
a noninvasive method to aid in the diagnosis, localization, and
assessment of disease activity.
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Emerging Human Middle East Respiratory
Syndrome Coronavirus Causes Widespread
Infection and Alveolar Damage in
Human Lungs

To the Editor:

Middle East respiratory syndrome coronavirus (MERS-CoV)
has alerted the public health systems by causing lethal respira-
tory disease in 54 of 114 confirmed human cases as of September
7, 2013 (1, 2). Coronaviruses represent a diverse family of envel-
oped, single-stranded positive-sense RNA viruses. In humans,
the four endemic coronaviruses HCoV-229E, -OC43, -NL63,
and -HKU1 are known to cause mild respiratory symptoms in
the majority of cases (3). In contrast, the phylogenetically dis-
tinct severe acute respiratory syndrome (SARS) coronavirus
(SARS-CoV) caused a global outbreak of severe lower respira-
tory tract disease (4). The clinical symptoms observed in several
MERS-CoV–infected humans were related to pneumonia and
severe acute lung injury (2) and closely resembled those ob-
served in individuals suffering from SARS (4). Because autopsy
studies have not been reported, essential information is miss-
ing about the virus- and host-dependent processes underlying
MERS-CoV–related lung damage. Herein, we used an ex vivo
model of human lung tissue infection (5) and a bronchoalveolar
lavage (BAL) sample from a patient withMERS-CoV to describe
MERS-CoV replication, tropism, dipeptidyl peptidase 4 (DPP4)
receptor expression, and virus-related lung tissue damage.

Ex vivo infection of human lung tissue with MERS-CoV
followed by spectral confocal microscopy (methods are avail-
able in the online supplement) revealed a widespread cellular
distribution of viral antigen in alveolar tissue using antisera

from infected patients (Figure 1A and Figures E1A and E1B
in the online supplement), whereas mock-infected tissue or serum
from a healthy donor remained negative (Figures E1A and E1B).
As expected for coronavirus, antigen was detected exclusively in
the cytosol (Figure E2) (6). Growth curve analyses demonstrated
a titer increase of infectious MERS-CoV in the supernatants of
infected human lung tissue by more than two orders of magnitude
within 48 hours (Figure 1B). This was comparable in extent and
kinetics to parallel infections of tissue from the same donors with
highly pathogenic avian H5N1 influenza A virus known to cause
lethal lung disease in humans (5, 7) (Figure 1B). Double infection
of lung specimen with both viruses revealed extensive alveolar in-
fection by MERS-CoV, whereas H5N1 influenza A virus infected
only type II cells (5, 7) (Figure 1C).

The investigation of MERS-CoV tropism revealed viral anti-
gen in ciliated bronchial epithelium (Figure 2A) as well as in
unciliated cuboid cells of terminal bronchi located in the area
of bronchial–alveolar transition (Figure 2B). Lung type I cells
comprise approximately 95% of the alveolar surface and there-
fore form the major area of the lung, being critical for gas ex-
change (8). Type II cells are crucial for basic lung functions like
surfactant production and tissue repair (9). Immunofluorescence
(Figure 2C) and electron microscopy (Figures E3 and E4)
showed strong MERS-CoV antigen expression and identified intra-
and extracellular virions in different stages of the replication cycle

Figure 1. Propagation of Middle East respiratory syndrome coronavirus
(MERS-CoV) and detection of viral antigen in ex vivo infected human

lung tissue. (A) Human lung tissue was infected with MERS-CoV for

24 hours and antigen was detected in virus-infected lung tissue using

human MERS-CoV antiserum (20) (green). Scale bar ¼ 20 mm. (B)
Human lung explants were infected with either MERS-CoV or H5N1

influenza A/Thailand/1 (Kan-1)/2004 virus (H5N1). Supernatants were

collected at the indicated time points and titrated by plaque assay on

Madin-Darby canine kidney (MDCK) cells (Thai/04 (H5N1)) or Vero
cells (MERS-CoV). Mean values 6 SEM of duplicates of four indepen-

