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Understanding the T cell immune response in SARS
coronavirus infection

Hsueh-Ling Janice Oh1,2, Samuel Ken-En Gan3, Antonio Bertoletti4,5,6 and Yee-Joo Tan2,7

The severe acute respiratory syndrome (SARS) epidemic started in late 2002 and swiftly spread across 5 continents with a mortality

rate of around 10%. Although the epidemic was eventually controlled through the implementation of strict quarantine measures, there

continues a need to investigate the SARS coronavirus (SARS-CoV) and develop interventions should it re-emerge. Numerous studies

have shown that neutralizing antibodies against the virus can be found in patients infected with SARS-CoV within days upon the onset of

illness and lasting up to several months. In contrast, there is little data on the kinetics of T cell responses during SARS-CoV infection

and little is known about their role in the recovery process. However, recent studies in mice suggest the importance of T cells in viral

clearance during SARS-CoV infection. Moreover, a growing number of studies have investigated the memory T cell responses in

recovered SARS patients. This review covers the available literature on the emerging importance of T cell responses in SARS-CoV

infection, particularly on the mapping of cytotoxic T lymphocyte (CTL) epitopes, longevity, polyfunctionality and human leukocyte

antigen (HLA) association as well as their potential implications on treatment and vaccine development.
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INTRODUCTION

Severe acute respiratory syndrome (SARS) first emerged in

Guangdong, China in late 20021 and infected more than 8000 people

in 29 countries across 5 continents.2 According to the World Health

Organization (WHO), the fatality rate of the SARS outbreak was esti-

mated to be 9.6%. Of those infected, healthcare workers and care-

takers accounted for the majority. The SARS epidemic was officially

controlled by July 2003 after the implementation of strict isolation of

patients. Sometime into the epidemic, a novel coronavirus, the SARS

coronavirus (SARS-CoV), was identified as the causative agent.3–5

Molecular epidemiology showed that at least two strains of SARS-

CoV infected the patients in Hong Kong,6 suggesting that the virus

had jumped from animal sources to humans on two separate occa-

sions. Later in 2005, reports from two laboratories identified a virus

resident in Chinese horseshoe bats that is genetically similar to the

human SARS-CoV, pinpointing the horseshoe bat to be a likely

natural reservoir of the SARS-CoV.7,8 If this is indeed the case, a re-

emergence of SARS-CoV cannot be ruled out.

Coronaviruses are a diverse group of large, enveloped positive-

stranded RNA viruses in the order Nilovirales, family Coronavi-

ridae, and genus Coronavirus. Typically, they cause respiratory and

enteric diseases in humans and animals. Using the open reading frame

(ORF) 1a sequences, SARS-CoV was categorized as a subgroup of the

group II coronaviruses.9 The 30 kb poly-adenylated positive-stranded

RNA genome10,11 has an genomic organization typical of a corona-

virus where the first two ORFs (1a and 1b) encode the viral replicase

that requires processing by the viral cysteine proteinases to yield the

functional membrane-bound replicase complex and a group of 16

non-structural proteins (NSP).12 Although some functions of these

NSPs have been investigated and known, there are many others that

still require further characterization (reviewed by Cheng et al.13).

The SARS-CoV genome encodes four structural proteins: spike (S),

envelope (E), membrane (M) and nucleocaspid (N). In addition, a set

of unique accessory proteins (namely ORF 3a, 3b, 6, 7a, 7b, 8a, 8b and

9b) is also found. Functionally, the N protein packs the RNA into a

helical nucleocapsid; while the S protein forms the characteristic pro-

jections on the virion surface for the attachment and entry into the

host cells; and together, N, M and E control the assembly of the virion.

