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A coronavirus (CoV) previously shown to be associated with catarrhal gastroenteritis in mink

(Mustela vison) was identified by electron microscopy in mink faeces from two fur farms in

Wisconsin and Minnesota in 1998. A pan-coronavirus and a genus-specific RT-PCR assay

were used initially to demonstrate that the newly discovered mink CoVs (MCoVs) were members

of the genus Alphacoronavirus. Subsequently, using a random RT-PCR approach, full-genomic

sequences were generated that further confirmed that, phylogenetically, the MCoVs belonged to

the genus Alphacoronavirus, with closest relatedness to the recently identified but only partially

sequenced (fragments of the polymerase, and full-length spike, 3c, envelope, nucleoprotein,

membrane, 3x and 7b genes) ferret enteric coronavirus (FRECV) and ferret systemic coronavirus

(FRSCV). The molecular data presented in this study provide the first genetic evidence for a new

coronavirus associated with epizootic catarrhal gastroenteritis outbreaks in mink and

demonstrate that MCoVs possess high genomic variability and relatively low overall nucleotide

sequence identities (91.7 %) between contemporary strains. Additionally, the new MCoVs

appeared to be phylogenetically distant from human (229E and NL63) and other

alphacoronaviruses and did not belong to the species Alphacoronavirus 1. It is proposed that,

together with the partially sequenced FRECV and FRSCV, they comprise a new species within

the genus Alphacoronavirus.

INTRODUCTION

Mink epizootic catarrhal gastroenteritis (ECG) was first
described in 1975 (Larsen & Gorham, 1975), and later
several million mink were reported to be affected in
different countries (the USA, Canada, Scandinavia, PR
China and the former USSR; Gorham et al., 1990). The
disease occurs seasonally and at greater frequency in mink
of ¢4 months. Together with high morbidity (approach-
ing 100 %) and low mortality (,5 %), ECG in mink
resembles that in ferrets (Gorham et al., 1990; Wise et al.,
2006). Usually, infected mink become anorexic and
develop mucoid diarrhoea within 2–6 days; however,
coronavirus (CoV)-like particles have occasionally been
demonstrated in faeces from clinically healthy mink

(Gorham et al., 1990). Due to anorexia, infected mink
lose body condition and pelt quality, which is of economic
concern to mink producers (Gorham et al., 1990). CoV was
suggested and confirmed by electron microscopy to be an
aetiological agent of ECG (Gorham et al., 1990; Larsen &
Gorham, 1975). Other enteric viruses such as rotavirus,
parvovirus and calicivirus were suggested to enhance the
severity of the ECG disease complex (Evermann et al.,
1983; Macartney et al., 1988; Parrish et al., 1988). Until
now, CoV detected in ECG cases has not been isolated or
sequenced for further characterization.

As described in the 2009 report of the International
Committee on Taxonomy of Viruses (ICTV; http://www.
ictvonline.org/virusTaxonomy.asp?version=2009), the family
Coronaviridae now consists of two subfamilies – Corona-
virinae and Torovirinae. Members of the subfamily Corona-
virinae are enveloped viruses with a helical capsid and a

The GenBank/EMBL/DDBJ accession numbers for the mink corona-
virus sequences determined in this study are HM245925 (WD1127)
and HM245926 (WD1133).
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positive-sense non-segmented RNA (27–32 kb) genome
(Spaan et al., 1988; Tyrrell et al., 1975). The RNA replication
machinery possesses low fidelity, resulting in a high mutation
rate and broad genomic diversity among the virus progeny,
which are known as quasispecies (Domingo et al., 1998). Like
other members of the order Nidovirales, CoVs produce a set
of 39 nested transcripts with a common short leader sequence
at the 59 terminus (Cavanagh, 1997; Gorbalenya et al., 2006;
Spaan et al., 1988). The subfamily Coronovirinae contains
three genera: Alphacoronavirus (former CoV group 1), Beta-
coronavirus (former group 2) and Gammacoronavirus (former
group 3), with the species Alphacoronavirus 1 corresponding
to former subgroup 1a and other Alphacoronavirus species to
former subgroup 1b (González et al., 2003; ICTV 2009
report). The virions are pleomorphic and vary in size from 60
to 220 nm, with the surface spike (S) glycoprotein forming an
exterior crown-like structure (Spaan et al., 1988; Tyrrell et al.,
1975).

