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Severe acute respiratory syndrome (SARS) emerged unexpectedly in 2003 and posed
an enormous threat to international health and economy.1–4 By the end of the
epidemic in July 2003, 8098 probable cases were reported in 29 countries and regions
with a mortality of 774 (9.6%).5 SARS re-emerged at small scales in late 2003 and early
2004 in South China after resumption of wild animal trading activities in markets.6,7
THE VIRUS AND ITS ORIGIN

Members of the Coronaviridae family are classified into 3 groups based on serologic
and, more recently, genetic similarity. Coronaviruses (CoVs) are found in a wide range
of animal species including cat, dog, pig, rabbit, cattle, mouse, rat, chicken, pheasant,
turkey, whale, as well as humans. Before the SARS epidemic, the only recognized
coronaviruses causing respiratory tract infection in humans were HCoV-OC43 and
HCoV-229E. In 2003, a previously unrecognized CoV was detected from SARS
patients,8–15 and was confirmed to be the causative agent for SARS; it became known
as SARS-CoV. Retrospective serologic surveys suggested that cross-species trans-
mission of SARS-CoV or its variants from various animal species to humans might
have occurred frequently in the wet market, as a high seroprevalence was detected
among animal handlers who had no notable SARS-like illnesses.16

The role of masked palm civets in transmitting SARS-CoV to humans was first sus-
pected in 2003 when a closely related variant of SARS-CoV was detected from palm
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civets in Dongmen market, Shenzhen.17 Further epidemiologic evidence was obtained
during a small-scale outbreak in late 2003 and early 2004, in which 3 of the 4 patients
had direct or indirect contact with palm civets.6,18 Subsequent sequence analysis sug-
gested that the SARS-CoV–like virus has not been circulating among market masked
civets for a long period, and therefore the true natural reservoir for SARS-CoV was
sought. In 2005, CoVs that are similar to SARS-CoV were found in horseshoe bats
by 2 independent research teams.19,20 These bat SARS-like CoVs share 88% to
92% sequence homology with human or civet isolates, but with key differences found
in the region encoding spike (S) protein that is critical in determining host range and
tissue tropism.21 The data suggest that bats could be a natural reservoir of a close
ancestor of SARS-CoV, and that the CoVs seem to have used an entirely new receptor
when they crossed species from bats to palm civets and humans.

In addition to masked palm civets and bats, other animal species might have been
involved in the evolution and emergence of SARS-CoV. At least 7 animal species can
harbor SARS-CoV in certain circumstances, including raccoon dog, red fox, Chinese
ferret, mink, pig, wild boar, and rice field rat.21
EPIDEMIOLOGY

In November 2002, there was an unusual epidemic of severe pneumonia of unknown
origin in Foshan, Guangdong Province in southern China, with a high rate of transmis-
sion to health care workers (HCWs).22,23 A retrospective analysis of 55 patients
admitted to a chest hospital with atypical pneumonia in Guangzhou between January
24 and February 18 2003 showed positive SARS-CoV in the nasopharyngeal aspirates
(NPA), whereas 48 (87%) patients had positive antibodies to SARS-CoV in their conva-
lescent sera. Genetic analysis showed that the SARS-CoV isolates from Guangzhou
had the same origin as those in other countries, with a phylogenetic pathway that
matched the spread of SARS to other parts of the world.24

A 64-year-old physician from southern China, who had visited Hong Kong (HK) on
21 February 2003 and died 10 days later of severe pneumonia, was the source of
infection causing subsequent outbreaks of SARS in HK and several other coun-
tries.1–3,25 At least 16 hotel guests or visitors were infected by the Guangdong physi-
cian while they were visiting friends or staying on the same floor of Hotel M, where the
physician had stayed briefly. Through international air travel, these visitors spread the
infection globally within a short period.

