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ABSTRACT 28 

While the novel Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is closely 29 

related to Tylonycteris bat CoV HKU4 (Ty-BatCoV HKU4) and Pipistrellus bat CoV 30 

HKU5 (Pi-BatCoV HKU5) in bats from Hong Kong, and other potential lineage C 31 

betacoronaviruses in bats from Africa, Europe and America, its animal origin remains 32 

obscure. To better understand the role of bats in its origin, we examined the molecular 33 

epidemiology and evolution of lineage C betacoronaviruses among bats. Ty-BatCoV 34 

HKU4 and Pi-BatCoV HKU5 were detected in 29% and 25% of alimentary samples from 35 

lesser bamboo bat (Tylonycteris pachypus) and Japanese pipistrelle (Pipistrellus abramus) 36 

respectively. Sequencing of their RdRp, S and N genes revealed that MERS-CoV is more 37 

closely related to Pi-BatCoV HKU5 in RdRp (92.1-92.3% aa identities) but to Ty-38 

BatCoV HKU4 in S (66.8-67.4% aa identities) and N (71.9-72.3% aa identities).  39 

Although both viruses were under purifying selection, the S of Pi-BatCoV HKU5 40 

displayed marked sequence polymorphisms and more positively selected sites than that of 41 

Ty-BatCoV HKU4, suggesting that Pi-BatCoV HKU5 may generate variants to occupy 42 

new ecological niches along with its host which faces diverse habitats. Molecular clock 43 

analysis showed that they diverged from a common ancestor with MERS-CoV at least 44 

several centuries ago. Although MERS-CoV may have diverged from potential lineage C 45 

betacoronaviruses in European bats more recently, these bat viruses were unlikely the 46 

direct ancestor of MERS-CoV. Intensive surveillance for lineage C betaCoVs in 47 

Pipistrellus and related bats with diverse habitats, and other animals from the Middle 48 

East may fill the evolutionary gap.  49 

50 
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INTRODUCTION 51 

Coronaviruses (CoVs) infect humans and a wide variety of animals, causing respiratory, 52 

enteric, hepatic and neurological diseases of varying severity. They have been classified 53 

traditionally into groups 1, 2 and 3, based on genotypic and serological characteristics (1, 54 

2). Recently, the nomenclature and taxonomy of CoVs have been revised by the 55 

Coronavirus Study Group of the International Committee for Taxonomy of Viruses 56 

(ICTV). They are now classified into three genera, Alphacoronavirus, Betacoronavirus 57 

and Gammacoronavirus, replacing the three traditional groups (3). Novel CoVs, which 58 

represented a novel genus, Deltacoronavirus, have also been identified (4, 5). While 59 

CoVs from all four genera can be found in mammals, bat CoVs are likely the gene source 60 

of Alphacoronavirus and Betacoronavirus, and avian CoVs are the gene source of 61 

Gammacoronavirus and Deltacoronavirus (5-7).  62 

CoVs are well known for their high frequency of recombination and mutation 63 

rates, which may allow them to adapt to new hosts and ecological niches (1, 8-12). This 64 

is best exemplified by the severe acute respiratory syndrome (SARS) epidemic, which 65 

was caused by SARS CoV (13, 14). The virus has been shown to be originated from 66 

animals, with horseshoe bats as the natural reservoir and palm civet as the intermediate 67 

host allowing animal-to-human transmission (15-18). Since the SARS epidemic, many 68 

other novel CoVs in both humans and animals have been discovered (4, 7, 19-24). In 69 

particular, a previously unknown diversity of CoVs have been described in bats from 70 

China and other countries, suggesting that bats are important reservoirs of alphaCoVs and 71 

betaCoVs (16, 18, 25-32).  72 
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In September 2012, two cases of severe community-acquired pneumonia were 73 

reported in Saudi Arabia, which were subsequently found to be caused by a novel CoV, 74 

Middle East Respiratory Syndrome Coronavirus (MERS-CoV), previously known as 75 

human betaCoV 2c EMC/2012 (33, 34, 35). As of May 2013, a total of 40 laboratory 76 

confirmed cases of MERS-CoV infection have been reported with 20 deaths (36), giving 77 

a crude fatality rate of 50%. So far, most cases of MERS-CoV infection presented with 78 

severe acute respiratory illness (36, 37). A macaque model for MERS-CoV infection has 79 

also been established, which showed that the virus caused localized-to-widespread 80 

pneumonia in all infected animals (38). The viral virulence may be related to the ability 81 

of MERS-CoV to evade the innate immunity with attenuated interferon-β response (39-82 