At present, no significant homology has been found for the accessory

proteins to the viral proteins of other coronaviruses; in fact, they were

found to be dispensable for virus replication in cell culture despite

contributing to viral pathogenesis.14,15

Neutralizing antibodies against SARS-CoV found in patients and

animals infected with SARS-CoV block viral entry by binding to the

S glycoprotein.16 Besides the humoral response, the role of T cells

in viral infections has been known to be just as important. Whilst
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neutralizing antibodies can prevent viral entry, the body also requires

SARS-CoV specific CD41 T helper cells for the development of these

specific antibodies. Similarly, CD81 cytotoxic T cells are important for

the recognition and killing of infected cells, particularly in the lungs of

infected individuals. Despite the increasing number of reports that

investigated memory CD41 and CD81 T cell responses in recovered

SARS patients, there is a lack of data that describes the kinetics of the

T cell response during a SARS-CoV infection. This review will focus on

the memory T cell studies and its possible implications on treatment

and vaccine development. For easy reference, all the T cell epitopes

identified are summarized in Table 1.

CHARACTERIZATION OF T CELL EPITOPES IN THE SPIKE (S)

GLYCOPROTEIN

Amongst the SARS-CoV structural proteins, the S protein has been

found to elicit neutralizing antibodies17,18 with its major immuno-

dominant epitope found between residues 441 to 700. Using an online

database and with verification from T2 binding assays, the first two

HLA-A*02:01-restricted T cell epitopes (S1203–1211 and S978–986)

were identified in the S protein of SARS-CoV.19 They were immuno-

genic and elicited high IFNc-specific T cell response in patients who

have recovered from SARS. In comparison, the homologous peptide

from HCoV229e did not elicit a significant response. A third CTL

epitope, S1167–1175 (also known as SSp-1) was reported shortly after

by another group.20 This peptide was able to induce CTL response in

HLA-A*02:01 transgenic mice immunized with peptide loaded dend-

ritic cells (DCs). At the same time, they were able to generate peptide-

specific CD81 CTL in peripheral blood mononuclear cells (PBMCs)

from healthy human donor. The same group also showed that heat

inactivated SARS-CoV particles elicited CTL response to all three S

epitopes (SSp-1, S978 and S1202) in patients’ PBMCs one year post-

infection.21 Interestingly, 5 healthy individuals without contact his-

tory with SARS-CoV also exhibited SSp-1-specific responses in their

PBMCs but exhibited lower cytotoxic activity and cytokine release

when compared to the recovered SARS patients.

Other T cell epitopes identified include S787–795, S1042–1050

(found in the S2 domain) and S411–420 (P15) (found in the S1

domain) .22,23 These epitopes were found to be immunogenic and able

to induce strong IFNc production from PBMCs of recovered SARS

patients. At the same time, HLA-A*02:01 transgenic mice immunized

with DNA vaccines encoding the S protein were able to induce sig-

nificant peptide-specific response.24 In this study, the HLA-A*02:01

restricted epitope S958–966 (also known as Sp8), first identified based

on HLA-A*02:01 binding peptide and proteosomal cleavage predic-

tion systems, was found capable of inducing specific CTLs in the

PBMCs of healthy individuals as well as in transgenic mice immunized

with S DNA vaccine.24 This suggests that there may already be

SARS-CoV-specific CTL precursor cells within the T-cell repertoire

of healthy individuals.

Animal studies using mice primed intramuscularly with S DNA

vaccine and boosted with subcutaneous HLA-A*02:01 restricted pep-

tides25 or with the S DNA vaccine alone26 elicited antigen-specific

CD81 T cell responses. In fact, one recent study showed that prime-

boost immunization of transgenic mice with 5 of the HLA-A*02:01 S

peptides together with CpG oligodeoxynucleotide (ODN) could sig-

nificantly enhance the frequency of peptide-specific CD81 T cells.27

Taken together, the S protein is not only capable of inducing neu-

tralizing antibodies but also contains several immunogenic T cell epi-

topes. Some of these epitopes found in either the S1 or S2 domain of

the protein should therefore be considered during SARS-CoV vaccine

development.