SARS seems to spread by close person-to-person contact via droplet transmission
or fomite.26 The high infectivity of this viral illness is shown by the 138 patients (many of
whom were HCWs) who were hospitalized with SARS within 2 weeks as a result of
exposure to a single patient (a visitor to Hotel M), who was admitted with
community-acquired pneumonia (CAP) to a general medical ward at the Prince of
Wales Hospital (PWH) in HK.1,27 This super-spreading event was believed to be
related to the use of a jet nebulizer, driven by air at 6 L/min, for the administration of
aerosolized salbutamol to an index patient, together with overcrowding and poor
ventilation in the hospital ward.1,28 SARS-CoV was also detected in respiratory secre-
tions, feces, urine, and tears of infected individuals.28 In addition, there was evidence
to suggest that SARS might have spread by airborne transmission in a major commu-
nity outbreak at the Amoy Garden, a private residential complex in HK.29 Higher naso-
pharyngeal viral load was found in patients living in adjacent units of the same block
inhabited by the index patient at the Amoy Garden, whereas a lower, but detectable,
nasopharyngeal viral load was found in patients living further away from the index
patient.30 Air samples obtained from a room occupied by a SARS patient and swab
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samples taken from frequently touched surfaces in rooms and in a nurses’ station
were positive by polymerase chain reaction (PCR) testing.31 The temporal-spatial
spread of SARS among inpatients in the index medical ward of the PWH in HK was
also consistent with airborne transmission.32 These data support SARS having the
potential to be converted from droplet to airborne droplet transmission,27–32 and
they emphasize the need for adequate respiratory protection in addition to strict
contact and droplet precautions when managing SARS patients.

CLINICAL FEATURES

The estimated mean incubation period was 4.6 days (95% confidence interval [CI]
3.8–5.8 days), whereas the mean time from symptom onset to hospitalization varied
between 2 and 8 days, decreasing in the course of the epidemic. The mean time
from onset to death was 23.7 days (CI 22.0–25.3 days), whereas the mean time
from onset to discharge was 26.5 days (CI 25.8–27.2 days).33 The major clinical
features on presentation include persistent fever, chills/rigor, myalgia, dry cough,
headache, malaise, and dyspnea. Sputum production, sore throat, coryza, nausea
and vomiting, dizziness, and diarrhea are less common features (Table 1).1–4,34

Watery diarrhea was a prominent extrapulmonary symptom in 40% to 70% of
patients with SARS 1 week into the clinical course of the illness.35,36 Intestinal biopsy
specimens taken by colonoscopy or autopsy revealed evidence of secretory diarrhea
with minimal architectural disruption, but there was evidence of active viral replication
within the small and large intestines.36 Reactive hepatitis was a common complication
of SARS-CoV infection, with 24% and 69% of patients respectively having increased
alanine aminotransferase (ALT) levels on admission and during the subsequent course
of the illness. Those with severe hepatitis had worse clinical outcomes, but chronic
hepatitis B itself was not associated with disease severity.37

SARS-CoV was detected in the cerebrospinal fluid and serum samples of 2 cases
with status epilepticus.38,39 The data suggest that a severe acute neurologic
syndrome might occasionally accompany SARS.
Table 1
Clinical features of SARS on presentation

Symptom % of Patients with Symptom

Persistent fever >38�C 99–100

Nonproductive cough 57–75

Myalgia 45–61

Chills/rigor 15–73

Headache 20–56

Dyspnea 40–42

Malaise 31–45

Nausea and vomiting 20–35

Diarrhea 20–25

Sore throat 13–25

Dizziness 4.2–43

Sputum production 4.9–29

Rhinorrhea 2.1–23

Arthralgia 10.4

Data from Refs. 1–4,25
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Older subjects might have atypical presentation such as decrease in general well-
being, poor feeding, fall/fracture,40 and, in some cases, delirium, without the typical
febrile response (temperature >38�C).40–42 In contrast, young children (<12 years of
age) often ran a more benign clinical course mimicking other viral upper respiratory
tract infections, whereas teenagers tended to have a clinical course similar to that
of adults.1,43 There was no reported fatality in young children and teenage
patients,43–46 but SARS in pregnancy carried a significant risk of mortality.47 Orchitis
was reported as a complication in male patients.48 A meta-analysis showed overall
seroprevalence rates of 0.1% for the general population and 0.23% for HCWs,
although the true incidence of asymptomatic infection remains unknown.49

A case-control study involving 124 medical wards in 26 hospitals in Guangzhou and
HK has identified 6 independent risk factors of super-spreading nosocomial outbreaks
of SARS (Box 1): minimum distance between beds less than 1 m, performance of
resuscitation, staff working while experiencing symptoms, SARS patients requiring
oxygen therapy or noninvasive positive pressure ventilation (NPPV), whereas avail-
ability of washing or changing facilities for staff was a protective factor.50 Experimental
studies have shown that the exhaled air particle dispersion distances from patients
receiving oxygen via a simple oxygen mask and a jet nebulizer were 0.4 m and at least
0.8 m, respectively.51,52 Exhaled air distances from NPPV via the different face masks
could range from 0.4 m to 1 m, with more diffuse room contamination for face masks
that require connection to the whisper swivel exhalation device.53,54 These data have
important clinical implications in preventing any future nosocomial outbreaks of SARS
and other respiratory infections. HCWs should take adequate respiratory precautions
when managing patients with CAP of unknown cause that is complicated by respira-
tory failure within these distances.

