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This article introduces a series of invited papers in Antiviral Research marking the 10th anniversary of the
outbreak of severe acute respiratory syndrome (SARS), caused by a novel coronavirus that emerged in
southern China in late 2002. Until that time, coronaviruses had not been recognized as agents causing
severe disease in humans, hence, the emergence of the SARS-CoV came as a complete surprise. Research
during the past ten years has revealed the existence of a vast pool of coronaviruses circulating among var-
ious bat species and other animals, suggesting that further introductions of highly pathogenic coronav-
iruses into the human population are not merely probable, but inevitable. The recent emergence of
another coronavirus causing severe disease, Middle East respiratory syndrome (MERS), in humans, has
made it clear that coronaviruses pose a major threat to human health, and that more research is urgently
needed to elucidate their replication mechanisms, identify potential drug targets, and develop effective
countermeasures. In this series, experts in many different aspects of coronavirus replication and disease
will provide authoritative, up-to-date reviews of the following topics:

– clinical management and infection control of SARS;
– reservoir hosts of coronaviruses;
– receptor recognition and cross-species transmission of SARS-CoV;
– SARS-CoV evasion of innate immune responses;
– structures and functions of individual coronaviral proteins;
– anti-coronavirus drug discovery and development; and
– the public health legacy of the SARS outbreak.
Each article will be identified in the last line of its abstract as belonging to the series ‘‘From SARS to

MERS: 10 years of research on highly pathogenic human coronaviruses.’’
� 2013 Elsevier B.V. All rights reserved.
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1. Introduction

‘‘Those who cannot remember the past are condemned to repeat it’’
– George Santayana.

Ten years ago, a novel coronavirus causing pneumonia in hu-
mans emerged in Guangdong, China. The first known patient was
a 45-year old man in the city of Foshan, who developed fever
and respiratory symptoms on November 16, 2002, transmitting
infection to his wife and three other family members. The second
index case was a restaurant chef in Shenzhen who became ill on
10 December, returned to his home in Heyuan and transmitted
infection to health care workers (HCWs) in the local hospital,
including the physician who accompanied him in an ambulance
to Guangzhou provincial hospital. This scenario of the emergence
of clusters of cases of severe respiratory disease among family
members and hospital workers, each cluster apparently going ex-
tinct after a few rounds of secondary or tertiary transmission,
was played out repeatedly in subsequent weeks in a number of
municipalities in Guangdong province. The index cases of many
of these early case clusters were food handlers or chefs working
in restaurants where a variety of exotic and game animals were
Table 1
SARS and its aftermath: a chronology of events over the past ten years. Based on World H

Date Key events

16 November 2002 A 45-year-old man in Foshan city, Guangdong province,
identified case of SARS from epidemiological investigati

10 December 2002 A 35-year-old restaurant worker in Shenzhen develops
8 January 2003 A 26-year-old man working in the game animal trade in

infects family members.
January 2003 Pneumonia outbreaks in Guangzhou (capital city of Gua
23 January 2003 Guangdong Health Bureau circulates document giving c

province.
30 January 2003 A patient hospitalized in Guangzhou transmits infection

spreading’’ events.
11 February 2003 WHO receives reports of an outbreak of respiratory dise

workers infected while caring for patients with similar
21 February 2003 A doctor from Guangdong caring for patients with atyp

been ill since 15 February, but now deteriorates further
this hotel, some of whom travel onto Vietnam, Singapo

26 February 2003 A Hotel M contact is admitted to a private hospital in H
March.

4 March 2003 A Hotel M contact admitted to Prince of Wales Hospital,
recognized as a possible case of the new ‘‘atypical pneu
illness. Overall, he infects 50 health care workers, 17 m
members.

5 March 2003 A Hotel M contact dies in Toronto. Five family member
12 March 2003 WHO issues global alert.
14 March 2003 Singapore and Toronto report clusters of atypical pneum

the doctors who had treated patients in Singapore has go
flight lands in transit in Frankfurt, Germany. He has inf

15 March 2003 The WHO has received reports of over 150 cases of this
advisory issued.

17 March 2003 A WHO multi-center laboratory network is established
21– 27 March 2003 A novel coronavirus is identified in patients with SARS.
14 April 2003 Mapping of the full genome of SARS-CoV is completed.
16 April 2003 WHO announces that SARS-CoV is the causative agent o
23 May 2003 A virus related to SARS-CoV is detected in animals in G
5 July 2003 Absence of further transmission in Taiwan signals the e
September 2003 –

February 2004
Laboratory-acquired SARS cases reported in Singapore, T
Beijing and Anhui.

December 2003 – January
2004

Transient re-emergence of SARS infecting humans from

23 May 2005 The International Health Regulations are adopted by the
June 2007.

September 2012 A novel coronavirus causing respiratory disease is isola
diagnosed. The aetiological agent is a novel human b-co
coronavirus.

1 April – 23 May 2013 Outbreak of over 20 cases of MERS reported in hospital
As of 1 August 2013 94 confirmed cases of MERS have been reported to WH

Arabia, Qatar and the United Arab Emirates. Imported c
France, Germany, Italy, Tunesia and the United Kingdom

Please cite this article in press as: Hilgenfeld, R., Peiris, J.S.M. From SARS to ME
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slaughtered on the premises (Xu et al., 2004a,b). During subse-
quent weeks, the outbreak became self-sustaining, with large clus-
ters of transmission in hospitals spilling back into the community
(Table 1).

