. coli (Das and Suresh 2006). Saijo and coworkers have successfully expressed

recombinant N-protein using a baculovirus expression system, which was found to

be 92% efficient in neutralizing antibody assay (Saijo et al. 2005). In another study,

Liu et al. have expressed full length N-protein using a yeast expression system

9 The Nucleocapsid Protein of the SARS Coronavirus 141



(Liu et al. 2004). However diagnostic use of recombinant N-protein has been a

problematic issue because of several reasons as discussed below.

Bacterially expressed N-protein has been reported to produce false seropositivity

owing to interference of bacterially derived antigens (Leung et al. 2006; Yip et al

2007). In addition, several studies have shown cross-reactivity between full-length

N-protein of SARS and polyclonal antisera of group 1 animal coronaviruses,

which may lead to faulty detection (Sun and Meng 2004). Another study done by

Woo et al. also reported cross-reactivity of full-length recombinant N-protein with

antisera of HCoV-OC43 and HCoV-229E infected patients, thus giving false

positive results. They were able to minimize this false positivity by further verify-

ing the ELISA results with Western blot assay using recombinant N and spike

proteins of SARS-CoV (Woo et al. 2004).

Later, studies done by Qiu et al. and Bussmann et al. showed that the recombi-

nantly expressed C-terminal of the N-protein acts more specifically in detecting

SARS-CoV-specific antisera in comparison to full-length N-protein (Qiu et al.

2005; Bussmann et al. 2006). It is noteworthy that this region is predicted to

encompass major antigenic sites of the N-protein.

In a recent report, Shin et al. (2007) demonstrated significantly higher efficacy of

phosphorylated N-protein as a diagnostic antigen. They expressed the N-protein in

insect cells, where it was phosphorylated by posttranslational modification. When

the antigenicity of this protein was compared to that of a bacterially expressed

N-protein (unphosphorylated) or to that of a dephosphorylated N-protein (by treat-

ment with protein phosphatase 1) using SARS-positive or -negative patient serum,

phosphorylated N-protein did not show any cross-reactivity with SARS-negative

serum, thereby reducing the number of false positives. Also, the phosphorylated

protein showed considerably stronger cross-reactivity with an N-protein-specific

monoclonal antibody. Based on these observations, the authors have proposed the

use of a phosphorylated N-protein as a better diagnostic agent.

Also, several reports have been published dealing with the detection of

N-protein-specific IgM by ELISA or indirect immunofluorescent assay (Chang

et al. 2004; Hsueh et al. 2004; Woo et al. 2004). However, in these studies, IgM

antibodies became detectable later than IgG antibodies, which is in contrast to the

phenomena observed in most other pathogens.

A recent report published by Yu et al. (2007) attempted to solve this problem by

using a truncated N-protein (aa 122–422) as an antigen in IgM ELISA. They found

the IgM response appeared three days before detection of the IgG response, which

is in agreement with the results obtained from other known pathogens. Further, their

results showed 100% specificity and sensitivity of the truncated protein in detecting

N-protein-specific IgM from patients with laboratory confirmed SARS cases in

comparison to healthy volunteers. The authors have suggested that the IgM capture

ELISA using this truncated N-protein may be more effective in serodiagnosis of

SARS-CoV at an earlier time.

In another interesting report, Woo et al. (2005) carried out comparative studies

to evaluate the relative diagnostic efficacy of recombinantly expressed N and Spike

proteins. They observed sensitivity of recombinant N-IgG ELISA to be significantly
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higher than that of recombinant S-IgG ELISA. The reverse was true in the case of

IgM ELISA using recombinant N and S proteins. Based on this data, they have

suggested the practise of ELISA for detection of IgM against both S and N proteins

instead of N alone (Woo et al. 2005).

Taken together, all this data does support the notion that the N-protein may be

used as an efficient diagnostic tool for detection of SARS-CoV infection. Never-

theless, production scale-up and further validation of specificity using patient

samples will determine the possible clinical use of these reagents.