In 2002–2003, severe acute respiratory syndrome (SARS)-
CoV emerged in the Guangdong province of China and
later affected 29 countries, resulting in more than 8000
cases with at least 700 fatalities (Drosten et al., 2003;
Ksiazek et al., 2003; Peiris et al., 2004). SARS-CoV was
shown to be of animal origin, with horseshoe bats as a
potential natural reservoir (Lau et al., 2005; Li et al., 2005).
Palm civets and raccoon dogs were suspected to be
intermediate hosts (Guan et al., 2003). It was demonstrated
by full-genomic comparative analysis that SARS-like CoVs
isolated from palm civets are under strong selective
pressure and are genetically most closely related to SARS-
CoV strains infecting humans early in the outbreaks (Song
et al., 2005). Palm civets are carnivores from the suborder
Fissipedia together with raccoon dogs, dogs, cats, raccoons,
hyenas, mongooses, bears, skunks, ferrets (Mustela putor-
ius) and mink (Mustela vison) (Heller et al., 2006). Cats,
ferrets and palm civets have all been shown to be sus-
ceptible to experimental infection with SARS-CoV Urbani
strain (Martina et al., 2003; Wu et al., 2005), and a mink
lung cell line (Mv1Lu) was also permissive to SARS-CoV
expressing a functional ACE2 receptor for viral entry
(Gillim-Ross et al., 2004; Heller et al., 2006; Mossel et al.,
2005).

Here, a pan-coronavirus and a genus-specific RT-PCR
assay were used to demonstrate that two newly discovered
mink CoVs (MCoVs) are members of the genus Alpha-
coronavirus. Generation of full genomic sequences further
confirmed that, phylogenetically, these MCoVs belonged to
the genus Alphacoronavirus. According to the available
sequence data [nucleoprotein (N) and S protein amino acid
sequences], and together with previous studies (Pratelli
et al., 2003; Wise et al., 2006; Wu et al., 2005), our data
demonstrated higher genetic diversity among CoVs from
carnivores. Due to the crucial role they play in the food
chain, carnivores harbouring CoVs may serve as virus
reservoirs and contribute to the evolution and emergence
of new CoV strains with zoonotic potential.

RESULTS

Identification of novel MCoVs and attempted virus
isolation

CoV-like particles were first detected by electron microscopy
(EM) in faeces of diarrhoeic mink clinically diagnosed with
ECG in 1998. Using pan-coronavirus and alphacoronavirus-
specific RT-PCR assays on eight mink faecal samples, we
obtained products of the predicted sizes of 452 and 390 bp
for the polymerase and N gene regions, respectively. After
direct sequencing of the PCR products, a BLAST search
showed the sequences to be authentic coronavirus
sequences, with closest similarity to the recently identified
ferret enteric coronavirus (FRECV) (Wise et al., 2006), and
to a lesser extent to transmissible gastroenteritis virus
(TGEV), canine coronavirus (CCoV) and feline infectious
peritonitis virus (FIPV). These initial findings provide the
first genetic evidence that an enteric coronavirus is shed in
the diarrhoeal faeces of mink, confirming a previous report
suggesting CoV as an aetiological agent of ECG in mink
(Gorham et al., 1990). Despite the previous report of
serological cross-reactivity between TGEV and MCoV (Have
et al., 1992), we were unable to detect CoV cross-reactive
antigens in mink faeces using monoclonal or polyclonal
antibodies to TGEV by ELISA or Western blotting. Our
attempts to isolate CoV from mink faecal samples using a
number of cell-culture types successful for other CoVs,
including Vero E6, CrFK, ST, HRT-18, A59 and Ma-104
cells among others, were also unsuccessful. This failure was
probably due to the absence of viable CoV after sample
storage for 11 years; also, MCoVs may grow poorly in cell
culture, as was observed previously for type I feline enteric
CoV (Dye et al., 2007).

Sequencing, assembly and validation of MCoV
genomic sequences

Full-length genome sequences were obtained for two
MCoVs (WD1127 from Wisconsin and WD1133 from
Minnesota) that originated from two independent ECG
outbreaks on fur farms in the USA in 1998. Random RT-
PCR and priming (Allander et al., 2005; Djikeng et al.,
2008) were used to generate primary sequencing data. Gaps
were then closed with unique primers designed on known
sequences. The 59 and 39 ends of the genomes were defined
using a 59- and 39-RACE system (Qiagen). Raw sequence
reads were trimmed to remove amplicon primer-linker and
low-quality sequences. Additional sequencing was per-
formed to ensure fourfold sequence coverage across each
genome; no polymorphisms were observed in the two
MCoV genomes.

Overall genomic identities and phylogenetic
analysis of nucleotide sequences

Comparative sequence analysis based on full genomic
sequences confirmed that the MCoVs belonged to the
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genus Alphacoronavirus and were phylogenetically distant
from the recognized alphacoronavirus species and slightly
closer to the species Alphacoronavirus 1, sharing 64.7–
65.4 % and 55.8–57.3 % nucleotide identity with alphacor-
onavirus 1 and other (unclassified) alphacoronavirus
representatives, respectively (Table 1), which is less than
other members of the Alphacoronavirus 1 species share with
one another (.80 %). Based on full genomic sequence
analysis of the two strains, we propose that these MCoVs
be assigned to a new species, Alphacoronavirus 2, which
should probably also include FRECV and FRSCV, which
are closely related to MCoVs (based on available partial
sequence information; Table 2) (Figs 1 and 2).