CHARACTERIZATION OF T CELL EPITOPES IN THE

NUCLEOCAPSID (N) PROTEIN

Besides the S glycoprotein, persistently high levels of anti-N protein

antibodies and T cell responses were also found in the SARS-recovered

individuals 2 years post-infection.28,29 For other coronaviruses, some

protective effects were found to be conferred through N-specific

CD81 T cells.30,31 Using a similar approach of HLA peptide binding

prediction algorithm with validation from T2-cell binding assay, Tsao

Table 1 Summary of T cell epitopes found in the SARS-CoV

Protein Amino acid position HLA restriction Identification References

Spike 1203 to 1211 HLA-A*02:01 Human PBMCs 19

Spike 978 to 986 HLA-A*02:01 Human PBMCs 19

Spike 1167 to 1175 HLA-A*02:01 Transgenic mouse and verified in human PBMCs 20

Spike 787 to 795 HLA-A*02:01 Human PBMCs 22

Spike 1042 to 1050 HLA-A*02:01 Human PBMCs 22

Spike 411 to 420 HLA-A*02:01 Human PBMCs 23

Spike 958 to 966 HLA-A*02:01 Transgenic mouse and verified in human PBMCs 24

Nucleocapsid 223 to 231 HLA-A*02:01 Transgenic mouse 22

Nucleocapsid 227 to 235 HLA-A*02:01 Transgenic mouse 22

Nucleocapsid 317 to 325 HLA-A*02:01 Transgenic mouse and verified in human PBMCs 22

Nucleocapsid 331 to 347 HLA-A*02:01 Human PBMCs 28

Nucleocapsid 346 to 362 HLA-A*02:01 Human PBMCs 28

Nucleocapsid 211 to 235 HLA-A*02:01 Human PBMCs 32

Nucleocapsid 330 to 354 HLA-A*02:01 Human PBMCs 32

Nucleocapsid 216 to 225 HLA-B*40:01 Human PBMCs 33, 34

Membrane 21 to 44 ND Human PBMCs 41

Membrane 65 to 91 ND Human PBMCs 41

Membrane 117 to 140 ND Human PBMCs 41

Membrane 200 to 220 ND Human PBMCs 41

Membrane 146 to 160 ND Human PBMCs 34

3a 36 to 50 ND Human PBMCs 34

3a 6 to 20 HLA-B*58:01 Human PBMCs Unpublished

*ND indicates not determined.
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et al. identified several HLA-A*02:01 restricted epitopes in the N

protein (peptide N223–231, N227–235 and N317–325) and showed

that they could induce specific CTL responses in transgenic mice

immunized with N proteins or peptides with CpG ODN.22 In addi-

tion, peptide N317–325 was able to stimulate the recall of CD81 T cell

response in PBMCs of recovered SARS patients.

There had been numerous attempts to screen for CTL epitopes in

the N protein through the use of overlapping peptides spanning the

entire N protein. One such study that used PBMCs from recovered

SARS patients 2 years post-infection has revealed that the major domi-

nant antigenic site of the N protein lies in the C-terminal region

(amino acids 331 to 362). At least 2 different T cell epitopes (N331–

347 and N346–362) have been found in this region when the PBMCs

were stimulated with a pool of 57 overlapping N peptides in vitro,

followed by IFNc Enzyme-linked immunosorbent spot (ELISPOT)