9.9 N-Protein: A Suitable Vaccine Candidate

One of the most clinically relevant uses of the N-protein can be its use as a

protective vaccine against SARS-CoV infection. N-protein is one of the major

antigens of the SARS-CoV. Also, N-protein analyzed from different patient sam-

ples shows least variation in the gene sequence (Tong et al. 2004), therefore

indicating it to be a stable protein, which is a primary requirement for an efficient

vaccine candidate.

Earlier studies carried in Collins’, Rao’s, and Li’s laboratories have clearly

shown that antiserum to the N-protein does not contain neutralizing antibodies

against SARS-CoV (Buchholz et al. 2004; Pang et al. 2004; Liang et al. 2005). This

may be attributed to the localization of N-protein inside the viral envelope, which

will not be accessible to the antibody during infection. It is noteworthy that the

most effective SARS-CoV structural protein that can induce neutralizing antibody

production is the S-protein (Buchholz et al. 2004). The S-protein antibody could

block viral infection with 100% efficiency. On the other hand, although unable to

induce humoral immunity, expression of N-protein induced significant cytotoxic

T-lymphocyte (CTL) response (Buchholz et al. 2004; Gao et al. 2003; Zhu et al.

2004). Induction of N-protein-specific CTLs will help limit the infection by lysing

virus infected cells. This will also limit the spread of virus. Thus, N-protein-based

vaccines may further augment the protection efficiency when coadministered with

S-protein-based vaccine. Several laboratories have been exploring various strate-

gies to evaluate the potential of N-protein as a vaccine candidate.

In an elegant work done by Kim et al. (2004), calreticulin-fused N-protein

expressing vaccinia virus has been shown to generate potent N-protein-specific

humoral and T-cell immune responses in mice. As reported by the authors, fusion

with calreticulin specifically enhanced the efficiency and significantly reduced the

titer of the challenging vector (vaccinia virus). The authors have proposed that

N-protein may be the logical choice as a target antigen in the event of S-protein

antibody-dependent enhancement (ADE) of infection. However, the ADE phenom-

enon has not been observed during spike-mediated vaccination (Buchholz et al.

2004). Another study done by Wang et al. (2005) has attempted to use plasmid

DNA expressing S, M, and N proteins as an efficient vaccine candidate. Although

they report the production of some B-cell and T-cell responses against N-protein,
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strong immune response was obtained for the S and M proteins, thus scaling down

the choice of N-protein as a suitable candidate vaccine (Wang et al. 2005). A

similar plasmid-mediated vaccination approach has also been reported by Zhao

et al. (2004), in which they immunized mice with the DNA construct (pCI vector)

expressing the N-protein. They too reported the generation of a robust B-cell and

T-cell immune response in animals. Another group of workers has also reported

successful use of the N-protein as a DNA vaccine. They immunized mice by

intramucosal injection of the N-protein-expressing plasmid vector and were able

to obtain specific humoral and T-cell responses (Zhu et al. 2004).

The N-protein has also been reported to be of potential interest as a peptide-

based vaccine. A systematic study done by Liu et al. (2006) has revealed the

immunodominant epitopes of the N-protein which could efficiently stimulate

immune response. They have also deduced some conserved immunodominant

epitopes in mouse, monkey, and humans, which may help in design of the vaccine.

A recent report published by Gao’s laboratory provides further evidence regard-

ing the efficiency of an N-protein-based vaccine (Zhao et al. 2007). By using

overlapping synthetic peptides spanning the N-protein, they have identified domi-

nant helper T-cell epitopes in the N-protein of SARS-CoV. Immunization of mice

with peptides emcompassing these dominant TH cell epitopes resulted in strong

cellular immunity in vivo. Priming with the helper peptides significantly acceler-

ated the immune response induced by the N-protein. Further, by fusing with a

conserved neutralizing epitope from the spike protein of SARS-CoV, two of the TH

cell epitope-bearing peptides assisted in the production of higher titer neutralizing

antibodies in vivo, in comparision to spike epitope alone or its mixture with TH

epitope of N. Thus, it is practically possible to generate a better immune response

by using a fusion of N and S protein. However, the TH epitopes identified in their

report are specific to mouse, and will therefore not be useful for human. Neverthe-

less, their data provides useful information for the design of peptide-based anti-

SARS-CoV vaccines.

