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Review

Murine coronavirus neuropathogenesis: determinants
of virulence

Timothy J Cowley and Susan R Weiss

Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA

Murine coronavirus, mouse hepatitis virus (MHV), causes various diseases
depending on the strain and route of inoculation. Both the JHM and
A59 strains, when inoculated intracranially or intranasally, are neurovirulent.
Comparison of the highly virulent JHM isolate, JHM.SD, with less virulent JHM
isolates and with A59 has been used to determine the mechanisms and genes
responsible for high neuropathogenicity of MHV. The focus of this review is on
the contributions of viral spread, replication, and innate and adaptive immu-
nity to MHV neuropathogenesis. JHM.SD spreads more quickly among neu-
rons than less neurovirulent MHVs, and is able to spread in the absence of the
canonical MHV receptor, CEACAM1a. The observation that JHM.SD infects
more cells and expresses more antigen, but produces less infectious virus per
cell than A59, implies that efficient replication is not always a correlate of high
neurovirulence. This is likely due to the unstable nature of the JHM.SD spike
protein (S). JHM.SD induces a generally protective innate immune response;
however, the strong neutrophil response may be more pathogenic than pro-
tective. In addition, JHM.SD induces only a minimal T-cell response, whereas
the strong T-cell response and the concomitant interferon-c (IFN-c) induced by
the less neurovirulent A59 is protective. Differences in the S and nucleocapsid
(N) proteins between A59 and JHM.SD contribute to JHM.SD neuropathogeni-
city. The hemmagglutinin-esterase (HE) protein may enhance neuropathogeni-
city of some MHV isolates, but is unlikely a major contributor to the high
neuroviruence of JHM.SD. Further data suggest that neither the internal (I)
protein nor nonstructural proteins ns4, and ns2 are significant contributors to
neurovirulence. Journal of NeuroVirology (2010) 16, 427–434.

Keywords: JHM and A59 strains; mouse hepatitis virus; neurovirulence, viral
spread

Background

Murine coronavirus, mouse hepatitis virus (MHV), is
a large, enveloped, single-stranded, positive-sense
RNA virus (Figure 1). MHV can cause a wide range
of illness depending on the strain and the route of
infection; these include respiratory, gastrointestinal,
hepatic, and central nervous system (CNS) diseases.

These infections provide models for the study of
encephalitis and demyelinating diseases such as
multiple sclerosis (MS), hepatitis (Bender and
Weiss, 2010; Weiss and Navas-Martin, 2005), and
severe acute respiratory syndrome (SARS) (De
Albuquerque et al, 2006).

Neurotropic strains of MHV cause disease in the
CNS when inoculated intracranially or intranasally.
Virus generally does not reach the brain of immu-
nocompetent mice if inoculated intrahepatically or
intraperitoneally. After intranasal inoculation, the
virus travels transneuronally up the olfactory nerves
to the olfactory bulbs where it spreads into the brain
parenchyma and eventually into the spinal cord
(Barnett and Perlman, 1993; Perlman et al, 1989,
1995; Sun and Perlman, 1995). MHV is thought to
also spread through the cerebrospinal fluid, follow-
ing intracranial inoculation (Wang et al, 1992). CNS
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infection leads to viremia and spread of virus to other
susceptible organs such as the liver (Lavi et al, 1986,
1988).

Two neurotropic strains that are commonly studied
areA59and JHM.A59 is a tissue culture–adapteddual-
tropic strain that infects the liver as well as the brain.
A59 causes moderate to severe hepatitis and in the
brain,mild encephalitis and demyelination (Lavi et al,
1984; Phillips et al, 1999); MHV-induced demyelin-
ation provides a model for multiple sclerosis. Infec-
tious A59 is generally cleared by 10 days post
intracranial inoculation, after which mice develop
demyelination peaking at 3 to 4 weeks post infection
(Houtman and Fleming, 1996b; Matthews et al, 2001;
Sutherland et al, 1997). JHM was isolated from a
paralyzed mouse (Cheever et al, 1949) and subse-
quently serially passaged in mouse brains, after
which various clones were isolated. The use of mul-
tiple JHM clones, with different levels of neuroviru-
lence, by various laboratories has necessitated the
use of additional nomenclature to distinguish among
these isolates. JHM.SD (formerly designated as
MHV-4) (Ontiveros et al, 2003), the focus of this
review, is among the most neurovirulent isolates

