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Abstract

Background: The causative agent of severe acute respiratory syndrome, SARS coronavirus (SARS-CoV) genome encodes
several unique group specific accessory proteins with unknown functions. Among them, accessory protein 3b (also known
as ORF4) was lately identified as one of the viral interferon antagonist. Recently our lab uncovered a new role for 3b in
upregulation of AP-1 transcriptional activity and its downstream genes. Thus, we believe that 3b might play an important
role in SARS-CoV pathogenesis and therefore is of considerable interest. The current study aims at identifying novel host
cellular interactors of the 3b protein.

Methodology/Principal Findings: In this study, using yeast two-hybrid and co-immunoprecipitation techniques, we have
identified a host transcription factor RUNX1b (Runt related transcription factor, isoform b) as a novel interacting partner for
SARS-CoV 3b protein. Chromatin immunoprecipitaion (ChIP) and reporter gene assays in 3b expressing jurkat cells showed
recruitment of 3b on the RUNX1 binding element that led to an increase in RUNX1b transactivation potential on the IL2
promoter. Kinase assay and pharmacological inhibitor treatment implied that 3b also affect RUNX1b transcriptional activity
by regulating its ERK dependent phosphorylation levels. Additionally, mRNA levels of MIP-1a, a RUNX1b target gene
upregulated in SARS-CoV infected monocyte-derived dendritic cells, were found to be elevated in 3b expressing U937
monocyte cells.

Conclusions/Significance: These results unveil a novel interaction of SARS-CoV 3b with the host factor, RUNX1b, and
speculate its physiological relevance in upregulating cytokines and chemokine levels in state of SARS virus infection.
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Introduction

Severe acute respiratory syndrome (SARS) emerged in the

Guangdong province of China in November 2002 and swept

through more than 29 countries. Its spread infected more than

8000 people with a high mortality rate of 10%. It was found to be

associated with a novel coronavirus named SARS-CoV [1,2].

SARS-CoV, like other coronaviruses, is a positive sense, single-

stranded enveloped RNA virus with a huge 29.7 Kb genome [3].

Its genome comprises of 14 ORFs which encode non-structural

genes, structural genes and several unique group specific accessory

proteins namely 3a, 3b, 6, 7a, 7b, 8a, 8b and 9b. [4]. Recognition

of peptides derived from accessory proteins by convalescent sera of

SARS-CoV infected patients [5] as well as their immuno-

histochemical detection in infected VeroE6 cells and in clinical

specimens [6] corroborates their expression during viral infection.

However, these accessory proteins have been found dispensable

for viral replication [7].

SARS-CoV accessory protein 3b is a 154 amino acid (aa)

protein and has been characterized as one of the interferon

antagonist encoded by SARS-CoV genome [8]. GFP tagged 3b

has been reported to localize in the nucleus, nucleolus and

mitochondria in cells [9,10,11]. A recent report delineated a

unique nucleo-mitochondrial shuttling behaviour of 3b-GFP

wherein 3b was found to inhibit RIG-I and MAVS induced type

I interferon induction in the mitochondria [9]. Recently, we

published a role of 3b in induction of AP-1 transcriptional activity

that was mediated by the activation of ERK and JNK pathways

[12]. Being an interferon antagonist that is dispensable for viral

replication and observing its effect on the activity of crucial host

transcription factors, 3b probably plays a role in disease

progression by mediating viral-host interactions, which are poorly

understood.

To uncover host interacting partners, of SARS-CoV 3b, we

conducted a yeast two-hybrid screen of human lung cDNA library

using 3b as bait. The screen identified RUNX1b (Runt related

transcription factor 1, isoform b) as one of the host interacting

partners of 3b. RUNX1 belongs to the RUNX family of genes

which includes RUNX2 and RUNX3 additionally [13]. RUNX

genes encode the a subunit, which heterodimerizes with the b
subunit, CBFb to form transcription factor CBF (Core Binding

Factor) [14]. RUNX1 has a 128 aa runt domain through which it
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binds CBFb as well as the consensus DNA element, TGT/cGGT

[14,15]. RUNX1 has three isoforms: RUNX1a, RUNX1b and

RUNX1c. RUNX1a is a 250 aa protein with a runt domain.