The full-length genomic identity between the two contem-
porary MCoV strains was relatively low (91.7 %; Table 1)
compared with that for the same species of CoVs isolated
from ruminants (.98 %; Alekseev et al., 2008) or swine
(.96 %; Zhang et al., 2007). However, for CoVs isolated
from carnivores (canines and felines), the percentage
identity is more variable (Table 3).

Genomic organization of MCoVs

Analysis of the full-length genome sequences revealed that
they possessed the genomic organization and structure of
known alphacoronaviruses with comparable genome size
and similar gene order, 59-untranslated region and 39–
poly(A) tail (Fig. 3). Based on the partial genomic sequence
data available, the closest relative was the recently identified
FRECV (Wise et al., 2006). The MCoV genome sizes were
28 915 nt for WD1133 and 28 941 nt for WD1127, with
poly(A) tails varying in length between 46 and 88 residues.

The major genes encoding the structural and non-
structural proteins were arranged as follows: ORF1a/1b,
S, 3c, envelope (E), membrane (M) and N followed by the
accessory genes (ORF7a, 3x and 7b) encoding non-
structural proteins (nsps) (Fig. 3).

Two long ORFs overlapping by 42 nt were predicted in
the MCoV genomes: ORF1a of 12 056 and 12 020 nt
for WD1127 and WD1133, respectively, and ORF1b of
8033 nt. The nucleotide sequences in the ORF1a–ORF1b
overlapping regions have been proposed to form a
pseudoknot tertiary structure that allows ribosomal shift
of the reading frame (Brierley et al., 1987) between ORF1a
and ORF1b. The slippery site for the ribosomal shift
(UUUAAAC) is identical in all CoV genomes sequenced to
date. We identified it at genomic positions 12 293–12 299
and 12 257–12 263 for WD1127 and WD1133, respectively.

We also identified in the genomes of the MCoVs the
minimal conserved transcription regulatory sequence
(TRS), CTAAAC, required for discontinuous synthesis of
the nested set of subgenomic RNAs (Budzilowicz et al.,
1985; Lai & Cavanagh, 1997; Pasternak et al., 2001; Sawicki
& Sawicki, 1998; Snijder et al., 2003; Spaan et al., 1988). It
was located upstream of the non-replicase genes (except for
ORFs 3x-like and 7b) and, surprisingly, was in the middle
of both S genes.

Identification and analysis of the three ORFs
downstream of the N gene

Alphacoronaviruses are known to contain an additional
ORF (ORF7a) downstream of the N gene (Herrewegh et al.,
1995; Vennema et al., 1992b), encoding an accessory small

Table 1. Percentage nucleotide identities between MCoVs and selected CoVs based on full-length genomic sequences

Percentage nucleotide identities between MCoVs and other selected CoVs are highlighted in bold. BCoV, Bovine CoV; IBV, infectious bronchitis

virus; MHV, mouse hepatitis virus; PEDV, porcine epidemic diarrhoea virus.