The clinical course of SARS generally followed a typical pattern35: phase I (viral repli-
cation) was associated with increasing viral load and was clinically characterized by
fever, myalgia, and other systemic symptoms that generally improved after a few
days; phase II (immunopathologic injury) was characterized by recurrence of fever,
hypoxemia, and radiological progression of pneumonia with reductions in viral load.
The high morbidity of SARS was highlighted by the observation that, even when there
was only 12% of total lung field involved by consolidation on chest radiographs, 50%
of patients would require supplemental oxygen to maintain satisfactory oxygenation
greater than 90%,55 whereas about 20% of patients would progress into acute respi-
ratory distress syndrome (ARDS) necessitating invasive ventilatory support.34 Peiris
and colleagues35 showed a progressive decrease in rates of viral shedding from
Box 1

Independent risk factors of super-spreading nosocomial outbreaks of SARS

Minimum distance between beds <1 m (odds ratio [OR] 6.98, 95% CI 1.68–28.75, P 5 .008)

Washing or changing facilities for staff (OR 0.12, 95% CI 0.02–0.97, P 5 .05)

Performance of resuscitation (OR 3.81, 95% CI 1.04–13.87, P 5 .04)

Staff working while experiencing symptoms (OR 10.55, 95% CI 2.28–48.87, P 5 .003)

SARS patients requiring oxygen therapy (OR 4.30, 95% CI 1.00–18.43, P 5 .05)

SARS patients requiring NPPV (OR 11.82, 95% CI 1.97–70.80, P 5 .007)

Data from Yu IT, Xie ZH, Tsoi KK, et al. Why did outbreaks of severe acute respiratory syndrome
occur in some hospital wards but not in others? Clin Infect Dis 2007;44:1017–25.
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nasophargynx, stool, and urine from day 10 to day 21 after symptom onset in 20
patients who had serial measurements with reverse transcriptase (RT)-PCR. Thus,
clinical worsening during phase II was most likely the result of immune-mediated
lung injury as a result of an overexuberant host response and could not be explained
by uncontrolled viral replication.35

LABORATORY FEATURES

Lymphopenia, low-grade disseminated intravascular coagulation (thrombocytopenia,
prolonged activated partial thromboplastin time, increased D-dimer), increased
lactate dehydrogenase (LDH), and creatinine phosphokinase (CPK) were common
laboratory features of SARS.1–3,56,57 Absolute lymphopenia occurred in 98% of cases
of SARS during the clinical course of the disease. The CD4 and CD8 T lymphocyte
counts declined early in the course of SARS, whereas low counts of CD4 and CD8
at presentation were associated with adverse clinical outcome.58 The CD3 and CD4
T cell percentages were reported to be negatively correlated with the appearance of
immunoglobulin G (IgG) antibody against SARS-CoV.59

A retrospective study in Toronto found that all laboratory variables except absolute
neutrophil count (ANC) showed fair to poor discriminatory ability in distinguishing
SARS from other causes of CAP, and that routine laboratory tests may not be reliable
in the diagnosis of SARS.60 Nevertheless, when evaluating patients with CAP and no
immediate alternative diagnosis who are epidemiologically at high risk, a low ANC on
presentation, along with poor clinical and laboratory responses after 72 hours of anti-
biotic treatment, may raise the index of suspicion for SARS and indicate a need to
perform SARS-CoV testing.61 Scoring systems may help identify patients who should
receive more specific tests for influenza or SARS.62

RADIOLOGICAL FEATURES

Radiographic features of SARS generally resemble those found in other causes of
CAP.63 The more distinctive radiographic features of SARS include the predominant
involvement of lung periphery and the lower zone in addition to the absence of cavi-
tation, hilar lymphadenopathy, or pleural effusion.1,63 Radiographic progression
from unilateral focal air-space opacity to multifocal or bilateral involvement during
the second phase of the disease, followed by radiographic improvement with treat-
ment, is commonly observed.1,63 In a case series, 12% of patients developed sponta-
neous pneumomediastinum, and 20% of patients developed evidence of ARDS in
a period of 3 weeks.35 The incidence of barotrauma (26%) in intensive care unit
(ICU) admissions was high despite the application of low-volume and low-pressure
mechanical ventilation.64 High-resolution computed tomography (HRCT) of thorax
was useful in detecting lung opacities in cases with a high index of clinical suspicion
of SARS but unremarkable chest radiographs. Common HRCT features included
ground-glass opacification, sometimes with consolidation, and interlobular septal
and intralobular interstitial thickening, with predominantly a peripheral and lower
lobe involvement (Fig. 1).65