assay.28 Using the same approach, another group identified 2 potential

CTL epitopes at positions N211–235 and N330–354 in the N protein.32

More recently, we also identified the same dominant response (N216–

230) in SARS-recovered patients 6 years post-infection.33 This res-

ponse was observed in 19% [3/16] of our cohort of recovered SARS

patients. Similarly, a comprehensive study of T cell responses against

all the SARS-CoV proteins conducted by Li et al. showed that 11% of

their SARS subjects gave positive T cell responses against peptide

N211–225, and it was identified as the most recognized epitope in

the N protein.34 Exact epitope mapping by our group further indicated

that the CTL epitope was a 10 mer (N216–225) restricted by HLA-

B*40:01 and that PBMCs from healthy individuals can be transduced

to become N peptide-specific T cells.33

In one of the first animal studies conducted in monkeys, adenoviral-

based vectors were used to test the efficacy of the S, M and N

proteins.35 The monkeys were injected intramuscularly with adeno-

viral-based vectors that expressed codon-optimized S1 domain, M

and N proteins. The S1 domain of the S protein was found to induce

strong humoral response, while the N protein elicited high frequency

of IFNc-producing T cells as determined using N peptides as the

antigen in the ELISPOT assay. This was the first indication that the

N protein could be a good vaccine candidate for cell-mediated T cell

response. This phenomenon was also found in mice where DNA vac-

cines encoding the N protein elicited good T cell responses.36–39 C3H/

He mice intramuscularly immunized with N protein pcDNA-fn vector

showed both high antibody titre and CTL activity after 3 injections;36

and using Balb/c mice, two other groups showed that DNA vaccines

encoding N protein alone could elicit T cell proliferation, IFNc release,

delayed-type hypersensitivity (DTH) and in vivo cytotoxic T cell acti-

vity.37,38 Further experiments reported enhanced T cell response when

calreticulin (CRT)-linked DNA vaccine was used39 or DNA vaccina-

tion was performed with the addition of a chemical adjuvant levami-

sole.38 Synthetic N peptides coupled to the surface of liposomes were

also reported to enhance T cell response.40 These synthetic N peptides

not only induced CTL response, but the mice were also able to clear

vaccinia virus-expressing SARS-CoV epitopes when challenged.40

In summary, several different studies have identified immunogenic

regions in amino acids 211 to 362 of the N protein to contain T cell

epitopes. However, to date, the only epitope characterized in detail is

the 10-mer epitope (N216–225) which is restricted by HLA-B*40:01.33

CHARACTERIZATION OF T CELL EPITOPES IN OTHER

SARS-COV PROTEINS

There are very few studies of T cell response to other SARS-CoV

proteins. Nonetheless, animal studies using DNA vaccines suggest that

the M protein may induce T cell response, albeit to a lesser degree than

the S and N proteins.38 Yang et al. demonstrated that it was possible

to induce recall T cell response from the PBMCs of SARS patients

who have recovered for more than 1 year by using overlapping pep-

tides spanning the entire M protein.41 In this study, four human T cell

immunodominant peptides, M21–44, M65–91, M117–140 and

M200–220, were subsequently identified. Similarly, Li et al. also

reported that 9% of their SARS subjects had T cell response against

the M peptide region, M146–160.34 The largest accessory protein of

SARS-CoV is the 3a protein of 274 amino acids. However, other than

Li et al.’s report, there had been no demonstration of T cell responses

against this protein. The 3a protein peptide 3a36–50 was one of the

three most frequently recognized T cell epitopes identified in their

study.34 Similar to the results reported by Li et al. our data showed

that the 3a protein peptide 3a6-20 was able to elicit both CD81 and

CD41 responses.33 Interestingly, mice immunized with 3a DNA vac-

cine were shown to have high levels of humoral response as well as Th1

response.42 These observations indicated that the accessory 3a protein

is immunogenic and able to induce T cell response.

Although T cell response could be observed for the M protein,

current studies seem to suggest that the 3a protein is more immuno-

genic in comparison, and T cell epitopes identified in it may play an

important role in recovery from a primary SARS-CoV infection and in

vaccine development.