41). Moreover, the ability to cause human-to-human transmission has raised the 83 

possibility of another SARS-like epidemic (36, 37). However, the source of this novel 84 

CoV is still obscure, which has hindered public health and infection control strategies for 85 

disease prevention. Phylogenetically, MERS-CoV belongs to Betacoronavirus lineage C, 86 

being closely related to Tylonycteris bat CoV HKU4 (Ty-BatCoV HKU4) and 87 

Pipistrellus bat CoV HKU5 (Pi-BatCoV HKU5) previously discovered in lesser bamboo 88 

bat (Tylonycteris pachypus) and Japanese pipistrelle (Pipistrellus abramus) in Hong 89 

Kong, China respectively (31, 32, 42, 43). Moreover, potential viruses with partial gene 90 

sequences closely related to MERS-CoV have also been detected in bats from Africa, 91 

Europe and America, although complete genome sequences were not available (44, 45). 92 

MERS-CoV is able to infect various mammalian cell lines including primate, porcine, bat 93 

and rabbit cells, which may be explained by the use of the evolutionarily conserved 94 

dipeptidyl peptidase 4 (DPP4) as its functional receptor (46, 47). These suggested that 95 
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MERS-CoV may possess broad species tropism and have emerged from animals. 96 

However, the direct ancestor virus and animal reservoir of MERS-CoV is yet to be 97 

identified.  98 

To better understand the evolutionary origin of MERS-CoV and the possible role 99 

of bats as the reservoir for its ancestral viruses, studies on the genetic diversity and 100 

evolution of lineage C betaCoVs in bats would be important. We attempted to study the 101 

epidemiology of lineage C betaCoVs, including Ty-BatCoV HKU4 and Pi-BatCoV 102 

HKU5, among various bat species in Hong Kong, China. The complete RNA-dependent 103 

RNA polymerase (RdRp), spike (S) and nucleocapsid (N) genes of 13 Ty-BatCoV HKU4 104 

and 15 Pi-BatCoV HKU5 strains were sequenced to assess their genetic diversity and 105 

evolution. The results revealed that the two viruses were stably evolving in their 106 

respective hosts, and have diverged from their common ancestor long time ago. However, 107 

the S protein of Pi-BatCoV HKU5 exhibited marked sequence divergence and much 108 

more positively selected sites than that of Ty-BatCoV HKU4, which may suggest the 109 

ability of Pi-BatCoV HKU5 along with its host to occupy new ecological niches. The 110 

potential implications on the animal origin of MERS-CoV were also discussed.  111 

112 
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METHODS 113 

Collection of bat samples. Various bat species were captured from different locations in 114 

Hong Kong, China over a 7-year period (April 2005 to August 2012). Their respiratory 115 

and alimentary specimens were collected using procedures described previously (16, 48). 116 

To prevent cross contamination, specimens were collected using disposable swabs with 117 

protective gloves changed between samples. All specimens were immediately placed in 118 

viral transport medium containing Earle's balanced salt solution (Invitrogen, New York, 119 

United States), 20% glucose, 4.4% NaHCO3, 5% bovine albumin, 50000 ug/ml 120 

vancomycin, 50000 ug/ml amikacin, 10000 units/ml nystatin, before transportation to the 121 

laboratory for RNA extraction. 122 

RNA extraction. Viral RNA was extracted from the respiratory and alimentary 123 

specimens using QIAamp Viral RNA Mini Kit (QIAgen, Hilden, Germany). The RNA 124 

was eluted in 50 μl of AVE buffer (QIAgen) and was used as the template for RT-PCR. 125 

RT-PCR for CoVs and DNA sequencing. CoV detection was performed by 126 

amplifying a 440-bp fragment of the RdRp gene of CoVs using conserved primers (5’-127 

GGTTGGGACTATCCTAAGTGTGA-3’ and 5’-128 

CCATCATCAGATAGAATCATCATA-3’) designed by multiple alignments of the 129 

nucleotide sequences of available RdRp genes of known CoVs as described previously 130 

(17, 24). Reverse transcription was performed using the SuperScript III kit (Invitrogen, 131 

San Diego, CA, USA). The PCR mixture (25 μl) contained cDNA, PCR buffer (10 mM 132 

Tris-HCl pH 8.3, 50 mM KCl, 3 mM MgCl2 and 0.01% gelatin), 200 μM of each dNTPs 133 

and 1.0 U Taq polymerase (Applied Biosystem, Foster City, CA, USA). The mixtures 134 

were amplified in 60 cycles of 94°C for 1 min, 48°C for 1 min and 72°C for 1 min and a 135 
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final extension at 72°C for 10 min in an automated thermal cycler (Applied Biosystem, 136 