dent experiments are shown. PFU ¼ plaque-forming units; p.i. ¼ post-

infection. (C) Lung tissue specimens were simultaneously infected with
MERS-CoV and Thai/04 (H5N1) for 24 hours. Viral antigens were stain-

ed with MERS-CoV antiserum (green) and influenza A–specific antibody

(red). Scale bar ¼ 5 mm. All nuclei (blue) were counterstained with 49,6-
diamidino-2-phenylindole (DAPI).
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in both type I and type II cells. Maximum intensity projection of
a typical infected alveolar area (Figure E5) and three-dimensional
rendering (Video E1) illustrated the widespread infection of the
alveolus. In contrast, less than 1% of alveolar macrophages
(AMs) exhibited intracellular viral staining, although viral antigen
was frequently detected on the surface of AMs neighboring
infected epithelial cells (Figure 2C and data not shown).

MERS-CoV antigen was regularly found in endothelial cells
of large (Figure 2D) and small pulmonary vessels (Figure 2E).
We cannot rule out that MERS-CoV gains direct access to the
endothelium via unclosed lung vessels in this ex vivo model.
However, the virus was detected in urine samples of a patient
with MERS-CoV (10), and electron microscopy demonstrated
the presence of virus particles in the basal lamina below

Figure 2. Cellular tropism of Middle
East respiratory syndrome coronavi-

rus (MERS-CoV) in ex vivo infected

human lung tissue. (A, B) Histologi-

cal sections of MERS-CoV–infected
tissue samples were probed with

MERS-CoV antiserum (green)

and with antibody against pan-
Cytokeratin to confirm epithelial

cells (red). Infection of ciliated

(white arrowheads) and nonciliated

cells (open arrowheads) in simple
columnar and simple cuboidal

bronchial epithelium is shown. (C)

Costaining of MERS-CoV with cell

markers for type I cells (epithelial
membrane protein 2 [EMP2])

(red), type II cells (proSP-C) (red),

or alveolar macrophages (AMs)
(CD68) (red). MERS-CoV infects

type I (white arrowheads) and type

II (open arrowheads) cells but not

AMs (white arrowheads). The aster-
isks indicate an uninfected type II

cell. (D, E) Costaining of MERS-

CoV antigen (green) and von Wille-

brand factor (red) as an endothelial
cell marker demonstrates infection

of endothelial cells within large

(white arrowheads) and small

(open arrowheads ) vessels. Scale
bars ¼ 10 mm.
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intact type I pneumocytes (Figure E3D), suggesting basolat-
eral release of the virus. Therefore, it appears a realistic pos-
sibility that the virus can enter the bloodstream followed by
endothelial infection in vivo. Overall, the broad tropism in the
human lung indicates that MERS-CoV can infect and replicate in
most cell types composing the human alveolar compartment.

The proline exopeptidase DPP4 was recently identified as
functional receptor for MERS-CoV as it bound the S1 domain
of the viral spike protein and rendered cultured cells of different
mammalian species susceptible to the virus (11). However, the
role of DPP4 in mediating virus entry in human lung tissue is
uncertain, as its expression in the lower respiratory tract has not

Figure 3. Dipeptidyl peptidase 4 (DPP4) expression in the human lower respiratory tract. (A) Histological sections of Middle East respiratory

syndrome coronavirus (MERS-CoV)–infected tissue samples were costained for MERS-CoV (green) and DPP4 (red). MERS-CoV antigen could be

detected in DPP4-expressing cells (white arrowheads). (B–D) In uninfected human lung tissue, DPP4 (green) is expressed in (B) ciliated (white
arrowheads) and (C) nonciliated bronchial epithelial cells (open arrowheads) and (D) endothelial cells (white arrowheads). (E) Tissue sections were

stained against DPP4 (green) and epithelial membrane protein 2 (EMP2) (red) or proSP-C (red) as a type I and type II cell markers, respectively.