(Fazakerley et al, 1992; Gallagher et al, 1990), causing
lethal encephalitis. An intracranial inoculation with
only a few plaque-forming units (PFU) of JHM.SD kills
nearly all the infected mice within about 1 week. Like
A59, JHM induces demyelinating disease in the sur-
viving mice (Lampert et al, 1973; Perlman et al, 1987;
Weiner, 1973).

Because A59 and JHM.SD display vastly different
levels of neurovirulence, we have used them to
investigate the viral determinants of high MHV-
induced neuropathogenesis. JHM.SD has a 50%
lethal dose (LD50) of less than 10 PFU after intracra-
nial inoculation of 4-week-old C57BL/6 (B6) mice,
whereas A59 is approximately 1000-fold less viru-
lent, with a LD50 of 3000 to 5000 PFU (Iacono et al,
2006; MacNamara et al, 2005). Both A59 and JHM.SD
infect all major CNS cell types, including neurons,
astrocytes, and microglia; viral antigen is found
throughout the brain after infection with either virus,
but JHM.SD produces more widespread infection,
with larger foci of viral antigen expression (Fishman
et al. 1985; Lavi et al, 1988; Matsubara et al, 1991;
Parham et al, 1986).

Several factors contribute to enhanced lethality of
highly encephalitic JHM isolates, such as JHM.SD.
These include spread, replication, and adaptive and
innate immunity. The kinetics of viral replication
and antigen expression as well as host response are
diagrammed in Figure 2. Several viral proteins have
been investigated as to their role in strain-specific
differences in MHV neurovirulence. A diagram of the
MHV virion with structural proteins indicated as
well as a schematic showing the locations of genes
encoding both structural and nonstructural viral
proteins is shown in Figure 1.

The expression of either the spike or nucleocapsid
protein of JHM within the A59 background confers a
decrease in LD50 to less than 10 PFU after intracra-
nial inoculation (Cowley et al, 2010; Iacono et al,
2006; Navas and Weiss, 2003; Phillips et al, 1999).
The virulence factors as well as the mechanisms by
which viral proteins enhance neurovirulence are
discussed below.

MHV spread

Neuron-to-neuron spread
In primary hippocampal neuronal cultures, JHM.SD
spreads more extensively than A59, suggesting that
there is an inherent difference in spread among
neurons in the absence of host factors such as the
immune response. In these in vitro cultures, both
A59 and JHM.SD produce foci of infection that
increase in size over time, without increasing in
number; this occurs more rapidly in JHM.SD-
infected cultures as compared with A59-infected
cultures. JHM.SD produces very low levels of infec-
tious virus in the medium as compared with
A59 (Bender et al, 2010), suggesting that JHM.SD
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Figure 1 Schematic representation of the MHV virion and
genome. (A) The MHV virion contains a helical nucleocapsid
consisting of nucleocapsid protein (N) bound to a positive-
sense RNA genome. The viral envelope contains spike peplomers
(S), small envelope protein (E), and membrane protein (M).
Depending on the viral strain, the viral envelope may also contain
hemagglutinin-esterase protein (HE) and the internal protein (I).
(B) MHV genome. The position of MHV genes are shown along
with the relative sizes, except for ORF1a and ORF1b, which are
truncated in the diagram (represented by hash marks). Note that
that there will be some variation by strain.
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spread is primarily neuron to neuron (Bender et al,
2010; Phillips et al, 2002). In rat hippocamapal
neurons and in the neuronal cell line OBL-21, a
JHM isolate used by S. Dales et al was observed to
move transneuronaly in a primarily retrograde move-
ment with some anterograde movement as well
(Pasick et al, 1994).