RUNX1b is a 453 aa protein and possess additional PST (proline,

serine and threonine rich) region downstream to runt domain.

RUNX1c differs from RUNX1b by 32 aa at N-terminus and is

presumed to have similar functions in cells as RUNX1b [16].

RUNX1 is crucially required for definitive hematopoiesis and T-

lymphocyte differentiation [17,18]. At the molecular level,

RUNX1 isoforms have been shown to regulate transcription of a

number of genes including cytokines (IL2, IL3, GM-CSF etc.) and

chemokines (MIP-1a, CSFR etc.). Based on the yeast two-hybrid

screening results, we conducted our current study with the

RUNX1b isoform. In this study, we confirmed the putative

interaction of 3b and RUNX1b and observed in vivo recruitment of

3b on the RUNX1 binding element on the IL2 promoter in

transiently transfected human T, jurkat cells. Further, 3b was

found to increase the transactivation potential of RUNX1b on the

IL2 promoter, which may partly be attributed to the enhanced

ERK dependent phosphorylation of RUNX1b in 3b expressing

cells. We next determined the positive effect of 3b-RUNX1b

interaction on the expression of RUNX1b regulated chemokine

MIP-1a, reported to be upregulated in SARS-CoV infected

monocyte derived dendritic cells. Thus, we report a novel

interaction of SARS-CoV 3b with RUNX1b and discussed its

plausible significance in SARS virus pathogenesis.

Results

3b interacts with RUNX1b
To identify cellular interacting partners of SARS-CoV acces-

sory protein 3b, yeast two-hybrid screening of human lung cDNA

library with full-length 3b as bait was conducted. The bait plasmid

was constructed by cloning 3b coding sequence in-frame with the

lex A DNA binding domain (Fig. 1A). The human lung cDNA

library, cloned in-frame with the B42 activation domain vector

Figure 1. SARS-CoV 3b interacts with RUNX1b. A. A schematic representation of full-length 3b, pHybLexA/Zeo-3b bait plasmid, full-length
RUNX1b and pYesTrp2-RUNX1b (51–421 aa) prey plasmid. The 3b protein has a nucleolar localization signal (NoLS) at the C-terminus. The RUNX1b
protein has a runt homology domain (RHD, 50–177 aa), an activation domain (AD, 291–171 aa), and an inhibitory domain (ID, 346–411 aa). B. The 3b-
RUNX1b interaction was assessed on a selective growth media (supplemented with 3-AT) and by filter lift b-galactosidase activity assay in a yeast
two-hybrid experiment. pHybLexA/Zeo, pYesTrp2, pHybLexA/Zeo-3b, pYesTrp2-RUNX1b, pHybLexA/Zeo-Fos and pYesTrp2-Jun constructs were co-
transformed in L40 in combinations tabulated above. pHybLexA/Zeo-Fos and pYesTrp2-Jun were used as positive control. C, D. In vitro analysis of 3b
and RUNX1b interaction. C. In vitro translated S35-labelled 3b and RUNX1b lysates (input) were subjected to co-immunoprecipitation alone or
together, using a–RUNX1 antibody. D. Total cell lysates of Huh7 cells expressing indicated proteins were immunoprecipitated with a-Flag antibody
and western blotted with a-myc antibody to probe 3b protein (panel 1). Lysates were probed for the expression of RUNX1b and 3b with a-Flag and a-
myc antibodies, respectively.
doi:10.1371/journal.pone.0029542.g001
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was purchased commercially. From the screening, a clone

encoding 51–421 aa of Runt related transcription factor 1,

isoform b (RUNX1b, accession no. NP_001001890) (Fig. 1A) was

obtained. Yeast co-transformants containing pYesTrp2-RUNX1b

(51–421 aa) and pHybLexA/Zeo-3b withstood stringent growth

conditions of media (supplemented with 5 mM 3-Aminotrizol) and

scored positive for b–galactosidase filter lift assay (Fig. 1B) whereas

co-transformants of pHybLexA/Zeo and pYesTrp2 (empty bait

and prey plasmids); pHybLexA/Zeo-3b and pYesTrp2 (bait

plasmid with empty prey plasmid); and pYesTrp2-RUNX1b and

pHybLexA/Zeo (prey plasmid with empty bait plasmid) did not.

pYesTrp2-Fos and pHybLexA/Zeo-Jun co-transformed yeast

colonies were used as positive control.