The first ‘‘super-spreading’’ event, which became a hallmark of
the epidemiology of this disease, occurred with the hospitalization
of a 44-year old man in Guangzhou on 30 January, 2003. He was to
transmit infection to 19 relatives and more than 50 hospital staff.
On 21 February, one of the doctors infected as part of this extended
hospital outbreak traveled to Hong Kong, where he stayed one
night in a hotel and was hospitalised the next day. During his stay,
he transmitted infection to 16 other hotel guests and one visitor,
who traveled onto their destinations, seeding outbreaks of this dis-
ease in Vietnam, Singapore, Toronto and in Hong Kong. On 12
March, following the outbreaks in mainland China, Hong Kong
and Vietnam, the World Health Organization (WHO) issued a glo-
bal alert about an unusual pneumonia which appeared to cause
outbreaks of disease in hospitals. This led to the recognition and
reporting of additional case clusters in Toronto and Singapore,
prompting the WHO to issue an Emergency Travel Advisory on
15 March, providing an early case definition and naming the
ealth Organization, Western Pacific Region (2006).

China develops an atypical pneumonia and infects four relatives. This is the first
ons.
pneumonia and 8 health care workers in contact with him become ill.

Guangxi Province (adjacent province to Guangdong) develops pneumonia and

ngdong Province).
ase definition and control measures to health bureaus and hospitals in the

to more than 50 hospital staff and 19 relatives, the first of many ‘‘super-

ase in Guangdong, 305 cases and 5 deaths. One-third of cases are health care
illness.
ical pneumonia checks in at Hotel M in Hong Kong to attend a wedding. He had
and is hospitalized on 22 February. He infects 16 other guests and one visitor at

re and Toronto where they initiate local clusters of transmission.
anoi and is the source of an outbreak there. Seven health care workers ill by 5

Hong Kong. He had been ill since 24 February, but his illness is not severe and not
monia’’. By 7 March, health care workers at this hospital report a respiratory
edical students, 30 other patients and 42 visitors to the ward and 4 family

s affected.

onia. In retrospect, both groups have an epidemiological link to Hotel M. One of
ne to New York and develops symptoms while traveling. He is quarantined as his

ected two family members travelling with him and one crew member.
new disease, now named Severe Acute Respiratory Syndrome (SARS). Travel

for the study of SARS causation and diagnosis.

f SARS.
uangdong.
nd of the human SARS outbreak in humans.
aiwan and Beijing. The case in Beijing leads to limited community transmission in

animal markets.

Fifty-eighth World Health Assembly on 23 May 2005. They enter into force on 15

ted in Saudi Arabia. Earlier cases in Jordan (April 2012) were retrospectively
ronavirus, subsequently named the Middle East respiratory syndrome (MERS)

s in Al-Hasa, in eastern Saudi Arabia.
O, leading to 46 deaths. Index cases have occurred in Jordan, Kingdom of Saudi
ases, sometimes with limited secondary transmission, has been reported from
.

RS: 10 years of research on highly pathogenic human coronaviruses. Anti-

http://dx.doi.org/10.1016/j.antiviral.2013.08.015


106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187Q3

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203Q4

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

R. Hilgenfeld, J.S.M. Peiris / Antiviral Research xxx (2013) xxx–xxx 3

AVR 3272 No. of Pages 10, Model 5G

12 September 2013
disease Severe Acute Respiratory Syndrome (WHO Western Pacific
Region, 2006).

At this stage, a number of possible aetiological agents were
being proposed, including Chlamydia, paramyxoviruses, human
metapneumovirus, and coronavirus, among others. The WHO coor-
dinated the sharing of information among laboratories, resulting in
the consensus that the aetiological agent was a novel coronavirus,
to be named SARS coronavirus (SARS-CoV) (Peiris et al., 2003; Ksia-
zek et al., 2003; Drosten et al., 2003; Kuiken et al., 2003). This
WHO-mediated information sharing allowed laboratories, epidem-
iologists, and clinicians to achieve rapid consensus on clinical virol-
ogy, patient management and virus transmission (World Health
Organization Multicentre Collaborative Network for Severe Acute
Respiratory Syndrome Diagnosis, 2003).

SARS spread rapidly along routes of air-travel, affecting 25
countries and territories across five continents and sickening over
8000 people, leading to the death of almost 800. Fortunately, it had
an unusual feature that permitted the success of basic public
health measures in controlling person-to-person transmission:
the ‘‘viral load’’ in upper respiratory tract secretions was low in
the first 5 days of illness, then increased progressively, peaking
early in the second week (see Cheng et al., in this series). As a re-
sult, transmission was less common in the first days of illness, pro-
viding an opportunity for case detection and isolation to interrupt
transmission. Patients were most infectious when they were hospi-
talised, contributing to transmission in hospitals, especially those
in more developed settings where invasive and potentially aero-
sol-generating interventions such as bronchoscopy were more
likely to be carried out.