PATHOGENESIS

The route of entry for SARS-CoV in humans is through the respiratory tract, mainly via
droplet transmission. Although human intestinal cells have proven to be susceptible to
SARS-CoV replication, the role of the intestinal tract as a portal of entry remains uncer-
tain.66 Similarly, although infectious viruses were found in stool samples, there was



Fig. 1. Thoracic HRCT of a patient with SARS showing typical early changes with solitary
ground-glass opacification at the left lower lobe.
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insufficient evidence to support the fecal-oral route of transmission for SARS-CoV
infection.

The surface envelop S protein of SARS-CoV seems to play a key role in establishing
infection and determining the cell and tissue tropism. The SARS-CoV S protein has 3
domains: the N-terminal half (S1) contains a receptor-binding domain (RBD), and the
C-terminal half (S2) contains a fusion peptide. Entry of the virus requires receptor
binding, followed by conformational change of the S protein, and then cathepsin
L–mediated proteolysis within the endosome.67–69 The angiotensin-converting
enzyme 2 (ACE2) is the receptor for SARS-CoV,70 and is expressed on a wide variety
of tissues including lungs, intestine, kidneys, and blood vessels. The presence of
ACE2 seems not to be the sole determinant for tropism of SARS-CoV. For instance,
SARS-CoV has been found in colonic enterocytes and hepatocytes that lack ACE2,
whereas SARS-CoV has not been detected in endothelial cells of blood vessels and
smooth muscle cells of intestine, despite their expression of ACE2.36,71,72

There are some data to suggest that, in addition to ACE2, 2 other surface molecules
play a critical role in establishing SARS-CoV infection in human cells. DC-SIGN
(CD209) dendritic cell–specific intercellular adhesion molecule–grabbing nonintegrin,
is a type 2 transmembrane adhesion molecule that recognizes a variety of microorgan-
isms. DC-SIGN is expressed in macrophages and dendritic cells including those found
in skin, lungs, intestine, rectum, cervix, placenta, and lymph node. However, the
binding of SARS-CoV to DC-SIGN does not lead to entry of viruses into dendritic cells;
instead it facilities the transfer of viruses to other susceptible cells. In this way, the
dendritic cells play an important role in virus dissemination within the infected
host.73–75 L-SIGN (CD209L or DC-SIGNR) is a homolog of DC-SIGN, which is
expressed in liver, lymph node, and placenta. L-SIGN acts in conjunction with the liver
and lymph node sinusoidal endothelial cell C-type lectin (LSECtin) to enhance SARS-
CoV infection. There is evidence to show that L-SIGN serves as an alternative receptor
to mediate the entry of SARS-CoV.73,76,77

Once infection can be established, the mechanisms by which SARS-CoV causes
disease can be separated into (1) direct lytic effects on host cells and (2) indirect conse-
quences resulting from the host immune response. Clinically, SARS is characterized by
a pronounced systemic illness, but the pathology of SARS, as revealed from fatal
cases, was mainly confined to the lungs, where diffuse alveolar damage was the
most prominent feature. Multinucleated syncytial giant cells, although characteristic,
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were rarely seen. In cases without secondary infection, a lack of immune response was
observed at this late terminal stage. Apart from those related to end-stage multiorgan
failure, the pathologies of gastrointestinal tract, urinary system, liver, and other organ
systems were unremarkable.78–82 Lungs and intestinal tract are the only 2 organ
systems that support high levels of SARS-CoV replication.72,83

At least 2 mechanisms of direct injury in infected lungs have been revealed. First, in
addition to being the host receptor mediating the entry of SARS-CoV, the ACE2 prob-
ably contributes to the diffuse alveolar damage. ACE2 is a negative regulator of the local
renin-angiotensin system, where its imbalance leads to the development of diffuse alve-
olar damage. Data from animal studies suggest that the diffuse alveolar damage seen in
SARS is mediated by the S protein-ACE2-renin-angiotensin pathway.84,85 The second
direct injury mechanism is by the induction of apoptosis. The SARS-CoV–encoded 3a
and 7a proteins have been shown to be a strong inducer of apoptosis in cell lines derived
from different organs including lungs, kidneys, and liver.86–88