TGEV

M6

FIPV 79-

1146

PEDV HCoV

NL63

HCoV

229E

MCoV

WD1127

MCoV

WD1133

HCoV

OC43

HCoV

HKU1

BCoV

Mebus

MHV

A59

SARS-CoV

Tor2

IBV

Beaudette

85.4 55.9 56.6 55.4 65.3 65.4 43.9 42.3 43.9 41.5 43.4 42.6 TGEV M6

55.4 56.4 55.3 64.7 65.1 43.7 42.2 43.7 41.4 42.9 42.4 FIPV 79-1146

64.6 63.2 56.2 56.1 43.2 41.7 43.0 41.1 43.0 42.4 PEDV

69.5 57.3 57.3 45.0 44.6 45.0 42.3 43.8 43.7 HCoV NL63

56.1 55.8 43.8 44.9 43.8 41.5 43.3 43.4 HCoV 229E

91.7 42.1 40.7 42.2 39.8 41.1 41.0 MCoV

WD1127

42.0 40.7 42.2 39.7 41.0 40.9 MCoV

WD1133

71.2 96.1 72.4 51.5 48.1 HCoV OC43

70.6 69.5 49.1 47.5 HCoV HKU1

73 51.9 48.3 BCoV Mebus

48.9 44.7 MHV A59

48 SARS-CoV

Tor2

IBV Beaudette
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hydrophobic membrane-associated non-structural protein
(Tung et al., 1992) (Fig. 3). FIPV and CCoV are known to
contain an additional ORF7b (Herrewegh et al., 1995;
Vennema et al., 1992b), the product of which appears to
be a secretory glycoprotein with no stable association with
virions (Vennema et al., 1992a). The FRECV genome has
also been shown to contain ORF7b (Wise et al., 2006)
(Fig. 3). Additionally, the genome of this recently
identified FRECV contained an additional ORF (in place
of ORF7a) sharing 23.9 % identity with the 3x pseudogene
of CCoV (Insavc-1 strain). TGEV has a counterpart to the
CCoV pseudogene in a similar location (between the S
and M genes) but with a 92 nt deletion (Horsburgh et al.,
1992; Wise et al., 2006) (Fig. 3). We analysed the 39 end of
the MCoV genomes downstream of the N gene and
identified three putative ORFs for both strains. The first
was a gene corresponding to ORF7a (40.8–49.5 %
nucleotide identity with TGEV, FIPV and CCoV
ORF7a). The last gene shared 38.5–46.7 % nucleotide
identity with ORF7b identified for FIPV, CCoV and
FRECV. The short gene between ORF7a and ORF7b
shared the highest identity with FRECV ORF3x-like gene
(41.9–43.2 %) (Wise et al., 2006), whereas identity with
the 3x pseudogene of CCoV strain Insavc-1 was only

10–14.3 %, and with the TGEV ORF3 was even less (8.2–
11 %). Thus, the MCoV genomes are organized into 10
ORFs comprising six major genes encoding structural and
non-structural proteins or polyproteins (ORF1a, ORF1b,
S, E, M and N) and four additional genes, ORF3c, ORF7a,
ORF3x-like and ORF7b (Fig. 3).

Amino acid identities and differences in key
residues of the putative CoV proteins

ORF1a/1b. Comparison of the predicted polypeptide
sequences indicated the presence of two 2 aa deletions in
WD1127 and one 16 aa deletion in WD1133, resulting in the
ORF1a polypeptide being 12 aa longer in WD1127. Whereas
deletions were found only in the highly variable ORF1a N-
terminal part, numerous substitutions were scattered
throughout the entire replicase gene complex. As has been
observed previously for other CoVs, the MCoV ORF1b was
more conserved than ORF1a between the two MCoV
genomes and with the corresponding sequences of other
CoVs. ORF1a amino acid identity between the two MCoVs
was remarkably low – only 94.2 % for the two CoVs from
the same year. The low amino acid identity with
alphacoronavirus 1 (56.5 %) and other alphacoronaviruses

Table 2. Numbers of amino acids (a) and percentage amino acid identities (b) of structural and
non-structural alphacoronavirus proteins

Percentage amino acid identities between the two MCoVs are highlighted in bold. NA, Protein was not

identified for some CoVs or the sequence (or complete sequence) was not available.

MCoV (WD1127/

WD1133)

TGEV CCoV FIPV FRECV

(a)

ORF1a 4018/4006 4018 NA 3956 NA

ORF1b 2678 2680 NA 2680 NA

Spike 1438/1429 1447 1452 1452 1449

ORF3c 247/69* NA 244 237 247

E 82 82 82 82 82

M 268 262 263 262 263

N 376 382 380 377 374

ORF7a 98 78 101 101 NA

ORF3x/3a 73 82 71 NA 74

ORF7b 204 NA 213 206 184

(b)

ORF1a 94.2 56.1/56.5 NA 56.0/56.5 NA

ORF1b 97.9 84.5/84.1 NA 84.6/84.3 NA

Spike 86.3 64.3/64.8 61.2/61.8 61.3/61.6 67.3/66.3

ORF3c 86.5* NA 54.4/51.5 52.7/49.4 64.0/60.3

E 96.4 61.0/61.0 61.0/61.0 56.1/56.1 82.9/80.5

M 94.4 69.7/69.7 68.6/69.0 71.2/69.2 81.2/81.2

N 98.1 58.6/58.1 56.8/56.5 55.0/55.0 76.2/76.7

ORF7a 96.0 40.8/42.1 49.5/48.5 47.5/46.5 NA

ORF3x/3a 87.8 8.2/11.0 10.0/14.3 NA 41.9/43.2

ORF7b 94.0 NA 41.9/41.9 38.1/39.1 46.7/45.7

*A mutation (deletion) in the WD1133 ORF3c sequence created a frame shift and resulted in a premature stop

codon in 3c truncated nsp.
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Fig. 1. Neighbour-joining tree of coronaviruses based on full genomic sequences. The tree was inferred using MEGA4. Bootstrap
support values .95 % are indicated. Previously defined genera and species and a potential new species (Alphacoronavirus 2)
are delineated by the bars on the right. The naming of these genera is as described in the 2009 report of the ICTV. Bar, number
of nucleotide substitutions per site. TCoV, Turkey coronavirus; see text and tables for other abbreviations.

Fig. 2. Neighbour-joining tree of coronaviruses based on N gene sequences. The tree was inferred using MEGA4. Bootstrap
support values ¢90 % are indicated for every node except for that between alphacoronaviruses. Bar, number of nucleotide
substitutions per site. See Fig. 1 for abbreviations.
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(38.4–39.7 %) is insufficient to group MCoVs with either
species. Whereas based on ORF1a and ORF1b amino acid
sequence analysis, the MCoVs seemed to be more closely
related to alphacoronavirus 1, all Alphacoronavirus 1 species
members share .80 % amino acid identity. The newly
established (ICTV, 2009) species demarcation criterion
within each genus has been defined as 90 % amino acid

identity in seven conserved replicase domains (including
nsp12 and nsp13). Whilst TGEV, FIPV and PRCV share
¢97 % amino acid identity in these regions, the MCoVs
displayed a maximum of 88.3 % amino acid identity (range
73.5–88.3 %) in these regions with alphacoronavirus 1 and
thus cannot be allocated to the same species. Other
alphacoronaviruses also share a low amino acid identity
in this region, similar to that observed for MCoVs.
Consequently, it appears that MCoVs occupy an
intermediate position within this genus and should be
designated a new species.