RUNX1b and 3b physical interaction was confirmed in vitro by

co-immunoprecipitation in two separate experiments. Firstly, co-

immunoprecipitation using in vitro transcribed and translated full-

length [35S]-3b and [35S]-RUNX1b showed pull-down of 3b by

anti-RUNX1 from 3b-RUNX1b lysate mixture whereas no

corresponding band for 3b was visible from the 3b and RUNX1b

lysates alone (Fig. 1C). The interaction was further confirmed in

Huh7 cells. Cells expressing flag tagged RUNX1b (pCMV-Tag2B

Flag RUNX1b or Flag-RUNX1b) and myc tagged 3b (pCDNA

3.1 Myc/His-3b or Myc-3b), alone or together, were subjected to

co-immunoprecipitation assay. Immunoprecipitation by anti-Flag

detected 3b from cells co-expressing RUNX1b and 3b (Lane 3,

Fig. 1D) whereas no corresponding band for 3b was seen from cells

expressing RUNX1b or 3b alone (Lane 1 and 2, Fig. 1D).

Reciprocal co-immunoprecipitation using anti-GFP antibody in

cells expressing EGFP, 3b-EGFP, 9b-EGFP (negative control) and

RUNX1b expression constructs showed pull-down of RUNX1b

with 3b specifically, confirmed physical interaction of 3b with

RUNX1b.

3b partially co-localizes with RUNX1b in the nucleus
Cellular distribution of full-length 3b and RUNX1b was

visualized in HEK293 cells using immunofluorescence assay.

HEK293 cells transfected with Flag-RUNX1b and HA-3b

(pXJ40-HA-3b) expression plasmids were subjected to immuno-

fluorescence assay using anti-HA and anti-RUNX1 antibodies.

Confocal microscopy revealed localization of RUNX1b in the

nucleus, as reported earlier [19] and 3b in the nucleus with

majority inside the nucleolus, as seen by Yuan et al [11]. Co-

transfected cells expressing 3b and RUNX1b showed significant

partial co-localization of the two proteins in the extra-nucleolar

nucleus area with Pearson’s correlation coefficient = 0.633 and

Mander’s coefficient = 0.9 (Fig. 2). Similar levels of partial co-

localization were also seen in Cos7 cells (data not shown).

3b gets recruited on the RUNX1 binding element on the
IL2 promoter

RUNX1b together with CBFb forms CBF, which further

interacts with other transcription factors, co-activators or co-

repressors on RUNX1 binding elements and regulates transcrip-

tion of target genes. The IL2 gene promoter harbours three

RUNX1 binding sites and is reported to be regulated by RUNX1b

in T cells [19]. To investigate whether 3b-RUNX1b interaction

leads to the recruitment of 3b on RUNX1 binding elements on the

endogenous IL2 promoter, ChIP assays were performed in

RUNX1b/CBFb endogenously expressing jurkat cells that are

abortively infected by SARS-CoV. Jurkat cells transfected with

empty vector or HA-3b were subjected to the assay after 48 h of

transfection. ChIP results from 3b transfected cells using anti-HA

depicted co-immunoprecipitation of the IL2 promoter region

containing RUNX1 binding site but not from mock transfected

cells (Fig. 3). However, the 39-distal IL2 promoter region, which

does not contain RUNX1 binding site, was not immunoprecip-

itated by anti-HA in either of the samples, suggesting that 3b

recruitment on the IL2 promoter region is specific to the RUNX1

binding. Control ChIP assays using anti-RUNX1 (positive control)

and no antibody (negative control) were conducted simultaneous-

ly. These results clearly demonstrate an in vivo recruitment of 3b on

the RUNX1 binding element on the IL2 promoter.