LONGEVITY AND PHENOTYPE OF CD41 AND CD81 T CELL

RESPONSES

To date, there is only one study that investigated T cell response

against whole SARS-CoV in humans.34 In this study, PBMCs

from 1-year post-infected patients showed T cell response to eight

(replicase, S, N, E, M, 3a, 3b, and 9b) out of the fourteen SARS-CoV

proteins when tested using overlapping peptides spanning the entire

SARS-CoV genome. Of the 70% of T cell responses elicited

against the structural proteins, the S protein induced the most

dominant responses (41%). In fact, the three most commonly

recognized T cell epitope were that of one found in 3a, and the

other two in the S protein (S435–451 and S633–650). The latter were

not reported in the other studies. Although both CD41 and CD81

T cell responses were observed in the study, the frequency and mag-

nitude of the CD81 T cell responses were greater than the CD41 T cell

responses. However, the CD41 and CD81 T cells were found to have

similar central memory phenotypes (CD271 and CD45RO1). A sepa-

rate study by Peng et al. showed that the N-specific CD41 T cells

had central memory (CD45RA2 CCR71 CD62L2), whereas most

of the CD81 T cells had effector memory (CD45RA1 CCR72

CD62L2) phenotype.28 Similar observations were made with the

M-specific CD41 and CD81 T cells,41 whilst the S-specific CD81

T cells were reported to have effector memory (CD45RA1 CCR72

CD62L2) phenotype.21

Using peptides in the four SARS-CoV structural proteins, an ana-

lysis of the memory T cell response in recovered SARS patients four

years post-infection revealed that both CD41 and CD81 T cells pro-

duced IFNc.43 In support of Li et al.’s study,34 Fan et al. also found that

CD41 memory T cells produce IL-2, TNFa and IFNc, with the excep-

tion of one patient.43 It was also observed that S peptides induced the

highest percentages of IFNc producing cells. Interestingly, the fre-

quency of these polyfunctional CD41 T cells (T cells producing mul-

tiple cytokines) was higher in the individuals with severe SARS

infection than in moderately severe patients.34 On the other hand, this

difference between moderate severe and severe patients was
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not observed with the CD81 T cells which produced mainly IFNc.

Nonetheless, a proportion of the CD81 T cells were found to produce

TNFa and degranulate (with the detection of CD107a).

Since polyfunctional T cells were associated with better control of

human immunodeficiency virus (HIV) infection and vaccination effi-

cacy,44,45 we further characterized the cytokine profile of the SARS-

specific T cells in our recent study.33 A summary of our findings is

shown in Figure 1. We have observed that the majority of CD41 T cells

produced IFNc, IL-2, and TNFa, with a small percentage of the

cells also simultaneously producing inflammatory cytokines such as

macrophage inflammatory protein (MIP) 1a, MIP 1b and granulo-

cyte-macrophage colony-stimulating factor (GM-CSF). Of these,

the majority of the CD81 T cells produced IFNc, TNFa, MIP 1a or

MIP 1b alone or in combination. Only a small percentage produced

IFNc, IL-2, and TNFa. Moving forward, we cloned the a and b T cell

receptor (TCR) chains of one immunodominant CTL epitope in the N

protein (amino acid 216 to 225) from the SARS-CoV specific CD81 T

cells and used them to redirect the specificity of lymphocytes of

healthy subjects lacking SARS-CoV specific memory T cells. These

TCR-redirected T cells were found to possess a cytokine production

profile similar to SARS-CoV specific memory CD81 T cells in recov-

ered SARS patients (as mentioned above). Thus we proposed that

these T cells may be potential therapeutic treatments for this life

threatening infection.

Despite the numerous reports describing the elevation of inflam-

matory cytokines in primary infected patients (reviewed by Zhu

et al.46), it is not known if these cytokines are beneficial or contribute

to the pathogenicity of the infection. Moreover, there is currently no

report confirming the protective effect of T cells during a primary

SARS-CoV infection in humans. In fact, research in this area is ham-

pered by the lack of systematic sample collection during the 2003 SARS

outbreak which lasted for a relatively short period of , 16 weeks. Since

there is no second major outbreak of SARS, the protective effect of

memory T cell response in recovered SARS patients is not known.

Nevertheless, the phenotype and cytokine profile of the T cells in these

recovered individuals indicate the possible protective effect of T cell

response in the initial infection or during any subsequent infections.

HLA ASSOCIATION

The association of certain HLA genotypes with increased resistance or

the ability to clear viral infections have been reported in hepatitis C

virus (HCV) and human papillomavirus studies.47–50 Although earlier

studies done on SARS patients from Taiwan and Hong Kong suggested

that the HLA-B, HLA-Cw and HLA-DR alleles were highly associated

with SARS infection and disease development,51–53 further investiga-

tion is required. Of these literature, SARS individuals from Hong

Kong showed that HLA-B*07:03 and HLA-DR*03:01 conferred

factors for susceptibility and resistance to SARS infection, respec-

tively.53 In agreement with this, a study on a Taiwanese cohort of

SARS patients found that both HLA-Cw*15:02 and HLA-DR*03:01

were associated with resistance to SARS infection.54 These observa-

tions suggested the important role of HLA-DR*03:01 in viral disease

progression through enhancing the function of CD41 T helper cells.