Foster City, CA, USA). Standard precautions were taken to avoid PCR contamination 137 

and no false-positive was observed in negative controls. 138 

The PCR products were gel-purified using the QIAquick gel extraction kit 139 

(QIAgen, Hilden, Germany). Both strands of the PCR products were sequenced twice 140 

with an ABI Prism 3700 DNA Analyzer (Applied Biosystems, Foster City, CA, USA), 141 

using the two PCR primers. The sequences of the PCR products were compared with 142 

known sequences of the RdRp genes of CoVs in the GenBank database to identify 143 

lineage C betaCoVs.  144 

Sequencing and analysis of the complete RdRp, S and N genes of Ty-BatCoV 145 

HKU4 and Pi-BatCoV HKU5 strains. To study the genetic diversity and evolution of 146 

Ty-BatCoV HKU4 and Pi-BatCoV HKU5 detected in bats, the complete RdRp, S and N 147 

genes of 13 Ty-BatCoV HKU4 strains and 15 Pi-BatCoV HKU5 strains detected at 148 

different time and/or place, in addition to the nine previous strains with complete genome 149 

sequences, were amplified and sequenced using primers designed according to available 150 

genome sequences (Table 1) (32). The sequences of the PCR products were assembled 151 

manually to produce the complete RdRp, S and N gene sequences. Multiple sequence 152 

alignments were constructed using MUSCLE in MEGA version 5 (49, 50). Phylogenetic 153 

trees were constructed using Maximum-likelihood method (51), with bootstrap values 154 

calculated from 100 trees. Protein family analysis was performed using PFAM and 155 

InterProScan (52, 53). Prediction of transmembrane domains was performed using 156 

TMHMM (54). The heptad repeat (HR) regions were predicted by using the coiled-coil 157 

prediction program MultiCoil2 (55).  158 
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Estimation of synonymous and non-synonymous substitution rates. The 159 

number of synonymous substitutions per synonymous site, Ks, and the number of non-160 

synonymous substitutions per non-synonymous site, Ka, for each coding region were 161 

calculated using the Nei-Gojobori method (Jukes-Cantor) in MEGA version 5 (50).  162 

Detection of positive selection. Sites under positive selection in the S gene in Ty-163 

BatCoV-HKU4 and Pi-BatCoV-HKU5 were inferred using single-likelihood ancestor 164 

counting (SLAC), fixed effects likelihood (FEL) and random effects likelihood (REL) 165 

methods as implemented in DataMonkey server (http://www.datamonkey.org) (56). 166 

Positive selection for a site was considered to be statistically significant if the P-value 167 

was <0.1 for SLAC and FEL methods or posterior probability was ≥90% level for REL 168 

method. A mixed-effects model of evolution (MEME) was further used to identify 169 

positively selected sites under episodic diversifying selection in particular positions in 170 

sublineages within a phylogenetic tree even when positive selection is not evident across 171 

the entire tree (57). Positively selected sites with a P-value <0.05 were reported. 172 

Estimation of divergence time. As RdRp and N genes are relatively conserved 173 

across CoVs and therefore most likely reflect viral phylogeny, divergence time was 174 

calculated using complete RdRp and N gene sequence data of Ty-BatCoV HKU4, Pi-175 

BatCoV HKU5 and MERS-CoV strains, and 904-bp partial RdRp sequence data of 176 

lineage C betaCoVs from European bats, with Bayesian Markov Chain Monte Carlo 177 

(MCMC) approach as implemented in BEAST (Version 1.7.4) as described previously (9, 178 

17, 21, 44, 58, 59). One parametric model (Constant Size) and one non-parametric model 179 

(Bayesian Skyline with five groups) tree priors were used for the inference. Analyses 180 

were performed under Hasegawa-Kishino-Yano (HKY) model with coding sequence 181 
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partitioned into 1st + 2nd versus 3rd positions and rate variation between sites described 182 

by a four-category discrete gamma distribution using both strict and relaxed [uncorrelated 183 

lognormal (Ucld) and uncorrelated exponential (Uced)] molecular clocks. MCMC run 184 

was 2× 108 steps long, sampling every 1,000 steps. Convergence was assessed on the 185 

basis of the effective sampling size after a 10% burn-in using Tracer software Version 1.5 186 

(58). The mean time of the most recent common ancestor (tMRCA) and the highest 187 

posterior density regions at 95% (HPD) were calculated, and the best-fitting model was 188 

selected by a Bayes factor, using marginal likelihoods implemented in Tracer (60). 189 