The availability of reverse genetics systems has
promoted the mapping of pathogenic properties to
viral genes. Analysis of A59/JHM chimeric viruses
demonstrated that the spike protein is largely respon-
sible for the rapid spread of JHM. Replacement of the
spike gene of A59 with that of JHM (rA59/SJHM)
confers increased spread in the brain and in primary
hippocampal neurons, and conversely replacement
of the JHM spike gene with that of A59 (rJHM/SA59)
results in reduced spread in the brain (Iacono et al,
2006; Phillips et al, 2002). Some JHM isolates with
spike mutations are attenuated for encephalitis, but
still induce demyelination. One such isolate,
JHM2.2-V-1, was selected as an escape variant for
neutralization by anti-spike monoclonal antibody
J2.2. It has an L1114F amino acid substitution in
the spike and is glial tropic; it fails to infect neurons,
which most likely explains its attenuation for
encephalitis (Wang et al, 1992). In the context of
JHM/A59 chimeric viruses, the nucleocapsid protein
of JHM also confers increases in the extent of viral
antigen expressed in the brain; however, the mech-
anism is uncertain and nucleocapsid protein does
not enhance neuron-to-neuron spread in primary
hippocampal neuron cultures (Cowley et al, 2010).

Carcinoembryonic antigen–related cell adhesion
molecule 1a (CEACAM1a) receptor-dependent and
-independent spread
Another factor that contributes to high neuroviru-
lence is the ability of some JHM variants, such as

JHM.SD and JHM cl-2 (Taguchi et al, 1985), to spread
in the absence of the canonical MHV receptor, CEA-
CAM1a. This was originally demonstrated in tissue
culture (Gallagher et al, 1992; Taguchi et al, 1999)
and more recently in primary hippocampal neuron
cultures (Bender et al, 2010). A very small number of
cells in primary neuronal cultures derived from
ceacam1a�/� mice were infected by A59 or JHM.
SD; however, A59 failed to spread beyond the ini-
tially infected neurons, whereas JHM.SD spread
robustly. Furthermore, when ceacam1a�/� mice
were inoculated with sufficiently high titers of
JHM.SD, but not A59, they developed lethal CNS
disease (Miura et al, 2008). Thus, the ability to
spread in the absence of CEACAM1a may allow
JHM.SD to spread more rapidly than A59 and/
or infect different neuronal subsets.

The expression of CEACAM1a protein by neurons
has never been demonstrated. When measured by
quantitative reverse transcriptase–polymerase chain
reaction (qRT-PCR), expression was barely above
background and may have been due to contamination
of other, CEACAM1a-expressing, cell types (Bender
et al, 2010). It was suggested that JHM cl-2 may first
infect microglia, which had been demonstrated to
express CEACAM1a (Ramakrishna et al, 2004), and
then spread into neurons (Nakagaki and Taguchi,
2005). However, the observations that there are
very few foci of infected ceacam1a�/� neurons com-
pared to wild-type neurons and that A59 fails to
spread from initially infected ceacam1a�/� neurons
suggest that neurons express CEACAM1a, which is
essential for spread of A59, but not JHM. It is not clear
how either strain enters ceacam1a�/� neurons.