Similarly, we observed that the CD81 T cell responses against both the

N and 3a proteins were all restricted by HLA-B subtype (unpublished

data), thus pointing to the possible role of HLA-B subtypes in viral

immunity. Among the HLA class I genes, HLA-B is known to be the

most polymorphic,55 and was associated in protective roles against the

HIV,56–58 HCV59 and acute influenza infections.60

CONCLUSION

Currently, no antiviral therapy has yet been proven useful for SARS.

Attempts to test potential anti-SARS agents using antiviral antibodies,

entry inhibitors, proteinase inhibitors, calpain inhibitors, ribavirin

(nucleoside analogues), interferons, and short interfering RNAs were

riddled with contradictory reports from different laboratories. The

lack of clinical trials also prevented the reaching of a conclusive agree-

ment for effective anti-SARS strategies (reviewed by Weiss et al.61).

Nevertheless, human convalescent-phase plasma seemed to shorten

hospitalization without adverse effects if it is administered as an

immunotherapy to SARS patients early in the course of infection.62

With the finding that recovered SARS patients have higher and more

sustainable levels of neutralizing antibodies when compared to those

who had succumbed to the disease,63 monoclonal antibodies for pass-

ive immunization were also obtained using phage-display antibody

libraries and immortalization of B cells from convalescent SARS

patients.64,65

Although it is still not known whether naturally acquired immune

responses can confer protection from re-infection of SARS-CoV,

vaccines are likely to be the most effective way to provide protection

against a future re-emergence of SARS-CoV. Several strategies for

vaccine development included DNA vaccines, inactivated whole virus

vaccines,66,67 virus-like particles,68,69 recombinant virus vector vac-

cines,70 and recombinant protein vaccine.71 Most SARS-CoV vaccines

that elicited neutralizing antibodies are believed to be protective,

but as described, T cells may also play an important role in viral

clearance in a primary SARS-CoV infection.72,73 Zhao et al. suggested

that inefficient immune activation and a poor virus-specific T cell

response underlay severe disease in SARS-CoV infected mice.74 In

their recent report, they showed that virus-specific T cells were neces-

sary and sufficient for virus clearance and protection from clinical

disease in mouse-adapted SARS-CoV (MA15) virus-infected mice.73

In addition, CD41 T cells in a senescent mouse model were found to

play an important role in viral clearance in a primary infection with

SARS-CoV.72 In humans, SARS-CoV-specific memory T cells were

found to persist in the peripheral blood of SARS patients up to 6 years

IFNc + TNFa + IL-2

IFNc + TNFa + IL-2

IFNc / TNFa / MIP 1a
/ MIP 1b/

IFNc + MIP 1b

IFNc + MIP 1aIFNc + TNFa + IL-2 + MIP 1a
+ MIP 1 b + GM-CSF

CD4+
CD8+

Figure 1 Diagram showing the cytokine profiles of the CD41 and CD81 T cells from SARS recovered patients. The big and small arrows indicate the major and minor

populations of CD41 and CD81 T cells producing the cytokines indicated respectively.
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post-infection despite a lack of specific memory B cell response in

these patients.75 This seems to suggest that SARS- CoV-specific T cell

response could persist longer and thus indicating that cell-mediated

immune response is important for protecting against re-infection. As

all these studies suggest that T cell may play a crucial role in the

clearance of SARS-CoV, there is therefore a need for detailed char-

acterization of the T cell response to SARS-CoV for the development

of future vaccine candidates.

Finally, it is important to note that T cells can play a protective and/

or pathological role during an infection. In the case of mouse-hepatitis

virus (MHV), an increase of morbidity and mortality in infected mice

has been associated with memory T cells.76 Although no direct evi-

dence have shown that SARS-CoV-specific T cell responses contribute

to immunopathology in SARS, it is a question that needs to be further

addressed.
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