S protein. We observed a low amino acid identity of 52.5 %
in the N-terminal part of the MCoV S proteins (~270 aa),
which probably represents a putative hypervariable region
analogous to the S1 subunit of other CoVs (e.g. MHV,
BCoV and IBV). The rest of the S proteins shared 93.7 %
amino acid identity resulting in an overall amino acid
identity of 86.3 % between the two MCoV strains (Table 2).
In addition to multiple substitutions, there were six short
deletions (1–4 aa) in WD1133 and one in WD1127 in the
putative hypervariable region.

Genomic comparison with other alphacoronaviruses
demonstrated 61.2–61.8 % overall amino acid identity
between MCoV, FIPV and CCoV S proteins and 64.3–
64.8 % amino acid identity between MCoV and TGEV S
proteins (Table 2). An interesting observation was that the
first 270 aa shared 46–57 % amino acid identity with

Table 3. Lowest and mean amino acid identities for the N
protein of porcine, human, canine and feline alphacoronaviruses

Mean and lowest amino acid identities were defined for at least ten

different strains of the same species from the same host. The N

protein sequence was chosen as a conserved protein and because its

sequence is available for the majority of strains in the genus

Alphacoronavirus. The lowest and mean amino acid identities for

the N protein of FIPV and CCoV are highlighted in bold. PRCV,

Porcine respiratory coronavirus; see text and figures for other

abbreviations.

Species Amino acid identity (%)

Lowest Mean

TGEV/PRCV 96.3 98.2

PEDV 95.7 97.5

HCoV NL63 99.4 99.7

HCoV 229E 96.4 98.7

FIPV 89.6 92.0

CCoV 91.3 96.3

Fig. 3. Schematic diagram of the gene arrangements of the 39-terminal region of the MCoV, FRECV, FCoV, CCoV and TGEV
genomes. The ORFs coding for structural (S, E, M and N) and non-structural (3a/3b/3c, 3x, 7a and 7b) proteins are
represented in boxes. Dotted lines represent genomic regions that have not yet been sequenced.

A. N. Vlasova and others
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TGEV, but only 20 and 45 % amino acid identity with
FIPV and CCoV, respectively. After the first 270 aa, we
observed higher (68.2–69.2 %) amino acid identity with
FIPV, CCoV and TGEV. Furthermore, we observed 66.3–
67.3 % overall amino acid identity between MCoV and
FRECV S proteins. For the putative hypervariable region
(first 270 aa) of the MCoV and FRECV/ferret systemic
coronavirus (FRSCV) S proteins, we observed a low amino
acid identity of 34.1–43.7 %, with WD1127 sharing 39.6–
43.7 % and WD1133 sharing 34.1–35.9 % amino acid
identity. Apart from this, no extensive identity was
observed between MCoV and any other CoV S proteins.

ORF3c. ORF3c is an accessory triple-spanning membrane
protein analogous to SARS-CoV 3a (Oostra et al., 2006).
The predicted ORF3c protein for MCoV WD1133 was
178 aa shorter than for MCoV WD1127 due to a nonsense
mutation resulting in a premature stop codon. The amino
acid identity between WD1127 and WD1133 ORF3c was
86.5 %, or 73.9 % if considering the truncated WD1133 3c
protein. Mutations in WD1133 ORF3c are interesting in
view of previous findings on feline and ferret enteric CoVs
that acquired high virulence (FIPV) or systemic tropism
(FRSCV) and contained various ORF3c sequence altera-
tions including minor and large deletions, insertions and
mutations (Chang et al., 2010; Wise et al., 2010). However,
we did not observe a higher amino acid identity between
the WD1127 or WD1133 ORF3c and the ORF3c from
FRECV or FRSCV (data not shown).

E, M and N proteins. The N protein appeared to be the
most conserved structural protein between the two MCoV
strains with 98.1 % amino acid identity, whilst for the E
and M proteins we observed 96.4 and 94.4 % amino acid
identity, respectively. No deletions or insertions were
observed for these proteins and only 8, 3 and 15 aa
substitutions were detected for the N, E and M proteins,
respectively. However, the MCoV N proteins differed more
when compared with those of TGEV, FIPV and CCoV
(55.0–58.6 % amino acid identity) than was observed for
the E and M proteins (56.1–71.2 % amino acid identity)
(Table 2).