Most JHM isolates are not capable of CEACAM1a-
independent spread. One such isolate, JHM.IA, like
JHM.SD, is highly neurovirulent, and both viruses
spread rapidly in the CNS and are uniformly fatal
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Figure 2 Diagram of parameters that correlate with neurovirulence. Shown are schematic drawings of the kinetics of replication, viral
antigen, T cells, neutrophils, and macrophages in the brains of 4-week-old C57BL/6 mice infected intracranially with A59 compared with
JHM.SD during the first 2 weeks of infection. Note that the graph is cropped and macrophage titers by day 7 in JHM.SD-infected mice are
approximately 4 times that of A59. JHM-infected mice typically die by day 7 at a low dose (10–50 PFU) of virus.
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in 4- to 6-week-old mice (Haspel et al, 1978;
Knobler et al, 1981; MacNamara et al, 2005;
Ontiveros et al, 2001; Perlman et al, 1987). However,
JHM.SD is significantly more virulent than JHM.IA
when assessed in a different model system, in which
suckling mice are inoculated intranasally and nursed
on dams previously immunized with JHM.IA
(Ontiveros et al, 2003). Thus the inability of JHM.
IA to carry out CEACAM1a-independent spread may
contribute to subtle differences in virulence, but
the fact that JHM.IA is similarly virulent to JHM.
SD in adult B6 mice suggests that CEACAM1a-
independent spread is likely not the only reason
for enhanced virulence of JHM.SD in adult mice.
Furthermore, it is quite possible that CEACAM1a-
independent spread is mechanistically different in
primary neurons as compared with cell lines.

Hemagglutinin-esterase
The role of hemagglutinin-esterase (HE) in neuro-
virulence and spread has been a subject of much
speculation with evidence both for and against a role
for HE in neurovirulence (LaMonica et al, 1991;
Yokomori et al, 1992, 1993, 1995). However, it
was demonstrated that a recombinant A59 expres-
sing the hemagglutinin-esterase of the MHV-S strain
and the spike protein of JHM.SD was more neuro-
virulent than an isogenic virus that does not express
HE (Kazi et al, 2005). However, abrogation of the
expression of HE within a recombinant JHM.SD
genome had no affect on neurovirulence (unpub-
lished data). This implies that HE can enhance neu-
rovirulence for some strains, but that HE either fails
to modulate JHM.SD neurovirulence or the effect of
HE expression during JHM infection is not detectable
due to the very high neurovirulence of JHM.

Replication

Infectious viral titers in the brains of mice infected
with MHV do not always correlate with the severity
of the infection. When inoculated at equivalent PFU,
A59 and JHM.SD replicate to similar titers in the
brain, even though JHM.SD is more lethal and
expresses more intracellular antigen in the CNS
(Cowley et al, 2010; MacNamara et al, 2005; Phillips
et al, 1999). In addition, recombinant A59 expressing
the JHM.SD spike gene (rA59/SJHM) replicates to
lower final titers than A59, even though, like JHM.
SD, it has an LD50 of less than 10 PFU and spreads
more efficiently in the CNS than A59 (Phillips et al,
1999). This may be due to the unstable nature of the
JHM.SD spike protein, which can lead to receptor-
independent conformational changes and premature
inactivation (Gallagher and Buchmeier, 2001;
Krueger et al, 2001). Consistent with this, the JHM.
SD spike is more sensitive to heat and high pH
treatments (Tsai et al, 2003). Perhaps as a conse-
quence, JHM.SD produces more virus particles per

PFU than A59 (unpublished data) and replicates to
significantly 100- to 1000-fold lower titers in tissue
culture (Cowley et al, 2010; Phillips et al, 1999).
However, titer is indicative of disease severity in
some cases, when comparing two viruses expressing
the same spike protein. For example, recombinant
A59 expressing the JHM nucleocapsid (rA59/NJHM) is
more lethal and infects more cells in the CNS than
A59, and this is associated with greater replication in
the brain (Cowley et al, 2010).