IMMUNOBIOLOGY

Clinically, SARS is characterized by a phase of cytokine storm. The intense immune
response to infection, as reflected by the increase in chemokines and cytokines,
results in the pathology seen in cases that run a severe course of illness. In post-
mortem lung tissues, chemokine C-X-C motif ligand (CXCL)-10 (or interferon [IFN]-
inducible protein [IP] 10) and interleukin (IL)-18 were found to be increased.78 During
the first 2 weeks, a variety of cytokines/chemokines were found to be increased in the
peripheral circulation, including CXCL-9 (chemokine C-X-C motif ligand 2 or monokine
induced by g-IFN), CXCL-10 (or IP-10), and C-C motif ligand (CCL)-2 or monocyte
chemoattractant protein-1 [MCP-1]), IL-1b, IL-6, IL-8 (CXCL-8), IL-12, IFN-g, trans-
forming growth factor (TGF)-b, monokine induced by IFN-g (MIG, CXCL-9).89–93

Among these increased cytokines/chemokines, increased levels of IP-10, MIG, and
IL-8 during the first week after the onset of fever and increase of MIG during the
second week were associated with poor outcome.92

Several host genetic markers have been reported to have an association with the
outcome of SARS.94 An association of HLA-B)4601 with SARS infection was revealed
from a cohort of patients from Taiwan, but the finding was not reproduced in HK
patients.95,96 In the latter HK study, HLA-B)0703 was found to be associated with
an increased susceptibility, whereas HLA-DRB1)0301 was protective against
SARS-CoV infection.96 In another study based on patients from HK, it was shown
that the human Fc g-receptor genotype, FcgRIIA-R/R131 and CD14-159CC were
associated with more severe outcome of SARS.97,98 RANTES-28 CG and GG geno-
types were found to be associated with an increased susceptibility to SARS.99 In
a cohort study of SARS patients in HK, an association between CLEC4M homozy-
gosity and protection against SARS was found.100 However, the observation could
not be reproduced in 2 other studies in HK and Beijing, respectively.101,102

TREATMENT
Ribavirin

Ribavirin, a nucleoside analogue that has activity against several viruses in vitro, was
widely used for treating SARS patients after recognizing the lack of clinical response to
broad-spectrum antibiotics and oseltamivir.1–3,25,35 Nevertheless, it is now known that
ribavirin has no significant in vitro activity against SARS-CoV.103–105 Hemoglobin
levels in about 60% of patients dropped by 2 g/dL after 2 weeks of oral ribavirin
therapy, at a dose of 1.2 g 3 times a day.106 The use of ribavirin for SARS in Toronto
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was based on the higher dosage used for treating hemorrhagic fever, which led to
more toxicity, including increased liver transaminases and bradycardia.3 Furthermore,
addition of ribavirin did not have any useful effect on the serum SARS-CoV viral load of
pediatric SARS patients.107 Therefore, it is unlikely that ribavirin alone has any signif-
icant clinical benefits in the treatment of SARS.

Protease Inhibitors

Genomic analysis of the SARS-CoV has revealed several enzymatic targets including
protease.13,14,108 Lopinavir and ritonavir in combination is a boosted protease inhibitor
regimen widely used in the treatment of human immunodeficiency virus (HIV) infection.
In vitro activity against SARS-CoV was shown for lopinavir and ribavirin at 4 mg/mL and
50 mg/mL, respectively. Inhibition of in vitro cytopathic effects was achieved down to
a concentration of 1 mg/mL of lopinavir combined with 6.25 mg/mL of ribavirin. There-
fore, the data suggest that this combination might be synergistic against SARS-CoV in
vivo.109 The addition of lopinavir 400 mg/ritonavir 100 mg (LPV/r) as initial therapy was
associated with significant reduction in overall death rate (2.3% vs 15.6%) and intuba-
tion rate (0% vs 11%) compared with a matched historical cohort that received riba-
virin alone as the initial antiviral therapy.110 Other reported beneficial effects include
a reduction in corticosteroid use, fewer nosocomial infections, a decreasing viral
load, and rising peripheral lymphocyte count.110