3b increases RUNX1b transcriptional activity
Viruses employ various strategies to manipulate activities of host

transcription factors in their favour. To investigate the effect of

SARS-CoV 3b protein on the RUNX1b transcriptional activity,

reporter gene assays were performed using the mouse IL2

promoter. HEK293 cells were co-transfected with wild-type

(WT) IL2 promoter luciferase plasmid, Flag-RUNX1b, Flag-

CBFb and Myc-3b in combinations mentioned. Renilla luciferase

plasmid (pRL-TK) was co-transfected as an internal control. 3b

alone showed no significant increase in the luciferase activity

whereas 3b along with RUNX1b and CBFb showed increase in

the luciferase activity in a dose dependent manner (Fig. 4A).

Transfection in jurkat cells also showed 1.5–5.0 fold increase in the

luciferase activity with increasing doses of Myc-3b (Fig. 4B),

suggesting that the increase in the luciferase activity in HEK293

and jurkat cells was specific to the 3b expression. To confirm

whether 3b induced increase in the IL2 promoter activity was due

to RUNX1b binding on the promoter, the IL2 promoter with all

three RUNX1 binding sites mutated (mutant IL2-Luc) was used.

Myc-3b transfected jurkat cells showed merely 0.3 fold increase in

the luciferase activity with mutant IL2-Luc as against 2.0 fold with

WT IL2-Luc (Fig. 4C); confirming that 3b dependent increase in

Figure 2. 3b partially co-localizes with RUNX1b in the nucleus. Cellular distribution of 3b and RUNX1b proteins were visualized by subjecting
Flag-RUNX1b and HA-3b transfected HEK293 cells to immunofluorescence assay. 3b was visualized using primary a–HA and alexa-488 conjugated
secondary antibody. RUNX1b was visualized using primary a–RUNX1 and alexa-594 conjugated secondary antibody. Nuclei were visualized by DAPI
(496-diamidino-2-phenylindole) staining. Arrows indicate extra nucleolar nucleus area of partial co-localization.
doi:10.1371/journal.pone.0029542.g002
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the IL2 promoter activity relies on the RUNX1b transcription

factor complex binding. Hence, we conclude that 3b potentiates

RUNX1b transcriptional activity on the IL2 promoter.

3b stimulates RUNX1b activity by inducing its ERK
dependent phosphorylation

RUNX1b transcriptional activity is regulated by various post-

translational modifications like phosphorylation, acetylation,

ubiquitination etc [20]. Phosphorylation of RUNX1b by Ser-

Thr kinases/ERK on serine 249/266 has been reported to

potentiate its transactivation potential [21]. SARS-CoV 3b has

been reported to activate ERK pathway [12]. Therefore,

determination of ERK dependent phosphorylation levels of

RUNX1b in 3b expressing cells was of our interest. To investigate

this, an in vitro kinase assay with 3b and vector transfected

HEK293 cells was performed. RUNX1b immunocomplex from

transfected cells served as a substrate for the kinase assay. Results

depicted a 1.5 fold increase in phosphorylated RUNX1b levels in

3b transfected cells compared to control transfected cells (Fig. 5A).

This suggests that 3b activated ERK may partly be responsible for

the stimulated RUNX1b transcriptional activity in 3b transfected

jurkat cells. To test this hypothesis, the reporter gene assay was

performed in the presence of ERK inhibitor, U0126. 3b

transfected jurkat cells were treated with DMSO or U0126 for

24 hrs prior to measurement of luciferase activity. Treatment of

cells with U0126 led to the inhibition of luciferase activity which

was otherwise observed in 3b expressing DMSO treated cells

(Fig. 5B). This experiment points out that 3b mediated increase in

RUNX1b transactivation potential may also be contributed by

stimulated ERK activity.

3b and RUNX1b cooperatively enhance MIP-1a mRNA
levels

Promoter of macrophage inflammatory protein (MIP-1a), a well

characterised pro-inflammatory cytokine [22] have been docu-

mented to be regulated by RUNX1b through its proximal and

distal RUNX1 binding elements [23]. SARS-CoV infection has

been found to stimulate monocyte derived-dendritic cells to

express MIP-1a [24]. In order to study the effect of 3b expression

on endogenous MIP-1a mRNA levels, real-time PCR was

performed in human monocytic U937 cells. Cells overexpressing

RUNX1b showed 3.0 fold increase in MIP-1a mRNA levels;

whereas those expressing 3b showed 5.0 fold increase as compared

to vector. Interestingly, cells overexpressing 3b along with

RUNX1b showed 13 fold increase in MIP-1a mRNA levels

(Fig. 6), suggesting that 3b significantly enhances RUNX1b

transactivation potential on the endogenous MIP-1a promoter.