The SARS-CoV was also unusually stable in the environment,
more so than other coronaviruses or other respiratory viruses,
making infection control in hospitals a challenge (see Cheng et
al., in this series). It has been speculated that the enhanced stability
of the SARS-CoV at lower temperatures and lower humidity, espe-
cially in air-conditioned environments, may help explain the
explosive outbreaks that occurred in some regions, compared to
others (Chan et al., 2011). However, as awareness grew, patients
began to be identified and hospitalized earlier in the illness (Leung
et al., 2004), and as effective infection control modalities were bet-
ter implemented, it became possible to interrupt transmission in
the community and in hospitals. Thus, on 5 July 2003, it was
possible for the WHO to announce that ‘‘all known chains of hu-
man-to-human transmission of the SARS virus now appear to be
broken’’. Such an outcome could hardly have been imagined in
the dark days of March–April, when, for example, an unprece-
dented cluster of around 300 cases emerged over a few days in
the Amoy Gardens housing estate in Hong Kong.

2. The source of the SARS-coronavirus

Once the outbreak had ended, the zoonotic source of the virus
still remained to be identified. Epidemiological investigations had
found that the index patients of the initial case clusters in Novem-
ber–December 2002 were food handlers or restaurant workers,
especially those exposed to exotic wild-game animals, regarded
as a winter delicacy in southern China (see Drexler et al., in this
series). The increasing affluence of the past decade had led to this
trade becoming highly organised and commercialised, with hun-
dreds of diverse exotic wild-life being housed in large central mar-
kets. Investigation of these ‘‘wet markets’’ led to the detection of a
virus closely related to SARS-CoV in a range of small mammalian
species, such as Himalayan palm civets (Paguma larvata), raccoon
dogs (Nyctereutes procyonoides) and others. People working in
these markets had a high prevalence of antibodies to SARS CoV,
even though they gave no history of having had SARS, while people
working in other areas of the markets, such as vegetable stalls, or
Please cite this article in press as: Hilgenfeld, R., Peiris, J.S.M. From SARS to ME
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people in the community did not (Guan et al., 2003). This identified
wild-game animal markets as the interface which facilitated the
maintenance and amplification of SARS-CoV precursor viruses,
allowing repeated exposure of the human population and leading
to inter-species transmission events.

In late 2003 and early 2004, four more patients with a SARS-like
illness were diagnosed. Phylogenetically, these re-emergent
viruses were more closely related to viruses found at that time in
game-animal markets than to those that caused the SARS epidemic
the year before (Liang et al., 2004). This confirmed the contention
that wet markets were the source of initial human infection and
led to their closure, very likely pre-empting a re-emergence of
SARS. Further work established that wild-caught palm civets
showed no evidence of SARS-CoV infection, suggesting that they
were intermediate, amplifying hosts, rather than the true reservoir.
Novel coronaviruses, including some closely related to SARS-CoV,
have been identified in bats, including insectivorous Rhinolophid
bats (Li et al., 2005a,b; Lau et al., 2005; see Drexler et al., in this ser-
ies). Subsequent work has identified the virus–receptor interac-
tions and receptor restrictions that permit or restrict interspecies
transmission events of SARS-CoV-like viruses (see the review by
F. Li, in this series).
3. Antiviral therapy during the SARS outbreak

In the early phase of the epidemic, physicians had to manage se-
verely ill patients, including some of their own colleagues, without
reliable knowledge of the virus and its susceptibility to antiviral
drugs. The treatment regimens that were applied will be described
in detail by Cheng et al. (2013) in this series. Initially, patients were
given ribavirin, a broadly active antiviral compound that is effec-
tive against some RNA viruses, such as hepatitis C virus and Lassa
virus, but in retrospect showed little benefit for SARS patients. The
in vitro activity of ribavirin on SARS-CoV replication in cell culture
gave contradictory results, depending on the cell type used (Cinatl
et al., 2003a; Morgenstern et al., 2005).

Many SARS patients were treated with a combination of ribavi-
rin and corticosteroids, with mixed results (see Cheng et al., in this
series). Interferon-a was administered to patients in mainland Chi-
na and in Toronto, Canada. In the reports from China, a beneficial
effect could not be clearly ascribed to interferon-a, as it was always
used in combination with immunoglobulins or thymosin (Zhao
et al., 2003). A preliminary, uncontrolled study from Toronto sug-
gested that treatment with a combination of interferon-a and cor-
ticosteroids was superior to corticosteroids alone (Loutfy et al.,
2003). In SARS-CoV-infected cell culture, interferon-a had much
superior effects over IFN-a (Cinatl et al., 2003b). Polyethylenegly-
col-modified interferon-a was demonstrated to protect macaques
from SARS-CoV prophylactically and to reduce viral replication
and tissue pathology when administered therapeutically (Haag-
mans et al., 2004).

Interestingly, the HIV-protease inhibitor lopinavir, often com-
bined with ritonavir, appeared to show some benefit for SARS pa-
tients (Chu et al., 2004; see the review by Cheng et al., in this
series). The antiviral effect of these compounds was also observed
in cell culture. As the coronavirus genome does not code for an
aspartic protease related to the HIV protease, Wu et al. (2004)
tested the potency of lopinavir against the isolated SARS-CoV main
protease (also called the 3C-like protease, 3CLpro), which is a cys-
teine protease, and found an IC50 of around 50 lM of around 50
cysteine protease, and found an ICavir, often combined with riton-
avir, appeared to show some benefit for SARS patients (Chu et al.,
2004; see the review by Cheng et al., in this series). Thot explain
the observed activity in cell culture. An alternative explanation
could be the anti-apoptotic activity of these HIV protease
RS: 10 years of research on highly pathogenic human coronaviruses. Anti-
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inhibitors (Maturrese et al., 2002). More information on the pro-
posed binding mode of lopinavir to the SARS-CoV main protease
and on attempts to improve its inhibitory potency will be pre-
sented in the review of this molecular target in this series by Zhang
et al.