When compared with other alphacoronavirus N proteins,
we observed five amino acid deletions common for FRECV
and MCoV N proteins (at residues 157–161, 226, 341–343,
375 and 384 of the TGEV N protein) and two insertions in
common for the FRECV and MCoV N proteins: a 2 aa
insertion between residues 14 and 15 of the TGEV N
protein and a 1 aa insertion between residues 204 and 205
of the TGEV N protein. Additionally, we identified a
unique 2 aa insertion between residues 359 and 360 of the
TGEV N protein.

DISCUSSION

The entire genomes (~29 kb) of two MCoVs from
independent outbreaks of ECG on mink farms in the

USA were sequenced. To our knowledge, this is the first
report of the full genomic sequencing of MCoVs. In view
of the lack of sequence data for CoVs from carnivores
in public databases, addition of the complete genome
sequencing information for the MCoVs will aid in the
characterization of animal CoV diversity and contribute to
the establishment of new taxonomic units.

Our inability to isolate either of the two MCoVs in cell
culture may have been be due to low sample quality or
lack of viable CoV after sample storage for 11 years.
Alternatively, MCoVs may grow poorly in cell culture, as
has been observed previously for type I feline enteric CoV
(Dye et al., 2007). To date, no one has reported the
successful propagation of MCoVs in cell culture using
mink faecal samples. To address this issue, fresh mink
faecal samples containing viable MCoVs or cell cultures of
mink origin may be needed.

Phylogenetic analysis based on full-length genome
sequences clearly demonstrated that the MCoVs belonged
to the genus Alphacoronavirus (Fig. 1). Based on the
limited sequence data available (excluding most of
ORF1a/1b), the closest relatedness observed was to
FRECV. However, the taxonomic position of FRECV
among other alphacoronaviruses has not yet been clearly
affirmed (Wise et al., 2006) (Fig. 2). The MCoVs
appeared to be more closely related to alphacoronavirus
1 than to other alphacoronaviruses (with pairwise
nucleotide sequence identities of 64.7–65.4 and 55.8–
57.3 %, respectively). However, MCoV amino acid
identity to alphacoronavirus 1 in seven conserved repli-
case domains did not reach the newly established
threshold of 90 % to be considered the same species.
Thus, it has yet to be determined whether MCoVs alone
or together with FRECV should form (as we propose) a
new species (Alphacoronavirus 2) within the genus
Alphacoronavirus (Fig. 1).

The lower genetic identity (91.7 %) between the two
contemporary MCoV strains, together with previous
sequencing data for canine and feline alphacoronaviruses
(Table 3), demonstrate higher genomic diversity among
CoVs isolated from carnivores compared with those
isolated from herbivores and omnivores. This diversity
may pose a greater potential for interspecies transmission
and adaptation to new species, as was observed for SARS-
CoV introduced by palm civets into the human population
(Guan et al., 2003; Kan et al., 2005; Wang et al., 2005).

In vitro experiments have demonstrated that frameshifting
between ORF1a and ORF1b of CoV genomes occurs in
approximately 20–30 % of translations (Ziebuhr, 2005),
regulating the molar ratio of ORF1a and readthrough
product ORF1ab. The more conserved ORF1b (compared
with variable ORF1a) encodes core replicative enzymes
(RNA-dependent RNA polymerase and helicase), whilst the
main cysteine and accessory proteinases are encoded by
ORF1a. Phylogenetic analysis of ORF1a and ORF1b
polyproteins revealed the same relatedness of the MCoVs

Full-genomic sequencing of mink coronaviruses
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within the genus – an intermediate position between
Alphacoronavirus 1 and other alphacoronavirus species or
an early split off from Alphacoronavirus 1 (data not shown).

Furthermore, comparative phylogenetic analysis of the S, E,
M and N protein sequences and small accessory ORFs of the
MCoVs demonstrated similar results to that based on the
full genomic nucleotide sequences, further supporting
classification of MCoV as an alphacoronavirus, with the
highest levels of similarity to FRECV, followed by TGEV,
CCoV and FIPV. Thus, the extent of genetic relatedness
between MCoV and other alphacoronaviruses appears to be
consistent, providing no evidence for recent recombination
events or mosaic evolution of new CoVs from mink.