Discussion

SARS pathogenesis, caused by evasion of the host innate

immunity, is characterized by a remarkable cytokine storm and

lymphopenia. SARS coronavirus antagonizes host interferon

action by encoding a few interferon antagonists like 3b, SARS 6,

nucleocapsid, nsp1, nsp3 and recently reported, M protein

[8,25,26]. Among them, 3b, like SARS6, belongs to a group of

accessory proteins that are unique to SARS coronavirus. A recent

study brought out plausible contribution of 3b in SARS

pathogenesis, by affecting levels of chemokines that are found

upregulated in SARS. We believed that the accessory protein 3b

has more roles to play in virus pathogenesis which are still

unknown. To unveil new cellular interactors of 3b, we employed a

yeast two-hybrid screen of human lung cDNA library and

identified transcription factor RUNX1b as a putative interactor

of 3b. The interaction was validated in vitro by co-immunoprecip-

itation.

RUNX1b plays a crucial role in development of myeloid and

lymphoid lineage cells. It was originally identified at a break point

on human chromosome 21 in the t(8;21) translocation. It is a most

common target of chromosomal translocation in human leukaemias

[16,27] including acute myeloid leukaemia, B-cell acute lympho-

blastic leukaemia and T-cell lymphoblastic leukaemia [28,29].

Importantly, RUNX1b is involved in transcriptional regulation of

several genes including cytokines and chemokines like IL2, IL3,

GM-CSF, MIP-1a, CSFR etc. [19,23,30,31,32,33,34,35]. It syner-

gises with other transcription factors to activate transcription

[36,37,38] and acts as a transcriptional activator or repressor

depending upon its association with co-activators such as CBP,

p300, MOZ [39,40] and co-repressors, mSin3A [41], TLE1 [42,43]

and NCoR [28].

Several reports have described the involvement of RUNX1

isoforms in transcription and replication of viruses like murine

leukaemia virus [14,44,45], maedi visna virus [46], polyomavirus

[47] and human papilloma virus [48,49]. B-cell proliferation and

immortalization by Epstein-Barr virus is mediated by downregu-

lation of RUNX1, a consequence of the binding of RUNX3 on the

RUNX1 promoter [50]. RUNX1 has been found to be

Figure 3. 3b recruitment on RUNX1 binding elements on the IL2 promoter. Chromatin immunoprecipitation assays were performed with
jurkat cells transfected with vector alone or HA-3b using a-RUNX1 and a-HA antibodies. PCR amplifications were performed using IL2 promoter
primers and 39 distal IL2 promoter primers. Results are representative of three independent experiments.
doi:10.1371/journal.pone.0029542.g003
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upregulated in latently infected GM-Ps by human cytomegalovirus

(CMV), a species specific herpesvirus [51]. In adenovirus infected

cells, RUNX1 leads to significant mislocalization of E4Orf6, thus

interfering with viral replication [52]. A comparative study by

microarray analysis of host gene transcription in the Huh7 cell line

infected with SARS-CoV and human coronavirus 229E found

significantly increased RUNX1 expression with SARS-CoV

infection as compared to human CoV22E [53]. This observation

prompted us to study this novel interaction of SARS-CoV

accessory protein 3b with RUNX1.

We observed significant partial co-localization of 3b and

RUNX1b in the extra-nucleolar nucleus region. Next, 3b was

found to get recruited on the RUNX1 binding elements which led

to increased transactivation of RUNX1b on the IL2 promoter, as

depicted by reporter gene assays. Additionally, 3b also affected its

transactivation on the IL2 promoter by modulating phosphoryla-

Figure 4. 3b increases RUNX1b transactivation potential on the mouse IL2 promoter. A. HEK293 cells were transfected with WT IL2-Luc
plasmid alone or with Flag-RUNX1b, Flag-CBFb and indicated amounts of Myc-3b. Relative luciferase activities were calculated 48 h post transfection.
B. Jurkat cells were transfected with WT IL2-Luc and indicated amounts of Myc-3b. Relative luciferase activities were calculated 48 h post-transfection.
3b expression was probed using a-myc antibody C. Jurkat cells were transfected with WT IL2-Luc or mutant IL2-Luc plasmid in the presence or
absence of Myc-3b. Results in each panel are represented as mean6S.D. of triplicate cultures. Bar values represent fold increase in luciferase activity.
*, p,0.005.
doi:10.1371/journal.pone.0029542.g004
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tion levels of RUNX1b through ERK. A similar mode of