In mainland China, traditional Chinese medicines (TCMs) were
employed in addition to one or more of the therapies described
above, but it is difficult to assess their effect, as no systematic stud-
ies were carried out (see Cheng et al., in this series). The only TCM
for which anti-SARS-CoV activity was demonstrated in cell culture
(but at relatively high concentrations), was glycyrrhizin, a com-
pound found in liquorice (Cinatl et al., 2003a).
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4. Early attempts at rational design of anti-SARS drugs

Within three weeks of the discovery of the SARS-CoV, its com-
plete nucleotide sequence had been determined by Marra et al.
(2003) and Rota et al. (2003), making more rational approaches
to antiviral drug discovery possible. For example, Luo et al.
(2004) noticed some sequence similarities between the SARS-CoV
nucleocapsid (N) protein and the capsid protein (CA) of HIV. The
latter binds to cyclophilin A (CypA), a peptidyl prolyl cis/trans
isomerase of the host cell, which is incorporated into the HIV par-
ticle (Gamble et al., 1996). Accordingly, Luo et al. (2004) reasoned
that the N protein of SARS-CoV may also bind to CypA, and could
indeed determine the Kd value to 60–160 nM. This interaction
was blocked by cyclosporin A, an inhibitor of CypA, which however
is used as an immunosuppressive drug. Through virtual screening
techniques that employed the modelled SARS-CoV N-CypA com-
plex as a target, Luo et al. were able to identify some other inhib-
itors of this interaction, but most of them showed some degree of
cell toxicity. Chen et al. (2005) confirmed the interaction between
CypA and the N protein and even provided evidence for an incorpo-
ration of CypA into the virion, similar to what had been shown pre-
viously for HIV-1.

However, once the SARS epidemic was over, the idea of blocking
SARS-CoV replication by inhibiting CypA was not followed further,
until Pfefferle et al. (2011) detected a specific interaction between
CypA and the SARS-CoV non-structural protein 1 (Nsp1) (and sim-
ilarly, of the HCoV NL63) by yeast-two-hybrid and other protein–
protein interaction techniques (see the article by von Brunn and
colleagues in this series). Consequently, they tested CsA for antivi-
ral effects against a large range of coronaviruses and found it to be
a ‘‘pan-coronavirus inhibitor’’ (Pfefferle et al., 2011). However, as
CsA also displayed antiviral activity against the c-coronavirus,
Infectious bronchitis virus (IBV), which lacks Nsp1, it is possible
that the mechanism originally proposed by Luo et al. (2004) may
contribute to CsA’s anticoronaviral activity (Ma-Lauer et al.,
2012). Interestingly, there are anecdotal reports that cyclosporin
A was occasionally used to treat SARS patients (e.g., So et al., 2003).

Efforts to design anti-SARS drugs were initiated early during the
outbreak, but were hampered by a lack of structural data on molec-
ular targets. By the end of March 2003, when the SARS-CoV was
discovered as the etiological agent causing the disease, only one
crystal structure of a coronavirus protein was available, that of
the main protease (Mpro or 3CLpro) of the porcine coronavirus,
transmissible gastroenteritis virus (TGEV) (Anand et al., 2002).
However, in mid-May 2003, at the peak of the SARS outbreak in
Beijing, the same group published the first structure of a synthetic
inhibitor, a peptidyl methyl ketone, bound to the TGEV Mpro, as
well as the structure of a second coronavirus Mpro, that of human
coronavirus 229E, and a homology model of the SARS-CoV enzyme
based on these structures (Anand et al., 2003). Furthermore, these
authors suggested that AG7088 (rupintrivir), a Michael-acceptor-
type inhibitor of the 3C protease of human rhinovirus, should be
Please cite this article in press as: Hilgenfeld, R., Peiris, J.S.M. From SARS to ME
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a good starting point for anti-SARS drug design. A little later, this
compound itself was shown to have little activity against the virus
(Shie et al., 2005), but derivatives of rupintrivir turned out to be
quite active in virus-infected cell culture (Shie et al., 2005; Yang
et al., 2005). These studies were facilitated by the determination
of the crystal structure of the SARS-CoV main protease itself in
June, 2003 (Yang et al., 2003). Since then, many inhibitors have
been designed and synthesized that target the coronavirus Mpro,
but few of them have undergone systematic toxicity and other pre-
clinical studies, so that these compounds are not yet available for
clinical trials in case of a recurrence of SARS (or for treatment of
patients infected with the new human coronavirus, MERS-CoV,
see below). The numerous studies aimed at designing inhibitors
of coronavirus main proteases will be summarized by Zhang
et al. in this series.
5. The SARS-CoV genome and proteome