It has been suggested that several genes are associated with
differences in pathogenicity, including the S gene and the
accessory genes 3a, 3b, 3c, 7a and 7b (Kennedy et al., 2001;
Park et al., 2008; Penzes et al., 2001; Rottier et al., 2005;
Vennema et al., 1998; Woods, 2001). Loss of 3c function was
suggested previously to correlate with an increased FIPV
virulence or acquisition of systemic tropism by FRSCV
(Haijema et al., 2004; Pedersen, 2009; Vennema et al., 1998;
Wise et al., 2010). The FIPV and FRSCV strains carry
mutations or large deletions inactivating the gene for 3c
(Pedersen, 2009; Vennema et al., 1998; Wise et al., 2010),
which was suggested to be strictly required for replication in
gut tissues but dispensable for systemic replication.
Considering a significant truncation in WD1133 ORF3c, it
would be of interest to inoculate mink experimentally with
MCoV WD1127 and WD1133 to see whether there are any
differences in clinical signs or pathogenicity. In feline and
canine alphacoronaviruses, the ORF3 region is represented
by ORF3a, 3b and 3c, whereas in porcine alphacoronaviruses
(TGEV and PRCV) ORF3c is missing and the ferret and
MCoVs lack ORF3a and ORF3b. Interestingly, it was
reported previously that, for most porcine alphacorona-
viruses (TGEV, PRCV and PEDV), deletions in ORF3a and
ORF3b correlate with attenuated virus phenotype (Izeta
et al., 1999; Park et al., 2008; Penzes et al., 2001; Woods,
2001; Zhang et al., 2007), which is in contrast to the effect of
mutations in the ORF3c region of alphacoronaviruses from
carnivores. These data confirm the dynamic genetic aspects
of the coronavirus ORF3 region and different functions
associated with each component – 3a, 3b and 3c – that
should be investigated in more detail.

The unique number and arrangement of additional small
ORFs (7a, 3x-like and 7b) downstream of the N protein in
MCoVs appear to be the same in both strains. Although all of
these ORFs or their counterparts have been found in other
CoVs (FRECV, TGEV, CCoV and FIPV) in various
combinations and in different regions of the genomes, none
was reported to be essential for virus replication in vitro
(Herrewegh et al., 1995; Vennema et al., 1992a, b). In the
CCoV and TGEV genomes, ORF3x/3 is located between the S
and M genes; however, TGEV (Purdue-115 and FS772/70
strains) ORF3 contains a deletion of 92 nt (Horsburgh et al.,
1992). In FRECV, an ORF with 23.9 % identity to the 3x

pseudogene of CCoV Insavc-1 (Horsburgh et al., 1992) was
found in the genomic location of ORF7a, whilst the latter was
missing (Wise et al., 2006). Based on previous data, it was
suggested that ORF3x is an evolutionarily redundant
sequence that does not appear to encode a functional viral
protein, and which could be the result of an insertional event
in CCoV and FRECV (Horsburgh et al., 1992; Wise et al.,
2006). ORF7a encoding a small hydrophobic membrane-
associated protein (Tung et al., 1992) was found in FIPV,
TGEV, CCoV and MCoV at exactly the same position
downstream of the N protein; however, it was missing in
FRECV (Wise et al., 2006). ORF7b, previously suggested to
encode a secretory glycoprotein serving as a mediator for
host immune responses (Herrewegh et al., 1995), was present
in all the aforementioned alphacoronaviruses except for
TGEV (Herrewegh et al., 1995; Vennema et al., 1992b; Wise
et al., 2006). This comparative analysis confirmed that both
of these accessory proteins are probably dispensable for CoV
replication and possibly pathogenicity. The genomic region
downstream of the N protein is known to be a ‘deletion hot
spot’ (Collisson et al., 1990; De Groot et al., 1988; Horsburgh
et al., 1992) with frequent deletion and insertion events
making the presence of all three ORFs coding for accessory
proteins in the MCoV genomes very interesting. To explain
these findings, more sequencing data should be generated for
other MCoVs, both historical and recent strains.

The TRS (CTAAAC) upstream of the non-replicase genes
in the CoV genome is hypothesized to direct discontinuous
synthesis of negative-sense subgenomic mRNAs serving as
templates for subgenomic mRNA synthesis (Pasternak
et al., 2001; Sawicki & Sawicki, 1998). The conserved TRS
was found in FRECV upstream of the 3x-like ORF and in
CCoV Insavc-1 upstream of ORF7a but not upstream of
ORF7b, leading to the assumption that ORF7a/7b (3x-like/
7b) are probably being expressed from polycistronic
mRNAs (Horsburgh et al., 1992; Wise et al., 2006), as
polycistronic CoV mRNAs have been identified previously
(Liu et al., 1991; Liu & Inglis, 1992). Therefore, the MCoVs
39-terminal genes (7a, 3x-like and 7b) can probably also be
expressed from polycistronic mRNA.

In conclusion, our study provides the first genomic
evidence and molecular confirmation for a CoV in mink.
This CoV was previously suggested to be an aetiological
agent of mink ECG and can now be classified as a potential
new species (Alphacoronavirus 2) of the diverse genus
Alphacoronavirus. Whether the new Alphacoronavirus 2
species proposed in this manuscript includes mink and
ferret CoVs or only MCoV will be better defined after the
full genomic sequence for FRECV/FRSCV is available.

METHODS

History of mink faecal samples. Eight mink faecal samples were

submitted to our laboratory in 1998. The samples from diarrhoeal

animals in two fur farms in Minnesota and Wisconsin were

designated WD1126–WD1133. All faecal samples were shown to be

A. N. Vlasova and others

1376 Journal of General Virology 92



positive for CoV by electron microscopy and in our pan-coronavirus

and alphacoronavirus-specific reverse RT-PCR assays.