In contrast, the outcome of the subgroup who had received LPV/r as rescue therapy
after receiving pulsed methylprednisolone (MP) treatment of worsening respiratory
symptoms was not better than the matched cohort.110 The improved clinical outcome
in patients who received LPV/r as part of the initial therapy may be the result of peak
(9.6 mg/mL) and trough (5.5 mg/mL) serum concentrations of lopinavir inhibiting the
virus.111 Nelfinavir, another protease inhibitor commonly used for HIV infection, was
shown to inhibit replication of SARS-CoV in Vero cell culture.112

IFNs

Type 1 IFNs, such as IFN-a, are produced early as part of the innate immune response to
virus infections. Type 1 IFNs inhibit a wide range of RNA and DNA viruses including
SARS-CoV in vitro.104,105,113 Complete inhibition of cytopathic effects of SARS-CoV
in culture was observed for IFN subtypes, b-1b, a-n1, a-n3, and human leukocyte
IFN-a.98 IFN-a showed an in vitro inhibitory effect on SARS-CoV starting at concentra-
tions of 1000 IU/mL,105 whereas recombinant human IFN-b 1a potently inhibited SARS-
CoV in vitro.114 IFN-b and IFN-g can synergistically inhibit the replication of SARS-CoV
in vitro.115 In addition, a combination of ribavirin and IFN-b has been shown to have
synergistic effects in inhibiting SARS-CoV in animal and human cell lines,116 whereas
combinations of ribavirin with IFN-b 1a or IFN-a also show synergistic effects in vitro.117

In experimentally infected cynomolgus macaques, prophylactic treatment with
pegylated IFN-a significantly reduced viral replication and excretion, viral antigen
expression by type 1 pneumocytes, and pulmonary damage, compared with
untreated macaques, whereas postexposure treatment with pegylated IFN-a yielded
intermediate results.118 Use of IFN-a 1 plus corticosteroids was associated with
improved oxygen saturation, more rapid resolution of radiographic lung opacities,
and lower levels of CPK in SARS patients.119 These findings support clinical testing
of approved IFNs for the treatment of SARS.

Human Monoclonal Antibody

There is evidence that SARS-CoV infection is initiated through binding of the SARS-
CoV S protein to ACE2.70 A high-affinity human monoclonal antibody (huMab) termed
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80R has been identified against the SARS-CoV S protein and has potent neutralizing
activity in vitro and in vivo.120 HuMab 80R efficiently neutralized SARS-CoV and
inhibited syncytia formation between cells expressing the S protein and those
expressing the SARS-CoV receptor ACE2. HuMab 80R may be a useful viral entry
inhibitor for the emergency prophylaxis and treatment of SARS.120 HuMab was shown
to prophylactically reduce replication of SARS-CoV in the lungs of infected ferrets and
abolish shedding of viruses in pharyngeal secretions, in addition to completely pre-
venting SARS-CoV–induced macroscopic lung pathology.121

Vaccines

An adenovirus-based vaccine was shown to induce strong SARS-CoV–specific
immune responses in rhesus macaques, and holds promise for the development of
a protective vaccine against SARS-CoV.122 A DNA vaccine based on the S gene could
induce the production of specific IgG antibody against SARS-CoV efficiently in mice,
with a seroconversion rate of 75% after 3 doses of immunization.123,124 Recombinant
S proteins that exhibit antigenicity and receptor-binding ability are also good candi-
dates for developing a SARS vaccine.125 A recombinant attenuated vaccinia virus,
Ankara, expressing the S protein of SARS-CoV can elicit protective immunity in
mice.126 Another recombinant attenuated parainfluenza virus expressing the S protein
also produced immunity following intranasal inoculation to mice.127 Synthetic peptide
derived from the S protein is another target for vaccine development. Promising
results have been obtained in vitro128 and in vivo from rabbit and monkey models.129

Systemic Corticosteroids

During phase II of the clinical course, when patients progress to develop pneumonia
and hypoxemia, intravenous administration of rescue pulsed MP has been shown to
suppress cytokine-induced lung injury.1,35,106,109,130 The rationale could be that the
progression of the pulmonary disease is mediated by the host inflammatory
response.35 Corticosteroids significantly reduced IL-8, MCP-1, and IFN-g IP-10
concentrations from 5 to 8 days after treatment in 20 adult SARS patients.89 Induction
of IP-10 is believed to be a critical event in the initiation of immune-mediated lung
injury and lymphocyte apoptosis.90