Coronaviruses are enveloped viruses with a single-stranded
RNA genome of positive polarity. This is the largest known RNA
genome, with a size of 27–32 kb (27.8 kb in the case of SARS-
CoV). The 14 open reading frames (ORFs) of the SARS-CoV genome
code for at least 28 proteins (Fig. 1). The structural proteins are en-
coded in the 30-terminal third of the genome. The spike glycopro-
tein (S, 77 kD) protrudes from the surface of the viral particle
(hence the name ‘‘coronavirus’’) and is responsible for receptor
binding and membrane fusion. In late 2003, angiotensin-convert-
ing enzyme 2 (ACE2) was identified as the receptor of SARS-CoV
on the surface of human cells (Li et al., 2003; Wang et al., 2004).
The structure of the complex between the receptor-binding do-
main of the SARS-CoV spike protein and ACE2 was determined
by Li et al. (2005a,b), who will review this and subsequent work
in this series. Proteolytic processing of the S protein, a prerequisite
for membrane fusion, will be reviewed by Simmons, Pöhlmann,
and colleagues. Inhibitors of the host-cell proteases involved have
also been shown to prevent cell entry of SARS-CoV (see, e.g., Aded-
eji et al., 2013). Peptides corresponding to the heptad repeats of the
trimeric S protein have been demonstrated to inhibit the fusion of
the viral envelope with the host-cell membrane (e.g., Sainz et al.,
2006; Liu et al., 2009).

Another most important structural protein of coronaviruses is
the nucleocapsid (N) protein, which encapsulates the genomic
RNA and has roles in its replication and transcription (see, e.g.,
Tylor et al., 2009; Grossoehme et al., 2009). Current knowledge
of this protein will be reviewed by Huang and colleagues in this
series. The matrix (M) protein and the envelope (E) glycoprotein
complete the structural proteins, although in the case of SARS-
CoV, some of the accessory proteins (see below) are also believed
to be incorporated into the viral particle (see below).

ORF1 comprises about two-thirds of the SARS-CoV genome and
codes for two huge polyproteins, pp1a (about 486 kD) and pp1ab
(about 790 kD). Ribosome slippage at a frameshift site near the
30-terminus of ORF1a leads to translation of the entire ORF1ab
(Namy et al., 2006). The polyproteins are processed by two viral
cysteine proteases, a papain-like protease (PLpro, a domain in
Nsp3) and the main protease (Mpro or 3CLpro, Nsp5) into a total
of 15 or 16 non-structural proteins (Nsps). Most of them are com-
ponents of the viral replication/transcription complex (RTC) but
they may also adopt additional functions; for reviews, see (Sawicki
et al., 2005, 2007; Pasternak et al., 2006; Masters, 2006; Perlman
and Netland, 2009).

The RTC, consisting of the majority of the coronaviral Nsps and
some as yet unidentified host proteins, assembles at virus-induced
double-membrane vesicles (DMVs) and other unusual membrane
structures, which have been derived from the ER membrane
RS: 10 years of research on highly pathogenic human coronaviruses. Anti-
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Fig. 1. Structure of the RNA genome of SARS-CoV. Three-dimensional structures are depicted for those proteins for which they are available. References to the corresponding
publications and PDB codes can be found in Table 2.

Table 2
Three-dimensional protein structures for SARS-CoV and other coronaviruses.

Protein (or RNA) Virus and PDB code Reference

Nsp1 SARS-CoV (2HSX; 2GDT); TGEV (3ZBD) Almeida et al. (2007) and Jansson (2013)
Nsp3 UB1 SARS-CoV (2GRI) ; MHV (2M0I) Serrano et al. (2007) and Keane and Giedroc (2013)
Nsp3 PL1pro TGEV (3MP2) Wojdyla et al. (2010)
Nsp3 X-domain SARS-CoV (2ACF; 2FAV); HCoV-229E (3EWQ; 3EJG); IBV

(3EWO; 3EJF; 3EKE); FCoV (3ETI; 3EW5)
Saikatendu et al. (2005), Egloff et al. (2006), Xu et al. (2009a), Piotrowski et al.
(2009) and Wojdyla et al. (2009)

Nsp3 SUD SARS-CoV (2W2G; 2WCT; 2KQV; 2KQW; 2JZF; 2RNK) Tan et al. (2009), Johnson et al. (2010a) and Chatterjee et al. (2009)
Nsp3 PL2pro SARS-CoV (2FE8) Ratia et al. (2006)
Nsp3 NAB SARS-CoV (2K87) Serrano et al. (2009)
Nsp4-C FCoV (3GZF) ; MHV (3VC8) Manolaridis et al. (2009) and Xu et al. (2009b)
Nsp5 TGEV (1LVO); HCoV 229E (1P9S); SARS-CoV (1UJ1; 2BX3;

2BX4); HKU1 (3D23); IBV (2Q6D)
Anand et al. (2002, 2003), Yang et al. (2003), Tan et al. (2005), Zhao et al. (2008)
and Xue et al. (2008)

Nsp7 SARS-CoV (1YSY; 2KYS) Peti et al. (2005), Johnson et al. (2010b)
Nsp7 + 8 complex SARS-CoV (2AHM); FCoV (3UB0) Zhai et al. (2005) and Xiao et al. (2012)
Nsp9 SARS-CoV (1UW7; 1QZ8); HCoV 229E (2J97) Sutton et al. (2004), Egloff et al. (2004) and Ponnusamy et al. (2008)
Nsp10 SARS-CoV (2FYG; 2G9T; 2GA6) Joseph et al. (2006) and Su et al. (2006)
Nsp15 SARS-CoV (2H85); MHV (2GTH) Ricagno et al. (2006) and Xu et al. (2006)
Nsp10 + 16 complex SARS-CoV (2XYQ; 2XYR; 3R24) Decroly et al. (2011) and Chen et al. (2011)
Hemagglutinin-

esterase
BCoV (3CL4) Zeng et al. (2008)