Bayesian Skyline under a relaxed clock model with Uced was adopted for making 190 

inferences, as this model fitted the data better than other models tested by Bayes factor 191 

analysis (data not shown) and allowed variations in substitution rates among lineages. All 192 

trees were summarized in a target tree by the Tree Annotator program included in the 193 

BEAST package by choosing the tree with the maximum sum of posterior probabilities 194 

(maximum clade credibility) after a 10% burn-in. 195 

Nucleotide sequence accession numbers. The nucleotide sequences of the 196 

complete RdRp, S and N genes of Ty-BatCoV HKU4 and Pi-BatCoV HKU5 have been 197 

lodged within the GenBank sequence database under accession no. KC522036 to 198 

KC522119.  199 
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RESULTS 200 

Detection of Ty-BatCoV HKU4 and Pi-BatCoV HKU5 from bat samples. A total of 201 

5426 respiratory and 5260 alimentary specimens from 5481 bats of 21 different species 202 

were obtained. RT-PCR for a 440-bp fragment in the RdRp genes of CoVs detected the 203 

presence of lineage C betaCoVs from two bat species, including Ty-BatCoV HKU4 in 29 204 

(29%) of 99 alimentary samples from lesser bamboo bat (Tylonycteris pachypus) and Pi-205 

BatCoV HKU5 in 55 (25%) of 216 alimentary samples from Japanese pipistrelle 206 

(Pipistrellus abramus) respectively (Table 2). None of the respiratory samples were 207 

positive for lineage C betaCoVs. Bats positive for Ty-BatCoV HKU4 and Pi-BatCoV 208 

HKU5 were from seven and 13 sampling locations in Hong Kong respectively. No 209 

obvious disease was observed in bats positive for Ty-BatCoV HKU4 and Pi-BatCoV 210 

HKU5. Ty-BatCoV HKU4 was found only in adult bats while Pi-BatCoV HKU5 was 211 

found in both adult and juvenile bats.  212 

Complete RdRp, S and N gene analysis of Ty-BatCoV HKU4 and Pi-BatCoV 213 

HKU5 strains. To study the genetic diversity and evolution of lineage C betaCoVs in 214 

bats, the complete RdRp, S and N gene sequences of 13 Ty-BatCoV HKU4 strains and 15 215 

Pi-BatCoV HKU5 strains were sequenced. Comparison of the deduced aa sequences of 216 

the RdRp, S and N genes of Ty-BatCoV HKU4 and Pi-BatCoV HKU5 to those of 217 

MERS-CoV showed that MERS-CoV is more closely related to Pi-BatCoV HKU5 than 218 

to Ty-BatCoV HKU4 (92.1-92.3% versus 89.6-90% identities) in the RdRp gene, but 219 

more closely related to Ty-BatCoV HKU4 than to Pi-BatCoV HKU5 in the S (66.8-220 

67.4% versus 63.4-64.5% identities) and N (71.9-72.3% versus 69.5-70.5% identities) 221 

genes (Table 3). Moreover, MERS-CoV is more closely related to Ty-BatCoV HKU4 and 222 
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Pi-BatCoV HKU5 belonging to Betacoronavirus lineage C than to CoVs belonging to 223 

Betacoronavirus lineages A, B and D (Table 3). Phylogenetic analysis of the complete 224 

RdRp, S and N gene sequences of Ty-BatCoV HKU4 and Pi-BatCoV HKU5 showed that 225 

the sequences from the 13 Ty-BatCoV HKU4 strains and 15 Pi-BatCoV HKU5 strains 226 

formed two distinct clusters in all three genes, being closely related to each other and to 227 

MERS-CoV (Fig. 1). Interestingly, unlike the S genes of the 13 Ty-BatCoV HKU4 228 

strains which shared highly similar sequences with very short branch lengths, the S genes 229 

of Pi-BatCoV HKU5 displayed marked sequence polymorphisms among the 15 strains, 230 

with up to 14% nucleotide and 12% amino acid (aa) differences.  231 

The S proteins of Ty-BatCoV HKU4 and Pi-BatCoV HKU5 encoded 1350-1352 232 

and 1352-1359 aa respectively. A potential cleavage site, though not perfectly conserved, 233 

could be present in the S proteins of Ty-BatCoV HKU4 (S[TM]FR) and Pi-BatCoV 234 

HKU5 (R[VFL][ALR]R). InterProScan analysis predicted them as type I membrane 235 

glycoproteins, with most of the protein (residues 18/21/22 to 1294/1296/1297 for Ty-236 