Expression of DPP4 was found in both cell types (white arrowheads), as well as alveolar macrophages (asterisks). All nuclei (blue) were counterstained
with 49,6-diamidino-2-phenylindole (DAPI). Scale bars ¼ 5 mm.
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been determined. We found a broad expression of DPP4 in
MERS-CoV–infected alveolar tissue (Figure 3A). The analysis of
mock-infected tissue revealed a constitutive expression in ciliated
(Figure 3B) and unciliated (Figure 3C) bronchial epithelium, lung
endothelium (Figure 3D), alveolar type I and type II cells (Figure
3E), and AMs (Figure E6), indicating a general role of DPP4 in
facilitating virus entry in the human lung.

Damage of the alveolar structure is a hallmark of diseases in-
volving severe respiratory failure (12). Our infection experiments
showed detachment of MERS-CoV–infected type II cells from
the alveolar base membrane (Figures E7A and E7B). This was
accompanied by disruption of alveolar tight junctions (13) in areas
with detached infected type II cells visualized by staining of the
integral tight junction protein occludin (14) (Figures E7C and E7D
and Video E2). Chromatin condensation, nuclear fragmentation,
and membrane blebbing of infected type II cells (Figures E7E–
E7H) coming off of the alveolar wall pointed to apoptosis (15) of
infected cells. In line with these observations, the evaluation of the
single available BAL of a hospitalized patient with MERS-CoV
showed infected lung epithelial cells with chromatin condensation
and nuclear fragmentation as well as hallmarks of apoptosis (Fig-
ures E7I–E7L) and the same in infected BAL leukocytes (Figures
E7M–E7P). Although the hitherto scarce available material
allowed no further in-depth investigation (including leukocyte
differentiation), the results indicate that BAL cells of patients with
MERS-CoV could be principally useful material for further analysis
of MERS-CoV pathogenesis besides using BAL for virus detection.

MERS-CoVcontinues to cause lethal lower respiratory tract dis-
ease (1), raising urgent fundamental questions as to its cellular
tropism and receptor usage in alveolar lung tissue, as well as to
its pathogenic mechanism(s). In the absence of autopsy data from
human victims, we succeeded to model MERS-CoV propagation
in human lung tissue and demonstrated an almost pantropic infec-
tion, as well as ubiquitous DPP4 receptor expression in bronchiole,
alveoli, or vessels. Thus, antiviral approaches that block DPP4
usage are expected to reduce virus propagation in the distal parts
of the respiratory tract. We presented first evidence for rapid
appearance of structural damage to the alveolar barrier in MERS-
CoV–infected tissue, which may significantly influence lung func-
tion in several ways: The widespread infection of type I cells may
directly reduce oxygen uptake capacity of the lung. Type II cell
death reduces surfactant production (16), is expected to diminish
the repair capacity of the injured lung (17), and paves the way for
alveolar collapse and edema formation, which further impairs gas
exchange (9, 12). Deterioration of the alveolar barrier in MERS-
CoV–infected individuals may furthermore enable pathogen entry
and systemic spread as noticed in SARS-CoV infection (7, 18).

The capability ofMERS-CoV to induce alveolar cell death in con-
junction with extensive infection of the huge alveolar surface is con-
sistent with acute lung injury observed in MERS-CoV–infected
humans (2) and rhesus macaques (19) as well as findings in patients
with SARS (7, 18). Additional analysis is required to distinguish
whether leukocytes constitute auxiliary targets for the virus or
whether the observed antigen staining results from ingestion of
infected cell debris. The here-observed capability of MERS-CoV
to infect virtually the complete alveolar compartment with mor-
phological correlates of severe lung injury is disconcerting regard-
ing expectable morbidity and mortality. It seems necessary to
reach conclusions regarding sources and transmissibility of this
emerging virus.
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