Orf7a SARS-CoV (1XAK; 1YO4) Nelson et al. (2005) and Hänel et al. (2006)
Orf9b SARS-CoV (2CME) Meier et al. (2006)
Spike RBD alone and in

complex with
receptor

SARS-CoV (2GHV; 2AJF); HCoV-NL63 (3KBH); PRCV
(4F5C); MHV (3R4D); MERS-CoV (4L3N; 4KR0; 4KQZ;
4L72)

Hwang et al. (2006), Li et al., 2005a,b, Wu et al. (2009), Reguera et al. (2012),
Peng et al. (2011), Chen et al. (2013a), Lu et al. (2013) and Wang et al. (2013)

Spike fusion core SARS-CoV (1WYY; 2BEQ; 2BEZ; 1ZV7; 1ZVB; 1ZV8; 1ZVA;
2FXP; 1WNC); MHV (1WDF; 1WDG); HCoV NL63 (2IEQ)

Duquerroy et al. (2005), Supekar et al. (2004), Deng et al. (2006), Hakansson-
McReynolds et al. (2006), Xu et al., 2004a, b and Zheng et al. (2006)

Nucleocapsid-NTD IBV (2C86; 2GEC; 2BXX); HCoV OC43 (4J3K); SARS-CoV
(2OFZ; 2OG3; 1SSK); MHV (3HD4)

Jayaram et al. (2006), Fan et al. (2005), Chen et al. (2013b), Saikatendu et al.
(2007), Huang et al. (2004) and Grossoehme et al. (2009)

Nucleocapsid-CTD IBV (2CA1; 2GE7; 2GE8); SARS-CoV (2CJR; 2JW8; 2GIB) Jayaram et al. (2006), Chen et al. (2007), Takeda et al. (2008), Yu et al. (2006)
s2m SARS-CoV (1XJR) Robertson et al. (2004)

Structures elucidated by nuclear magnetic resonance (NMR) techniques are indicated by a Protein Data Bank (PDB) code in italics. Abbreviations: NTD, N-terminal domain;
CTD, C-terminal domain; HCoV, human coronavirus; FeCoV, feline coronavirus; IBV, infectious bronchitis virus; TGEV, transmissible gastroenteritis virus. Only structures of
the free proteins are listed here, inhibitor complexes are excluded. The crystal structure of the s2m element of the SARS-CoV genomic RNA is also included. Only those
structures have been included for which a PDB entry is available.
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(Knoops et al., 2008). In recent years, significant progress has been
made in unravelling the structures of these DMVs, as will be re-
viewed by Snijder and colleagues in this series. After assembly of
the RTC, a nested set of (sub)genomic mRNAs is synthesized and
subsequently translated into the structural and accessory proteins
(Sawicki et al., 2007; Pasternak et al., 2006). Finally, the structural
proteins assemble into progeny virions, along with the newly syn-
thesized genomic RNA. After budding through membranes of the
intermediate ER-to-Golgi compartment (Krijnse-Locker et al.,
1994), the mature virions egress from the host cell via exocytosis.

Because of their obviously essential role, the coronaviral prote-
ases are the target of intense structural, functional, mechanistic,
Please cite this article in press as: Hilgenfeld, R., Peiris, J.S.M. From SARS to ME
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and inhibitor-discovery studies, and will be dealt with in separate
reviews in this series by Mesecar, Baker and colleagues (on PLpro)
and Zhang et al. (on Mpro). Significant progress has also been made
over the past 10 years in elucidating the structures of other Nsps,
in the hope of learning something about their function. Table 2 lists
the structures known to date. This effort has been made possible
through several structural proteomics projects (Bartlam et al.,
2005, 2007; Canard et al., 2008; Hilgenfeld et al., 2008). Overall,
this approach has been quite successful, although for those pro-
teins (mostly encoded by ORF1a) for which we know the 3D struc-
tures, the functions are still not quite clear in many cases (Nsp1,
Nsp3 domains other than the PLpro, Nsp9, Nsp10, also partly
RS: 10 years of research on highly pathogenic human coronaviruses. Anti-
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Nsp7 + 8). In contrast, for several proteins (mostly encoded by
ORF1b) for which we know the functions, little structural informa-
tion is available. The most painful lack of structural information
concerns Nsp12, the RNA-dependent RNA-polymerase (RdRp),
and Nsp13, the helicase, both of which are obvious drug targets.
Progress in characterizing Nsp3 domains other than the PLpro will
be summarized by Lei et al., on Nsp7–Nsp10 by Xiao et al., and
on Nsp12–Nsp16 by Canard and colleagues in articles in this series.