Innate immune response

Infections with A59 or JHM.SD generate different
cytokine/chemokine profiles. Infections with either
virus induces macrophage inhibitory factor (MIF)
and tumor necrosis factor-a (TNF-a), which remain
elevated throughout infection. A59 induces a strong
protective interferon-g (IFN-g) response (Rempel
et al, 2004a; Scott et al. 2008). JHM.SD, on the other
hand, induces a weaker IFN-g response (Rempel
et al, 2004a; Scott et al, 2008) and there is one
report of a stronger IFN-b response early in JHM.
SD infection (Rempel et al, 2004a). Additionally,
JHM.SD induces more macrophage chemoattrac-
tants, such as macrophage inflammatory protein-1a
and -1b (MIP-1a and MIP-1b) and MIP-2, consistent
with the greater number of macrophages recruited
into the CNS during JHM.SD infection (Iacono
et al, 2006; Rempel et al, 2004b). The robust mac-
rophage infiltration induced by JHM.SD partially
maps to the JHM.SD spike gene, as evidenced by
the greater level of macrophage recruitment in
the CNS of rA59/SJHM-infected mice as compared
with A59-infected animals (Rempel et al. 2004b;
Scott et al, 2008).

Shortly after MHV infection, neutrophils traffic to
the brain and release matrix metalloproteinases
(MMPs). The combination of cytokines and MMPs
causes disruption of the blood-brain barrier, which
facilitates the entry of mononuclear cells (Zhou et al,
2002). JHM.SD infection leads to the recruitment of
greater numbers of neutrophils than A59 infection,
likely a result of the increased level of MIP-2 during
JHM infection (Iacono et al, 2006; Rempel et al,
2004a; Scott et al, 2008). Depletion of neutrorophils
during infection with the more attenuated DM var-
iant of JHM resulted in a reduction in inflammatory
cell infiltration, increased viral replication, and
increased lethality, leading to the conclusion that
neutrophils were protective against MHV infection
(Zhou et al, 2003). However, although neutrophils
are important in early control of virus, they can be
pathogenic in generating toxic reactive oxygen spe-
cies. Indeed, the greater recruitment of neutrophils
during JHM.SD infection compared to A59 was dem-
onstrated to be more destructive than protective
(Iacono et al, 2006). Natural killer cells also enter
the brain early in infection. They secrete IFN-g ,

Murine coronavirus neuropathogenesis

430 TJ Cowley and SR Weiss



which may assist in clearing virus early in infection
before the adaptive immune response develops
(Iacono et al, 2006; Rempel et al, 2004a).

Adaptive immune response

The adaptive immune response, both B cell and
T cell, is important in restricting MHV infection.
B cell–deficient mice can clear virus with normal
kinetics, but in the absence of neutralizing antibo-
dies, virus reappears in the CNS, but not the liver,
about 2 weeks post infection (Lin et al, 1999;
Matthews et al, 2001). SCID (severe combined immu-
nodeficiency) and nude mice fail to clear virus,
indicating that T cells are important for clearance
(Fazakerley et al, 1992; Houtman and Fleming,
1996a). CD8 T cells are primarily responsible for
viral clearance, whereas CD4 T cells are required
for CD8 T-cell recruitment and maintenance
(Stohlman et al, 1998). Adoptive transfer of CD4 T
cells alone does not restrict virus replication, but
depletion of CD4 T cells prevents CD8 T cell–medi-
ated protection (Sussman et al, 1989). Consistent
with the role for CD8 T cells in viral clearance,
b2-microglobulin–deficient mice, which are deficient
in major histocompatibility complex (MHC) class I
expression, are significantly more susceptible to
A59 infection (Gombold et al, 1995).

Viral strain–dependent differences in T-cell
response make significant contributions to virulence.
JHM.SD induces a weak T-cell response, whereas the
less virulent JHM 2.2-V-1 and A59 induce robust
responses (Iacono et al, 2006; Marten et al, 2003;
Rempel et al, 2004a). Quantification of virus specific
T cells after JHM 2.2-V-1 infection showed that
priming and the initiation of T-cell expansion occurs
in the cervical lymph nodes (CLNs). Dendritic cells
(DCs) carrying virus or viral antigen migrate from the
brain to the CLNs where antigen-specific T-cell prim-
ing is believed to occur (Dorries, 2001; Stevenson
et al, 1997); treatment of DCs with pertussis toxin
prevents them from migrating from the CLNs and, in
turn, prevents T-cell trafficking into the brain
(Karman et al, 2004). After initial expansion in the
CLNs, T cells expand further in the spleen before
trafficking to the brain (Marten et al, 2003). Infectious
JHM.SD is barely detectable in CLNs, whereas
A59 viral titers are much higher (Macnamara et al,
2008). The induction of a robust T-cell response does
not map to spike, as rA59/SJHM induces a strong
T-cell response and infectious viral titers similar to
A59 are detected in CLNs (Cowley et al, 2010;
Iacono et al, 2006; Macnamara et al, 2008;
Rempel et al, 2004b). The cytolytic activity as well
as the production of IFN-g by CD8 T cells are crucial
for the ability to clear infection from the CNS
(Marten et al, 2001; Parra et al, 1999). Whereas
perforin is important for clearance from astrocytes
(Lin et al, 1997; Parra et al, 2001), IFN-g facilitates