regulation of immediate early gene X-1 through ERK-induced

RUNX1 phosphorylation in response to thrombopoetin was

reported by Hamelin and colleagues [54]. In order to explore

the effect of 3b on RUNX1b target gene other than IL2, we

measured mRNA levels of a MIP-1a, the promoter of which is

reported to be regulated by RUNX1b [23]. MIP-1a has been

observed to get upregulated in monocyte derived dendritic cells

infected with SARS-CoV [24]. In our study, overexpression of 3b

in monocytic cells U937 resulted in 5 fold increase in MIP-

1 mRNA levels which rose to 13 folds, when overexpressed with

RUNX1b. Interestingly, a recent report by Chen et al.

Figure 5. 3b expression increases phosphorylated RUNX1b levels through ERK activation. A. HEK293 cells were transfected with vector,
3b and RUNX1b expression plasmids. ERK immunoprecipitated from vector and 3b lysates were subjected to kinase assay with RUNX1b beads.
Phosphorylated RUNX1b was visualized by autoradiography. Input levels of immunoprecipitated ERK and phospho ERK levels in lysates were probed
by western blotting. Graph depicts fold increase in the levels of phosphorylated RUNX1b procured after three independent experiments. Bar
represents mean6SD of values obtained by densitometry. #, p,0.05. B. Jurkat cells were transfected with WT IL2-Luc in the presence or absence of
Myc-3b and treated with DMSO or U0126. Relative luciferase activity was measured and is shown as the mean6SD of three independent experiments
performed in triplicates. *, p,0.005. Phospho ERK levels in lysates were probed by western blotting.
doi:10.1371/journal.pone.0029542.g005
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characterizing cellular immune response to SARS-CoV infection

in senescent mouse models showed increase in MIP-1a and IL2

levels at early and late stages of infection [55], a result that

supports our observations.

To the best of our knowledge, this is the first report unveiling

the effect of SARS-CoV protein 3b on the transcriptional activity

of a host transcription factor, RUNX1b, and its downstream target

genes IL2 and MIP-1a. Jurkat and monocyte cells are abortively

infected by SARS-CoV. Upon entry in these cells, RNA genome

of the SARS-CoV will get transcribed and translated and

expectedly, would lead to the synthesis of 3b along with other

proteins. However, until now there is no direct report on the

expression levels of 3b in these virus infected cells. Therefore,

based on our study we have speculated the role of 3b in virus

infected monocytic and T cells and put forth a plausible role of 3b

in SARS-CoV pathogenesis which gives new directions to the

understanding of SARS.

Materials and Methods

Reagents and plasmids
3-Aminotrizole was purchased from Sigma. Luciferase assay kit

(E1500) and in vitro transcription and translation kit (L4610.) were

purchased from Promega. TRIzol was purchased from Invitrogen.

Antibodies against RUNX1, HA and c-Myc were purchased from

Santa Cruz. Anti-Flag was purchased from Roche. Alexa 488

conjugated anti-mouse and alexa 594 conjugated anti-rabbit were

purchased from Molecular Probes. The SARS-CoV 3b gene

(25689–26153 bp), was PCR amplified from the SARS-CoV

genome (NC_004718) and cloned in pXJ40-HA vector as

described earlier [56]. The 3b insert was further cloned into

pHybLexA/Zeo and pCDNA3.1(-) myc/his vector. pCMVFlag

Tag 2B-RUNX1b, mouse WT IL2-Luc and mutant IL2-Luc (all

three RUNX1 binding sites mutated) constructs were generously

provided by Dr. Shimon Sakaguchi (Institute for frontier Medical

Sciences, Kyoto University, Japan), MigRI-CBFb was gifted by

Dr. Nancy A Speck (University of Pennsylvania School of

medicine, Philadelphia).