Finally, the SARS-CoV genome encodes several accessory pro-
teins, some of which undergo rapid evolution. For example, early
in the SARS outbreak ORF8 coded for one protein, but during the
evolution of the virus in early 2003 it lost 29 nucleotides, and sub-
sequently coded for two separate accessory proteins, 8a and 8b. It
is thought that this event was responsible for the increased effi-
ciency of human-to-human transmission that surfaced about the
same time, triggering the epidemic (The Chinese SARS Molecular
Epidemiology Consortium, 2004; Oostra et al., 2007). Structural
information for SARS-CoV accessory proteins is still very scarce
(see Table 2), partly due to the fact that many of these gene prod-
ucts are membrane proteins. In the present series of articles, the
accessory proteins of SARS-CoV will be reviewed by D.X. Liu and
colleagues, and evolutionary aspects of SARS-CoV will be the sub-
ject of an article by Gorbalenya and colleagues.
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6. Lessons learned

The SARS epidemic vividly demonstrated that we now live in a
‘‘global village,’’ and that an infectious disease emerging anywhere
in the world has the potential to spread globally in a short period of
time. One legacy of the outbreak was the formulation of the inter-
national Health Regulations (IHR) in 2005 (http://www.who.int/
ihr/en/) and their acceptance by the World Health Assembly in
2007. The IHR require countries to report unusual and unexplained
outbreaks of infectious disease and to develop the public health
capacity to detect and respond to such diseases, when and where
they occur (in this series, see the review by P. Gully). SARS and
other contemporary zoonotic threats, such as H5N1 avian influ-
enza, have highlighted the need for collaboration among those
responsible for human and animal health, and the environment.
This led to the formalization of the concept of ‘‘One Health’’, which
fosters collaborative effects of multiple disciplines to attain opti-
mal health for people, animals, and the environment. The relevant
international organizations, the Food and Agriculture Organization
(FAO), the World Organisation for Animal Health (OIE) and the
WHO now have a formal agreement and framework within which
they can coordinate activities to assess risks at the animal/human/
ecosystem interface (FAO–OIE–WHO Collaboration; see http://
www.who.int/influenza/resources/documents/tripartite_con-
cept_note_hanoi_042011_en.pdf (accessed 7th August 2013)).
SARS also contributed to the enhanced emphasis now being placed
on better understanding of viral diversity in wildlife and the need
to understand the ecological and biological bases of inter-species
transmission of these pathogens.
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7. Ten years after: Middle-East respiratory syndrome
coronavirus (MERS-CoV)

Ten years after the SARS outbreak, it is worth recounting these
events in detail and to summarise subsequent understanding of
the SARS-CoV, because we continue to be confronted by novel
emerging disease threats. Due to increased research efforts, two
additional human coronaviruses, HCoV-NL63 and HCoV HKU1,
were discovered in 2004/2005 (van der Hoek et al., 2004; Woo
et al., 2005). In 2012, we saw another novel coronavirus emerge
in the Middle East (Zaki et al., 2012). The novel Middle East respi-
Please cite this article in press as: Hilgenfeld, R., Peiris, J.S.M. From SARS to ME
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ratory syndrome (MERS) coronavirus is a beta-coronavirus, like the
SARS-CoV but it belongs to lineage c rather than b (see Drexler
et al. in this series). It causes severe pneumonia as well as renal
failure, with a high fatality rate. Index cases have originated in Jor-
dan, Qatar, Saudi Arabia, and the United Arab Emirates, while tra-
vel-associated cases have been diagnosed in France, Germany,
Italy, Tunisia, and the UK. As of 1 August 2013, 94 cases have been
confirmed, with 46 deaths (http://www.who.int/csr/don/2013_08
_01/en/index.html).

MERS patients tend to be elderly and have other underlying ill-
nesses. Secondary transmission has been reported in hospitals, but
in one such event in France, the disease did not appear to be highly
transmissible to healthy HCWs; instead, it targeted patients who
were immunocompromised (Mailles et al., 2013). The largest clus-
ter of cases was reported from a health facility in Al-Ahsa in the
Eastern Province of Saudi Arabia where transmission to other pa-
tients and family members, as well as a few HCWs, has occurred
(Assiri et al., 2013). In contrast to SARS, relatively few HCWs have
been affected so far. Although viruses closely related to the MERS-
CoV have been detected in Pipistrellus bats found in Europe and
Africa, a more epidemiologically plausible zoonotic source and
phylogenetically proximate virus remain to be identified (see
Drexler et al., in this series; Annan et al., 2013). Very recently, high
neutralizing-antibody titers to MERS-CoV have been detected in
dromedary camels in Oman, suggesting that they may be an inter-
mediate transmitter of the virus (Reusken et al., 2013). These
events are uncannily reminiscent of the emergence of SARS in late
2002. Sero-epidemiological studies are needed to define the full
extent of secondary transmission of MERS-CoV and whether the
infection is more widespread in the community.

The receptor for MERS-CoV has been identified to be dipeptidyl
peptidase IV (DPP4) which is expressed in the human respiratory
tract and is conserved across many species, including bats (Raj
et al., 2013). Biological understanding gleaned from the viral–host
receptor interactions in restriction of interspecies transmission of
SARS-CoV (see the review by Li, in this series) will be relevant to
MERS-CoV. Two crystal structures of the complex between the
receptor-binding domain (RBD) of the MERS-CoV spike protein
and DPP4 have been published very recently (Lu et al., 2013; Wang
et al., 2013), as has the structure of the RBD alone (Chen et al.,
2013a; see the review by F. Li, in this series). A crystal structure
for the MERS-CoV main protease has also been communicated
(Ren et al., 2013), and an article on the macrodomains of the virus
by Lei et al. is in preparation. All of these structures will be in-
cluded in reviews in this series describing individual proteins of
SARS-CoV and MERS-CoV.