The use of rescue pulsed MP during clinical progression was associated with favor-
able clinical improvement with resolution of fever and lung opacities within 2
weeks.1,106,130 However, a retrospective analysis showed that the use of pulsed MP
was associated with an increased risk of 30-day mortality (adjusted OR 26.0, 95%
CI 4.4–154.8).131 This retrospective study could not establish whether a causal rela-
tionship existed between the use of MP and an increased risk of death, as clinicians
were more inclined to give pulsed MP therapy in deteriorating patients. Nevertheless,
complications such as disseminated fungal disease132 and avascular necrosis of bone
have been reported following prolonged corticosteroid therapy.133 With the rescue
pulsed MP approach, avascular necrosis of bone was found in 12 (4.7%) patients after
screening 254 using magnetic resonance imaging. The risk of avascular necrosis was
0.6% for patients receiving less than 3 g, and was 13% for those receiving more than
3 g prednisolone–equivalent dose.134 A randomized placebo-controlled study con-
ducted at PWH, HK showed that plasma SARS-CoV RNA concentrations in the
second and third weeks of illness were higher in patients given initial hydrocortisone
(n 5 10) than in those given normal saline (n 5 7) during phase I of the clinical course
of illness.135 Despite the small sample size, the data suggest that pulsed MP given in
the earlier phase might prolong viremia and thus it should only be given during the later
phase for rescue purposes. Carefully designed clinical trials with larger sample sizes
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are required to determine the optimal timing and dosage of systemic steroid in the
treatment of possibly immune-mediated lung injury in SARS.

Convalescent Plasma

Convalescent plasma, donated by patients who have recovered from SARS, contains
neutralizing antibody and may be clinically useful for treating other SARS
patients.136,137

Traditional Chinese Medicine

Glycyrrhizin, an active component of liquorice roots, was shown to inhibit the replica-
tion of SARS-CoV in vitro.103 A controlled study comparing integrative Chinese and
Western medicine with Western medicine alone suggested that the combination treat-
ment given in phase I of SARS was more effective in reducing the number of patients
with abnormal oxygen saturations.138 However, it was not clear which of the Chinese
medicine components was responsible for the benefit, and the dosage of steroid given
to the groups was not clear.

Intravenous Gammaglobulin and Pentaglobulin

Intravenous gammaglobulin (IVIg) has immunomodulatory properties and may down-
regulate cytokine expression.139 It was used extensively in Singapore during the SARS
outbreak in 2003. However, it was noted that one-third of critically ill patients devel-
oped venous thromboembolism, including pulmonary embolism, despite prophylactic
use of low-molecular-weight heparin.140 There was evidence of pulmonary embolism
in 4 out of 8 postmortem cases.141 In addition, there were 5 cases of large artery
ischemic stroke, of which 3 cases had been given IVIg.142

Pentaglobulin (IgM enriched Ig) was administered to 12 patients with SARS who
continued to deteriorate despite pulsed steroid and ribavirin, and its use was asso-
ciated with subsequent improvement in oxygenation and radiographic scores. It
was difficult to judge its effects because the study was uncontrolled and pulsed
steroid was used concurrently.143 Pulmonary artery thrombosis was reported in
a patient with SARS who had been treated with ribavirin, steroid, kaletra, IVIg,
and pentaglobulin.144 It is possible that IVIg- or pentaglobulin-induced increase in
viscosity may be consequential in patients with hypercoagulable states such as
SARS.145

Nitric Oxide

Inhaled nitric oxide (NO) was reported to have beneficial effects in SARS. In
a controlled study comparing the use of NO (n 5 6) and supportive treatment
(n 5 8) for severe respiratory failure, there was improvement in oxygenation after
inhaled NO was administered, and this allowed ventilatory support to be discontinued.
The beneficial effects persisted after termination of NO inhalation.146 NO has been
shown to inhibit the replication cycle of SARS-CoV in vitro.147

OUTCOMES
Short-term

Based on the data received by the World Health Organization, the case fatality rate for
SARS was less than 1% for patients aged 24 years or younger, 6% for 25 to 44 years,
15% for 45 to 64 years, and more than 50% for patients aged 65 years or older.148

Poor prognostic factors for more severe disease included advanced age,1,35,149,150

chronic hepatitis B treated with lamivudine,35 severe hepatitis,37 high initial LDH,150

high peak LDH,1 high neutrophil count on presentation,1,150 diabetes mellitus or other
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comorbid conditions,3,151 low CD4 and CD8 lymphocyte counts at presentation,58 and
a high initial SARS-CoV viral load.107,152