Yeast Two-hybrid screening
Lex A based screening system (Hybrid hunter, version F),

comprised of Saccharomyces cerevisiae strain L40 [MATa his3D200

trp1-901 leu2-3112 ade2 LYS2::(4lexAop-HIS3)URA3::(8lexAop-lacZ)

GAL4], pHybLexA/Zeo and pYesTrp2 as binding domain and

activation domain vectors, respectively and human lung cDNA

library cloned in pYesTrp2, was purchased from Invitrogen.

Screening was performed as per manufacturer’s protocol. The bait

plasmid was constructed by cloning 3b coding sequence in-frame

with the LexA DNA binding domain in pHybLexA/Zeo.

pHybLexA/Zeo-3b was co-transformed with cDNA library in

L40 and co-transformants were selected for the activation of two

reporter genes, HIS3 and LacZ. Strength of the interaction in

selected co-transformants were assessed by their ability to grow on

His2 Trp2 and Zeo+ YC media supplemented with 5 mM AT (3-

amino-1,2,3-trizole, competitive inhibitor of HIS3) and for

positivity of filter b–galctosidase activity assay. Filter-lift assay

was performed as described before [57]. Plasmids were isolated

from positive co-transformants and shuttled into E.Coli DH5a and

sequenced. L40 co-transformed with pHybLexA/Zeo-Fos and

pYesTrp2-Jun was used as the positive control and L40 co-

transformed with pHybLexA/Zeo and pYesTrp2 was used as the

negative control for the library screening.

Cell culture and transfection
HEK293, human embryonic kidney cells and Huh7, human

hepatoma cells were maintained in DMEM (Dulbecco’s modified

Eagle’s medium). Human leukemic T cells, jurkat and human

monocytic cells, U937, were maintained in RPMI1640. All cell

lines were maintained in media supplemented with 10% FCS (fetal

calf serum, v/v) and antibiotics (penicillin and streptomycin).

Transient transfections in Huh7 and HEK293 cells were carried

out using fugene 6 (Roche) and lipofectamine 2000 (invitrogen) as

per manufacturer’s protocol and in jurkat and U937 cells were

carried out by electroporation at 260 V and 975 mF in 4 mm

cuvettes, using Biorad Gene Pulser.

Immunofluorescence assay
For immunofluorescence assay, HEK 293 cells were seeded at

50% confluency on coverslips in a 12 well plate. Cells were singly

or co-transfected with RUNX1b (pCMV-Tag2B Flag RUNX1b)

and 3b (pXJ40 HA-3b) expression vectors and the assay was

performed 24 h post-transfection as described by Korkaya et al.

[58]. 3b and RUNX1b was stained using mouse anti-HA and

rabbit anti-RUNX1 antibodies, respectively. Alexa 594 conjugated

goat anti-rabbit and alexa 488 conjugated goat anti-mouse were

used as secondary antibodies. Coverslips were mounted on to the

glass slides in anti-fade (with DAPI) medium. Confocal images

were collected using a 606 objective on a Nikon A-1Rconfocal

microscope and analysed by imaging software, NIS-elements.

Co-immunoprecipitaion and Western blotting
For in vitro co-immunoprecipitation, [35S] radiolabelled full

length RUNX1b and 3b were expressed using a coupled in vitro

transcriptional/translation system as per manufacturer’s protocol.

3b lysate, RUNX1b lysate and 3b-RUNX1b lysate mix were

incubated with anti-RUNX1 in 500 ml lysis buffer (20 mM Tris

pH 7.4, 150 mM NaCl, 0.05% NP40) at 4uC for 4–6 h.

Immunocomplexes were precipitated by adding 50 ml sepharose-

A (50% v/v) beads at 4uC for 1 h. Beads were washed thrice with

Figure 6. 3b and RUNX1b cooperatively increase MIP-1a mRNA
levels. Relative mRNA levels of MIP-1a to actin were estimated in U937
cells expressing indicated proteins, using quantitative RT-PCR. Histo-
gram is the result of three independent experiments. Bar values
represent fold increase in the mRNA levels. Asterisk *, p,0.005.
doi:10.1371/journal.pone.0029542.g006
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lysis buffer and resuspended in SDS-PAGE loading buffer.