cytolytic killing by up-regulating MHC expression on
infected cells and mediates clearance from oligoden-
drocytes (Bergmann et al, 2003; Parra et al, 1999).
The mechanism of viral clearance from neurons is
not yet known.

Role of viral proteins in neuropathogenesis

As discussed above, spike and nucleocapsid proteins
have been implicated in strain differences in virulence.
Several other MHV proteins have been investigated as
candidate virulence determinants. Two MHV non-
structural proteins, ns2 andns5a, havebeen implicated
in type I interferon antagonism (Koetzner et al, 2010;
Zhao andWeiss, unpublished data). ns2 is predicted to
have cyclic phosphodiesterase (CDP) activity. Muta-
tions in either of two predicted catalytic histidines of
ns2 of A59 confer the loss of the ability to replicate in
the liver, but have no affect on neurovirulence or
in vitro replication (Roth-Cross et al, 2009). Similarly,
a deletion of the ns2 gene of JHM had no affect on
replication in vitro (Schwarz et al, 1990), and had no
detectable effect on virulence after intracranial inocu-
lation (personal communication, J. Leibowitz and
S. Perlman). These data suggest that either the ability
to resist interferon signaling is not as important in the
CNS as in the liver or that resistance to interferon
signaling by MHV is mediated through a different
mechanism in the CNS. ns5a, like ns2, is nonessential
for replication in vitro (Yokomori andLai, 1991), but its
role in neurovirulence has not been reported.

There are data indicating that the adenosine
diphosphate ribose phosphatase (ADRP; X or macro)
domain of nsp3 (encoded by opening reading
frame 1a [ORF1a]) (Gorbalenya et al, 1991; Putics
et al, 2005, 2006), internal protein, and ns4 are not
likely to be important to the neurovirulence of JHM
or A59. Mutation of the predicted catalytic residue in
the ADRP domain of nsp3 of A59 does not alter the
ability of virus to replicate in vitro or the CNS
(unpublished data); however, interestingly, such
mutations confer reduced replication in the liver
(Eriksson et al, 2008). Abrogation of the internal
protein (I) expression in the A59 genome had no
affect on replication in the CNS (Fischer et al, 1997)
or lethality after intracranial inoculation (unpub-
lished data), and JHM ablated for ns4 expression
was similar in lethality and CNS replication as
wild-type virus (Ontiveros et al, 2001).

Conclusion

There is still much to learn about the mechanisms
responsible for the high neurovirulence of JHM.SD.
These include defining the roles, if any, that the
envelope proteins, membrane (M) and small mem-
brane (E), play in neurovirulence, and determining
the possible impact of the many nonstructural
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proteins encoded in the replicase locus and the role
of ns5a in neurovirulence. In addition, it is not fully
understood how viral strain differences in the innate
immune response may affect pathogenesis. It is also
not well understood why JHM.SD fails to spread to
and/or replicate in the CLNs, and whether this is
responsible for the weak T-cell response to JHM.SD

infection of the CNS and the ensuing high
neurovirulence.

Declaration of interest: The authors report no con-
flicts of interest. The authors alone are responsible
for the content and writing of the paper.
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