BatCoV HKU4 and residues 22 to 1296/1297/1298/1301/1302/1303 for Pi-BatCoV 237 

HKU5) exposed on the outside of the virus, a transmembrane domain (residues 238 

1295/1297/1298 to 1317/1319/1320 for Ty-BatCoV HKU4 and residues 239 

1297/1298/1299/1302/1303/1304 to 1319/1320/1321/1324/1325/1326 for Pi-BatCoV 240 

HKU5 ) at the C terminus, followed by a cytoplasmic tail rich in cysteine residues. Two 241 

heptad repeats (HR), important for membrane fusion and viral entry (61), were located at 242 

residues 978/980 to 1124/1126 (HR1) and 1251/1253 to 1285/1287 (HR2) for Ty-243 

BatCoV HKU4, and residues 978/979/983/984 to 1124/1125/1129/1130 (HR1) and 244 

1253/1254/1258/1259 to 1287/1288/1292/1293 (HR2) for Pi-BatCoV HKU5. All 245 
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cysteine residues are conserved between the S of Ty-BatCoV HKU4, Pi-BatCoV HKU5 246 

and MERS-CoV. While CoVs are known to utilize a variety of host receptors for cell 247 

entry, a number of closely related as well as distantly related CoVs may utilize the same 248 

receptor. For example, aminopeptidase N (CD13) has been shown to be the receptor for 249 

various alphaCoVs including HCoV 229E, canine CoV (CCoV), feline infectious 250 

peritonitis virus (FIPV), porcine epidemic diarrhea coronavirus (PEDV) and 251 

transmissible gastroenteritis coronavirus (TGEV) (62, 63). Moreover, human angiotensin-252 

converting enzyme 2 (hACE2) has been found to be the receptor for both HCoV NL63, 253 

an alphaCoV, as well as SARS CoV, a betaCoV, although they utilize different receptor-254 

binding sites (64, 65). As for lineage A betaCoVs, HCoV OC43 and the closely related, 255 

bovine CoV utilize N-acetyl-9-O acetyl neuramic acid as receptor, whereas 256 

carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is the receptor 257 

for mouse hepatitis virus (MHV) (66-70). The S proteins of Ty-BatCoV HKU4 and Pi-258 

BatCoV HKU5 as well as MERS-CoV did not exhibit significant sequence homology to 259 

the known RBDs of other CoVs including the betaCoVs such as SARS CoV and HCoV 260 

OC43 (71-78). Recently, DPP4 has been identified as a functional receptor for MERS-261 

CoV, although the exact receptor-binding domain is still unknown (47, 79). Based on the 262 

X-ray crystal structure of the RBD domain in the SARS CoV S protein, residues 377 to 263 

662 have been predicted as a possible RBD for MERS-CoV (80). Using the same 264 

methodology, residues 387 to 587 in Ty-BatCoV HKU4 S protein and residues 389 to 265 

580 Pi-BatCoV HKU5 S protein were predicted as their possible RBDs. However, further 266 

studies are required to elucidate the receptors for Ty-BatCoV HKU4 and Pi-BatCoV 267 

HKU5 and their RBDs.  268 
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Estimation of synonymous and non-synonymous substitution rates. In line 269 

with phylogenetic analysis, multiple alignment of the S gene sequences showed that Pi-270 

BatCoV HKU5 possessed more synonymous and non-synonymous substitutions than Ty-271 

BatCoV HKU4 (Table 4). Compared to Ty-BatCoV HKU4 in which 58 aa positions 272 

contained substitutions, 253 aa positions in Pi-BatCoV HKU5 contained substitutions 273 

among which ≥2 aa were encoded at 67 aa positions (Fig. 2 and 3). The Ka/Ks ratios for 274 

the RdRp, S and N genes among different strains of Ty-BatCoV HKU4 and Pi-BatCoV 275 

HKU5 were determined (Table 4). The Ka/Ks ratios were generally low, although the S 276 

genes of both viruses showed relatively higher ratios (0.118) compared to RdRp and N 277 

genes. This suggested that these genes were under purifying selection. Nevertheless, the 278 

Ka and Ks of the S genes of Pi-BatCoV HKU5 were relatively high compared to those of 279 

Ty-BatCoV HKU4, which reflected the marked sequence polymorphisms among 280 

different strains. 281 

Detection of positive selection in S genes. The S genes of Pi-BatCoV HKU5 282 

possessed more positively selected sites than the S genes of Ty-BatCoV HKU4 (Fig. 4). 283 