Samples were run on SDS-PAGE and bands were detected by

autoradiography. For in vivo co-immunoprecipitaion, Huh7 cells

were transiently transfected with expression plasmids of RUNX1b

(pCMV-Tag2B Flag RUNX1b) and 3b (pCDNA3.1 Myc-3b) in

combinations mentioned. Total DNA amount was normalized by

adding pCDNA3.1. 48 h post transfection, cells were lysed and

immunoprecipitation and western blotting was performed as

described earlier [59].

Chromatin immunoprecipitation (ChIP)
For ChIP, 10–156106 Jurkat cells were transfected with 10 mg

vector or 3b (pXJ40 HA-3b) plasmid. 48 h post transfection, ChIP

assay was performed as described earlier [60]. DNA fragments

were analysed for the recruitment of RUNX1b and 3b on the

RUNX1 binding site on the IL2 promoter as well as on 59 distal

region of the human IL2 gene (non-RUNX1 binding site).

Sequences of the primers used for PCR: forward primer for

human IL2 promoter: 59-CTCTAGCTGACATGTAAGAAGC-

39; reverse primer for human IL2 promoter: 59-CTACACTGAA-

CATGTGAATAGC-39; Forward primer for 39 distal region of the

human IL-2 gene: 59-AAATGTTGCAGGATCCTTGC-39; re-

verse primer for 39 distal region of the human IL-2 gene: 59-

TGAGCTCTGACATGATGCTC-39.

Luciferase assay
Luciferase assay was performed as per manufacturer’s protocol

(Promega). For the assay, cells were transfected with reporter

plasmid (WT IL2-Luc or mut IL2-Luc), pRL-TK and indicated

expression plasmids. pEGFP-N1 plasmid was transfected as a

negative control in cells not expressing 3b. Drug treatment

(U0126, 10 mM) was performed for 24 h prior to harvesting. All

transfections were normalized for the amount of total DNA by

adding pCDNA3.1. Luciferase activity was measured 48 h post

transfection and normalized against renilla luciferase activity.

Relative luciferase activity was expressed as mean6standard

deviation (SD) of three independent experiments. Statistical

significance was calculated using student’s t test. p values are

given in the figure legends. Error bars represent the SD.

In vitro kinase assay
ERK activity in 3b transfected cells was assayed using

immunoprecipitated RUNX1b as the substrate. HEK293 cells

were transfected with expression plasmids of vector (control), 3b,

and RUNX1b. 48 h after transfection, cells were lysed in lysis

buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA,

1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1 mM

b-glycerophosphate, 1 mM sodium orthovandate) and equal

amounts of vector and 3b lysates were subjected to immunopre-

cipitaion using anti-ERK antibody and RUNX1b lysate, using

anti-RUNX1 antibody. Sepharose A beads were washed thrice

with the lysis buffer and twice with the kinase buffer (20 mM Tris–

Cl pH 7.5, 10 mM MgCl2, 1 mM DTT, 5 mM Sodium

orthovandate). For the assay, ERK beads were incubated with

RUNX1b beads in 20 mM Tris–Cl (pH 7.5), 10 mM MgCl2,

1 mM DTT, 2 mM b-glycerophosphate and 50 mM ATP, 5 mCi

[c-32P]-ATP at 37uC for 30 min. Reaction mixtures were run on

SDS–PAGE, and analyzed by autoradiography.

RNA isolation and real time PCR
RNA was isolated from transfected U937 cells using TRIzol, as

per manufacturer’s protocol. 5 mg RNA was reverse transcribed

using oligo-dT primer and MuLV reverse transcriptase as per

manufacturer’s protocol (Promega). Primers used for PCR were:

MIP-1a forward: 59 ACTTGCTGCTGACACGCCGA 39 and

reverse: 59 CACAGACCTGCCGGCTT CGC 39; Actin forward:

59 TGACGGGGTCACCCACACTGTGCCCATCTA39 and re-

verse: 59 CTAGAAGCATTTGCGGTGGACGATGGAGGG39.

Data is represented as bar graph and is mean6SD of three

independent observations.
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