MERS-CoV appears to replicate efficiently in human respiratory
tissues (Chan et al., 2013), targeting alveolar epithelial cells and the
endothelium of blood vessels in the lung, indicating a potential for
disseminating beyond the respiratory tract as was seen for SARS-
CoV (see Cheng et al., in this series). As with SARS-CoV, the novel
coronavirus appears to avoid eliciting host interferon responses,
but remain sensitive to the action of interferon (see the review
by Frieman, Baric, and colleagues in this series; Chan et al., 2013;
Falzarano et al., 2013; de Wilde et al., 2013). The therapeutic op-
tions tried for SARS, including interferon therapy, as summarized
by Cheng et al. in this series, may be pertinent to MERS.
8. Lessons yet to be learned: the current status of antiviral
therapy and vaccine development for SARS and MERS

Huge progress has been made over the past ten years in the elu-
cidation of the functions and structures of the proteins of the SARS-
CoV, and research on vaccine development has also progressed,
with a number of strategies being developed and evaluated in
RS: 10 years of research on highly pathogenic human coronaviruses. Anti-
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experimental animal models. However, it should also be noted that
after 2005–2006, it became difficult to obtain funding for research
on SARS-CoV in many countries, especially for efforts to discover
new antiviral therapies. Similarly, there was no incentive to further
develop SARS-CoV vaccines, in the absence of an overt threat to hu-
man health. Funding agencies and peer reviewers were probably
short-sighted in this respect, but many virologists also failed to
take seriously the threat of the re-emergence of SARS or of a
SARS-like virus.

Even though many inhibitors of the SARS-CoV main protease
have been designed on the basis of crystal structures (see the re-
view by Zhang et al., in this series), few have been tested in
SARS-CoV-infected cell culture, let alone in an animal model. For
the other prime drug targets among the viral nonstructural pro-
teins, the RdRp (Nsp12) and the helicase (Nsp13), the situation is
even more discouraging, because it is difficult to obtain these en-
zymes in an active form, and numerous attempts to crystallize
them have failed. Thus, the frustrating conclusion after ten years
of excellent basic research on SARS-CoV is that we are still left with
the therapies that showed only uncertain effects in the treatment
of patients in 2003, i.e. interferon-a and lopinavir/ritonavir, which
seem to be all that can be offered for the specific antiviral treat-
ment of MERS patients. After the largely negative experiences in
treating SARS patients, ribavirin and corticosteroids are no longer
treatment options. There may be some hope that non-immunosup-
pressive derivatives of cyclosporin A, such as DEBIO-025, can be
used for therapy, but such compounds remain to be tested in
virus-infected cell culture. Also, a peptidic ketoamide designed
on the basis of the crystal structure of the Mpro of the bat corona-
virus HKU4, which is highly similar to the corresponding enzyme
from MERS-CoV, appears to be promising, with good antiviral
activity against the MERS-CoV (Lin et al., in preparation), and so
do some a,b-unsaturated esters (Ma et al., in preparation). How-
ever, these compounds are only now in safety studies in animals,
and it will take a long time until they can be used in the clinic. If
the current MERS-CoV outbreak is over by then, there is a danger
that both funding and enthusiasm for developing these and other
compounds will once again wane, and we will be in the same
‘‘drug-less’’ situation when the next coronavirus emerges into the
human population.

In conjunction with producing novel antivirals, there is a need
to develop and consolidate global networks that can rapidly re-
spond to emerging infectious disease crises such as MERS, so that
novel therapeutic options may be scientifically evaluated in con-
trolled clinical trials. Some examples of such networks are emerg-
ing, including ISARIC, the International Severe Acute Respiratory
and Emerging Infection Consortium. This global initiative aims to
ensure that clinical researchers have open access to the protocols
and data-sharing processes needed to facilitate a rapid response
to emerging diseases that may turn into epidemics or pandemics
(http://isaric.tghn.org/).

As regards vaccine development, the long-lived neutralizing
antibody response in those who recovered from SARS provides
hope that active and passive immunization strategies are feasible,
at least in principle. A number of vaccine strategies were devel-
oped and tested in laboratory animals, including recombinant vec-
tored vaccines expressing SARS-CoV S protein, DNA vaccines,
inactivated whole-virus vaccines and recombinant-protein vac-
cines. These studies showed that the S protein is crucial for elicit-
ing effective protective antibody responses, and that there is a
good correlation between neutralizing- antibody titers and protec-
tion from challenge in animal models. The N protein can induce
antigen-specific T-cell-mediated immune responses. An inacti-
vated whole-virus vaccine was tested in phase-1 clinical trials in
China. Human monoclonal antibodies that neutralize SARS-CoV
were shown to be protective for passive prophylaxis and
Please cite this article in press as: Hilgenfeld, R., Peiris, J.S.M. From SARS to ME
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immunotherapy in laboratory animals (Gillim-Ross and Subbarao,
2006). However, in the absence of a re-emergence of SARS, there
was little incentive to pursue these initiatives, and recent years
have not seen progress towards a credible SARS vaccine.

In conclusion, the SARS outbreak taught us many lessons, but
that of the necessity of developing new antiviral therapies was
not learned. The lack of progress we have detailed with regard to
antivirals over the past 10 years is equally relevant to the develop-
ment of coronavirus vaccines, for essentially the same reasons. To-
gether with the emergence of the MERS-CoV, we hope that the
articles in this series will help change the attitude of researchers
and funding policy makers this time around!
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