Long-term

Significant impairment of the diffusing capacity of carbon monoxide in the lung (DLCO)
occurred in 15.5% and 23.7% of SARS survivors at the PWH cohort at 6 and 12
months, respectively.153,154 Although significant improvement in serial chest radiog-
raphy was observed among the SARS survivors, 27.8% still had abnormal radio-
graphic scores at 12 months.154 Despite the presence of extensive parenchymal
changes revealed by computer tomography during the early convalescent period,
most SARS survivors had lung function test indices within normal limits. However,
their exercise ability (6-minute walk distance) at 12 months after illness onset was
lower than the general population.154 The functional disability seems out of proportion
to the degree of lung function impairment and might be caused by extrapulmonary
factors such as muscle deconditioning and steroid myopathy.153,154 Critical illness
associated polyneuropathy/mypoathy was also observed in a few SARS survivors.155

The reported incidence rates of avascular necrosis of bone among different cohorts in
HK ranged from 4.7% to 15%,156,157 whereas 1 study from Beijing reported a high inci-
dence of 42%.133

Several other groups have shown that persistent lung function abnormalities
occur in less than one-third of patients at 1 year and that there was significant
impairment of health status among SARS survivors and their carers.158–160 The
physical impairment and the long period of isolation and extreme uncertainty during
the SARS illness created enormous psychological stress161 and mood distur-
bances.162 In addition, steroid toxicity, personal vulnerability, and psychosocial
stressors might have jointly contributed to the development of psychosis in some
patients.163
VACCINE DEVELOPMENT

Various forms of SARS-CoV vaccine have been evaluated. Inactivated whole virus
vaccines are immunogenic and protective in animal models. However, this
approach requires the production of a large amount of infectious virus in a biosafety
level 3 containment facility, which is not widely available among vaccine manufac-
turers. Because the S protein of SARS-CoV is responsible for receptor binding and
membrane fusion, it is a priority target for the development of subunit vaccines.
Full-length S protein delivered in the form of DNA vaccine, or expressed in attenu-
ated vaccinia virus or recombinant baculovirus systems, have been to shown to
induce T cell and neutralizing antibody responses, and have been found to be
protective in challenge studies.124,126,164,165 However, there are concerns about
using full-length S protein as a vaccine, because harmful immune responses
causing liver damage in vaccinated animals have been reported.166 The possibility
of enhanced disease, as observed in vaccinated cats on infection with feline infec-
tious peritonitis virus, is also a concern.167,168 Theoretically, antibodies present at
low concentrations may form complexes with virions, and be taken up by macro-
phage via the Fc receptors expressed on its surface. This process enhances virus
dissemination and may lead to adverse outcomes. Vaccines based on a partial S
protein or other structural proteins of SARS-CoV have been explored. The greatest
challenge to sustainable vaccine development is that SARS-CoV has disappeared
from humans, and antigenic changes of the re-emergent strain, if it ever occurs,
remain unknown.
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SUMMARY

SARS is a highly infectious disease with a significant morbidity and mortality. Respi-
ratory failure is the major complication, and 20% of patients may progress to
ARDS. HCWs are particularly vulnerable to SARS as the viral loads of SARS-CoV in
patients increase to peak levels during the second week after patients are hospital-
ized.35,169 Because SARS has the potential to be converted from droplet to airborne
transmission, HCWs should use adequate respiratory protection, in addition to strict
contact and droplet precautions, when managing patients with SARS. Because there
is currently no proven effective treatment of SARS, early recognition, isolation, and
stringent infection control measures are the key to controlling this highly contagious
disease. Isolation facilities, strict droplet and contact precautions (hand hygiene,
gown, gloves, N95 masks, eye protection) for HCWs managing patients with SARS,
avoidance of using jet nebulizers on general wards,1,27,52 contact tracing, and quaran-
tine isolation for close contacts are important measures in controlling the spread of the
infection in hospitals and the community.

The presence of SARS-like CoVs in horseshoe bats implicates bats in previous and
potentially future emergence of novel CoV infection in humans. Public health
measures should be enforced to ban the trading of wild animals in wet markets in
South China, where SARS-CoV infection started. When evaluating epidemiologically
high-risk patients with community-acquired pneumonia and no immediate alternative
diagnosis, a low ANC on presentation, along with poor responses after 72 hours of
antibiotic treatment, may raise the index of suspicion for SARS. Further studies are
needed to examine host genetic markers that may predict clinical outcome.
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