EM. EM was carried out as described previously (Saif et al., 1991).

Briefly, the faecal samples were diluted as 20 % suspensions

in minimal essential medium containing 1 % antibiotics and 1 %

non-essential amino acids (Gibco) and clarified by centrifugation.

The supernatants were filtered sequentially through 0.8, 0.45 and

0.2 mm syringe filters to remove bacteria and other contamination.

The CoVs were pelleted by ultracentrifugation (35 000 g for 30 min).

The pellets were then mixed with filtered distilled water and an equal

volume of 3 % phosphotungstic acid (pH 7.0) and placed on Formvar

carbon-coated grids. Specimens were evaluated in an electron

microscope (Philips 201; Norelco).

RT-PCR. Total RNA was extracted from clarified and filtered faecal

samples using an RNeasy Mini kit (Qiagen) according to the

manufacturer’s instructions. A one-step RT-PCR assay was performed

as described previously (Hasoksuz et al., 2007). The primers used in

RT-PCR were designed from the published sequence of the

polymerase and N genes of the CoV strains. The following primer

pairs were designed or modified and used for genome detection of

MCoVs: pan-coronavirus universal primers IN-2deg (59-GGGDTG-

GGAYTAYCCHAARTGYGA-39, forward) and IN-4deg (59-TARCA-

VACAACISYRTCRTCA-39, reverse), targeting a 452 bp fragment of

the polymerase gene (modified from Ksiazek et al., 2003); and

alphacoronavirus-specific primers Gr1F (59-GADGGWGTYKTCT-

GGGTTGC-39, forward) and Gr1R1 (59-GTTYTCTTCCAGGTGT-

GTTTG-39, reverse) capable of detecting of all alphacoronaviruses,

targeting a 390 bp fragment of the nucleoprotein gene. Samples

WD1126 and WD1133 were used for full-genome sequencing using

primers Gr1F and Gr1R1.

Sequencing. RNA was extracted as described above. A random RT-

PCR protocol (Djikeng et al., 2008) was used to generate assemblies;

gaps were dosed with unique primers designed based on initial

sequence data. Primers were designed every 500 bp along the genome.

An M13 sequence tag was added to the 59 end of each primer to be used

for sequencing (59-TGTAAAACGACGGCCAGT-39 for forward pri-

mers and 59-CAGGAAACAGCTATGACC-39 for reverse primers).

Primer sequences are available from the authors on request. RT-PCRs

were performed with 50–200 ng CoV RNA using a Qiagen OneStep

RT-PCR kit (Qiagen) according to the manufacturer’s instructions.

Duplicate reactions were analysed for quality control purposes by

agarose gel electrophoresis. Amplicons were prepared for sequencing

by incubation at 37 uC for 60 min with 0.5 U shrimp alkaline

phosphatase (USB) and 1 U exonuclease I (USB) to inactivate

remaining dNTPs and to digest the single-stranded primers. The

enzymes were inactivated by incubation at 72 uC for 15 min.

Sequencing reactions were performed on a standard high-throughput

sequencing system using BigDye Terminator chemistry (Applied

Biosystems) with 2 ml template cDNA. Each amplicon was sequenced

from each end using M13 primers described above. Sequencing reactions

were analysed on a 3730xl ABI sequencer (Applied Biosystems).

Sequencing reads were downloaded, trimmed to remove the amplicon

primer-linker sequence as well as low-quality sequence, assembled

using Minimus, part of the open-source AMOS (Pop et al., 2004)

project (http://amos.sourceforge.net) and edited using AutoEditor

(Gajer et al., 2004), as well as by manual curation using CloE (Closure

Editor, http://cloe.sourceforge.net). To close gaps between assembled

contigs, strain-specific primers were designed, RT-PCRs were

performed and amplicons were sequenced as described above.

Additional primer design, cDNA synthesis and sequencing were

performed to ensure greater than fourfold sequence coverage along

the CoV genomes.

All apparent polymorphisms were checked against reference data, and

ambiguities were analysed by RT-PCR and cloning. Each assembly

was analysed using Viral Genome ORF Reader (VIGOR) (Wang et al.,

2010), a program designed to predict viral protein sequences. VIGOR

checked segment length, alignments with reference sequences and

fidelity of reading frames, correlated amino acid mutations with

nucleotide polymorphisms and detected potential sequence errors.

Sequence analyses. The CoV genome references downloaded from

GenBank and used in the phylogenetic analyses are listed in Table 4.

Sequence alignment and phylogenetic analysis were performed using

the CLUSTAL W method of the Lasergene Biocomputing Software

(DNASTAR) and MEGA4. The MCoV sequences were compared with

the human and animal CoV strains in GenBank. The deduced amino

acid sequences were then assembled and analysed using the MEGALIGN

module of the Lasergene Biocomputing Software.
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