Only two and five aa positions in Ty-BatCoV HKU4 were found to be under positive 284 

selection using REL and MEME methods respectively, whereas no significant positive 285 

selection was identified by SLAC and FEL methods. In contrast, two, 12, 27 and 43 aa 286 

positions in Pi-BatCoV HKU5 were found to be under positive selection using SLAC, 287 

FEL, REL and MEME methods respectively. Most of these sites were distributed within 288 

the S1 domain, indicating that this domain may have been under functional constraints. 289 

Estimation of divergence time. To estimate the divergence time of Ty-BatCoV 290 

HKU4, Pi-BatCoV HKU5 and MERS-CoV strains, their complete RdRp and N gene 291 
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sequences were subject to molecular clock analysis using the relaxed clock model with 292 

Uced. Using complete RdRp gene sequences, tMRCA of MERS-CoV and Pi-BatCoV 293 

HKU5 was estimated at 1520.09 (HPDs, 745.73 to 1956.12) (Fig. 5A). Using complete N 294 

gene sequences, tMRCA of MERS-CoV, Ty-BatCoV HKU4 and Pi-BatCoV HKU5 was 295 

estimated at 1323.51 (HPDs, 383.58 to 1897.75) (Fig. 5B). Since partial RdRp gene 296 

sequences closely related to the corresponding sequence of MERS-CoV have recently 297 

been detected in European bats, molecular clock analysis was also performed to estimate 298 

their divergence time. Using the 904-bp partial RdRp sequences, tMRCA of MERS-CoV 299 

and three European bat CoV strains (BtCoV 8-691, BtCoV 8-724 and BtCoV UKR-G17) 300 

was estimated at 1859.32 (HPDs, 1636.67 to 1987.55) (Fig. 5C). The estimated mean 301 

substitution rate of the complete RdRp and N gene, and partial RdRp sequence data set 302 

was 5.12×10-4, 8.642×10-4 and 7.407×10-4 substitution per site per year, comparable to 303 

that observed in other CoVs (9, 17, 59, 81, 82). 304 
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DISCUSSION 305 

In this study, Ty-BatCoV HKU4 and Pi-BatCoV HKU5 were found to be highly 306 

prevalent among lesser bamboo bat and Japanese pipistrelle in Hong Kong respectively, 307 

with detection rates of 25-29% in their alimentary samples. In line with previous studies, 308 

MERS-CoV is closely related to Betacoronavirus lineage C than to lineages A, B and D 309 

in the RdRp, S and N genes (34, 42, 43). Nevertheless, the genetic distance between 310 

MERS-CoV and the various strains of Ty-BatCoV HKU4 and Pi-BatCoV HKU5 was still 311 

large, with their S proteins having ≤67.4% aa identities. Two recent studies have 312 

identified partial gene sequences closely related to MERS-CoV in bats from Africa, 313 

Europe and America, suggesting that lineage C betaCoVs are distributed in bats 314 

worldwide (44, 45). In one study, CoVs related to MERS-CoV were detected in 46 315 

(24.9%) Nycteris bats and 40 (14.7%) Pipistrellus bats from Ghana and Europe using RT-316 

PCR targeting a 398-bp fragment of the RdRp gene (44). The extended 904-bp RdRp 317 

sequences of three strains from Romania and Ukraine showed that they shared 87.7-318 

88.1% nucleotide and 98.3% amino acid identities to MERS-CoV, compared to 80.3-319 

82%/82.4-83.7% nucleotide and 92-92.4%/94-94.4% amino acid identities between Ty-320 

BatCoV HKU4/Pi-BatCoV HKU5 and MERS-CoV respectively in the corresponding 321 

regions. In another study, screening of 606 bats from Mexico showed the presence of a 322 

betaCoV also closely related MERS-CoV in a Nyctinomops lacticaudatus bat (45). 323 

Although the authors claimed the use of a 329–bp fragment of the RdRp gene for RT-324 

PCR and sequence analysis, the available sequence was in fact within nsp14. Analysis of 325 

this partial nsp14 sequence showed that it shared 85.7% nucleotide and 95.5% amino acid 326 

identities to MERS-CoV (45), compared to to 81.9%/83.4-84.2% nucleotide and 327 
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88.6%/92% amino acid identities differences between Ty-BatCoV HUK4/Pi-BatCoV 328 