Another interesting study conducted by Pei et al. (2005) reports the possible use

of the N-protein as a mucosal vaccine candidate. They expressed the N-protein in

Lactobacillus lactis, which is a food-grade bacteria, and challenged the mice either

orally or intramucosally. As preliminary evidence, they were able to observe

significant N-protein-specific IgG in the sera of orally challenged animals.

9.10 Future Perspective

It is a significant achievement for the research community that, within a short span

of time, we have been able to obtain a more-or-less clear understanding regarding

the structural and functional properties of the N-protein. However, it is a fact worth

mentioning that all the studies done here were performed with in-vitro experiments,

using recombinantly expressed N-protein, in isolation. So at present, all we can

conclude is that the N-protein per se has the physical ability to perform the above
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described functions, in other words N-protein does bear the necessary signature

sequence or motifs or conformation to perform these functions under suitable

circumstances. Whether a similar event is recapitulated in vivo during viral infec-

tion will be dependent on several criteria: (1) the net effect of other viral factors on

the activity of N-protein, (2) the net translation and turnover rate of N-protein,

(3) a conducive intracellular milieu, and (4) the net modulation of an already

skewed cellular pathway by other viral factors. Hence, it will be interesting to

reevaluate the properties of N-protein in a SARS-CoV infection model. However,

owing to the limited user-friendliness and accessibility of an infection system, we

must probably still resort to in vitro systems for further analysis of the character-

istics of N-protein. One of the better experimental systems has already been

established by Chang’s laboratory (Hsieh et al. 2005), in which all the structural

proteins were coexpressed to form VLP in 293T cells. If this system can be further

improved to optimize the rate of synthesis of these different proteins to a level near

that in vivo, it will at least enable us to study the net effect of the N-protein with

respect to other viral proteins. Further establishment of a replicon system may also

be helpful. In addition, some of the interesting preliminary observations reported by

several laboratories need to be analyzed in detail. To begin with, the reported

interaction of the N-protein with the genomic RNA packaging signal needs to be

further characterized and mapped. Since the oligomerization domain and the RNA

binding regions of the N-protein overlap with each other, the suggested possibility

of regulated genome incorporation and capsid assembly should be further charac-

terized with the aid of a replicon system or a particle assembly system. In addition,

the reported ability of the N-protein to modulate different cellular pathways should

be further characterized in the particle assembly system or at least in the presence of

other viral accessory proteins.

The most unique and significant property of the N-protein revealed by prelimi-

nary studies is its ability to act as a sequence-specific DNA binding factor. It has

been shown to bind the NFkB response element of COX2 promoter and to enhance

COX2 gene expression. This activity may be further empowering the N-protein to

manipulate the entire gene expression programme of the infected cell. Therefore,

studies should be initiated to analyze this phenomenon in detail. It seems to

deserve so much attention because another study done by Palese’s laboratory

has proved the ability of the N-protein to inhibit NFkB activity, which results in

inhibition of IFN synthesis. Further, Liao et al. (2005) have reported the activation

of NFkB by N-protein in Vero E6 cells and He et al. (2005) failed to detect any

change in NFkB activity in the same cells. Therefore it needs to be clarified

whether N-protein enhances NFkB activity and, if so, whether upregulation of

COX2 transcription by direct DNA binding is a property specific to that promoter

or whether it is a global phenomenon. In such a scenario, there may be compli-

cated cross-talk between the ability of N-protein to deregulate the expression of

COX2 and IFN in infected cells.

Lastly, the N-protein is known to be the most abundantly expressed protein of

the SARS-CoV. Therefore, any information generated from the analysis of this

protein, whether in vivo or ex vivo, will definitely help to increase our understanding
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of the biology of SARS-CoV and may someday help to design better protective

tools against it.
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