HKU5 and MERS-CoV respectively in the corresponding regions. However, complete 329 

gene sequences were not available from these bat CoVs to allow more detailed 330 

phylogenetic analysis. Molecular clock analysis of the complete RdRp gene dated the 331 

tMRCA of MERS-CoV and Pi-BatCoV HKU5 at around 1520, whereas analysis of the N 332 

gene dated the tMRCA of MERS-CoV, Ty-BatCoV HKU4 and Pi-BatCoV HKU5 at 333 

around 1324. Using the 904-bp RdRp sequences available from the three European 334 

strains, the tMRCA of MERS-CoV and European bat CoV strains were dated at around 335 

1859. Our results suggested that Ty-BatCoV HKU4, Pi-BatCoV HKU5 and MERS-CoV 336 

have diverged at least centuries ago from their common ancestor. Although MERS-CoV 337 

and the European bat CoV strains were estimated to have diverged more recently, this is 338 

unlike the situation in SARS-related CoVs which only diverged between civet and bat 339 

strains several years before the SARS epidemic (17). Therefore, these bat lineage C 340 

betaCoVs were unlikely the direct ancestor of MERS-CoV. However, the present analysis 341 

is limited by the lack of more sequences from potential intermediate virus species/strains 342 

with widely distributed and well-determined dates, which better reflect the different 343 

selective pressures over the long period of time as these viruses evolved. Further studies 344 

on bats and other animals are required to fill the gap between these bat lineage C 345 

betaCoVs and MERS-CoV during their evolution. Moreover, longer gene or complete 346 

genome sequence data from these animal viruses would be important for more accurate 347 

taxonomic and evolutionary studies.  348 

The divergent sequences of the S genes of Pi-BatCoV HKU5 may suggest that the 349 

virus has a better ability to generate variants to occupy new ecological niches. The S 350 
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proteins of CoVs are responsible for receptor binding and host adaptation, and are 351 

therefore one of the most variable regions within CoV genomes (16, 18, 28). Studies on 352 

SARS CoV have shown that changes in its S protein, both within and outside of receptor 353 

binding domain, could govern CoV cross-species transmission and emergence in new 354 

host populations (83, 84). We have also previously demonstrated recent interspecies 355 

transmission of an alphaCoV, BatCoV HKU10, from Leschenault’s rousettes to Pomona 356 

leaf-nosed bats, and the virus has been rapidly adapting in the new host by changing its S 357 

protein (59). In this study, Ty-BatCoV HKU4 and Pi-BatCoV HKU5 were exclusively 358 

detected in lesser bamboo bat (Tylonycteris pachypus) and Japanese pipistrelle 359 

(Pipistrellus abramus) respectively. Moreover, the Ka/Ks ratios of the RdRp, S and N 360 

genes in both viruses were low, supporting that the two bat species were the respective 361 

primary reservoirs for the two CoVs.  Nevertheless, unlike that of Ty-BatCoV HKU4, the 362 

S gene of Pi-BatCoV HKU5 exhibited much higher sequence divergence among different 363 

strains due to both synonymous and non-synonymous substitutions. Moreover, a much 364 

higher number of positively selected sites were observed in the S gene of Pi-BatCoV 365 

HKU5 than that of Ty-BatCoV HKU4, with most of the sites under selection being 366 

distributed within the S1 region which likely contains the RBD. This suggested that the 367 

S1 region of Pi-BatCoV HKU5 may have been under functional constraints in its host 368 

species, Japanese pipistrelle, which may have favored adaptation to new 369 

host/environments.  370 

The marked polymorphisms in the S protein of Pi-BatCoV HKU5 may reflect the 371 

biological characteristics of its host species, Japanese pipistrelle, which is a small-size, 372 

insectivorous bat with body weight 4 to 10 g. It is considered the most common bat 373 
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species found in urban areas of Hong Kong (85). While it is abundant in wetland areas, 374 

its roosts are frequently found in towns and villages, as well as various types of buildings 375 

and other man-made structures, such as fans or air-conditioners. It is also known to utilize 376 

bat houses or boxes as its roosts. Such diverse habitat and adaptability to harsh 377 

environments may have favored the mutation of Pi-BatCoV HKU5 especially in its S 378 

protein which is responsible for receptor binding and immunogenicity. Interestingly, this 379 

bat species is not only widely distributed in China, Russia, Korea, Japan, Vietnam, 380 

Burma and India, but also the Kingdom of Saudi Arabia and neighboring countries (42, 381 

85). Moreover, other Pipistrellus bats including P. arabicus, P. ariel, P. kuhlii, P. 382 

pipistrellus, P. rueppellii and P. savii have been recorded in the Arabian Peninsula 383 

(www.iucn.org). In fact, the partial sequences closely related to MERS-CoV detected in 384 

bats from Europe were also originated from Pipstrellus bats (P. pipistrellus, P. nathusii 385 

and P. pygmaeus) of the family Vespertilionidae, and those from Ghana were originated 386 

from Nycteris bats (Nycteris cf. gambiensis) of the related family Nycteridae (44). 387 

Similarly, the bat betaCoV strain related to MERS-CoV detected in Meixco was 388 

originated from a N. laticaudatus bat belonging to Molossidae, a closely related family of 389 

Vespertilionidae (45, 86). The difference between this bat betCoV and MERS-CoV 390 

within the partial nsp14 sequence was also found to be mainly due to substitutions in the 391 

3rd nucleotide positions, suggesting strong purifying selection (45). However, S gene 392 

sequences were not available from these bat viruses for further analysis of 393 

polymorphisms and selective pressures. Nevertheless, based on our existing data, bats 394 

belonging to Vespertilionidae and related families, especially Pipistrellus bats and those 395 

with diverse habitats, in the Arabian Peninsula should be intensively sought for potential 396 
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ancestral viruses of MERS-CoV, which may have evolved through mutations in the S 397 

gene especially in the RBD, allowing efficient transmission to other animals or human. In 398 

contrast, lesser bamboo bats, the host species for Ty-BatCoV HKU4 and one of the 399 

smallest mammals in the world with body weight 3 to 7 g, have much more restricted 400 

habitats. Though this species also belongs to the family Vespertilionidae, it is remarkably 401 

adapted to roost inside bamboo stems, and is mainly found in rural areas in Hong Kong 402 

and various Asian countries (85). This may, in turn, reflect the lower mutation rate 403 

observed in the S gene of Ty-BatCoV HKU4.  404 

It remains to be determined if Ty-BatCoV HKU4 and Pi-BatCoV HKU5, as well 405 

as other lineage C betaCoVs in bats, utilize the same receptor as MERS-CoV. Recent 406 

studies have shown that MERS-CoV utilizes DPP4 as its functional receptor (47, 79). 407 

This suggested that these betaCoVs belonging to lineage C may utilize receptor(s) 408 

different from those of other CoVs. Moreover, expression of bat (P. pipistrellus) DPP4 in 409 

non-susceptible cells was found to enable infection by MERS-CoV (47), which is in line 410 

with the ability of the virus to replicate in cell lines from Rousettus, Rhinolophus, 411 

Pipistrellus, Myotis, and Carollia bats (79). As DPP4 is a evolutionarily conserved 412 

protein (47), it may also explain the broad species tropism observed in primate, porcine, 413 

and rabbit cell lines and reflect the zoonotic origin of MERS-CoV (46, 79). However, Ty-414 

BatCoV HKU4 and Pi-BatCoV HKU5, as with other bat CoVs, have not been 415 

successfully cultured in vitro, which hampers studies on their receptor binding and host 416 

adaptation. Further discoveries of lineage C betaCoVs in animals and studies on the 417 

receptors of the different animal counterparts in their respective hosts may help 418 

understand the mechanism of interspecies transmission and emergence of MERS-CoV.  419 
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Bats are increasingly recognized as reservoir for various zoonotic viruses 420 

including SARS CoV, lyssavirus, rabies virus, Hendra, Nipah, Ebola as well as influenza 421 

virus (87, 88). While the existence of CoVs in bats was unknown before the SARS 422 

epidemic, it is now known that the different bat populations harbor diverse CoVs, which 423 

is likely the result of their species diversity, roosting behavior and migrating ability (16, 424 

18, 29, 31, 32, 89). These warm-blooded flying vertebrates are also ideal hosts to fuel 425 

CoV recombination and dissemination (5, 27, 59). It remains to be ascertained if bats 426 

could also be the animal origin for the emergence of MERS-CoV either directly or via an 427 

intermediate host, the latter as in the case of SARS CoV where the bat ancestral virus 428 

may have jumped to the intermediate host when bats are in contact or mixed with other 429 

animals (16). Since history of contact with animals such as camels and goats has been 430 

reported in MERS-CoV-infected cases (90), the virus may have jumped from bats to 431 

these animals before infecting humans. Surveillance studies of lineage C betaCoVs from 432 

bats and other animals in the Middle East may help identify the origin and chain of 433 

transmission of MERS-CoV. 434 

435 
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LEGENDS TO FIGURES 782 

FIG 1 Phylogenetic analysis of RdRp, S and N genes of Ty-BatCoV HKU4 and Pi-783 

BatCoV HKU5 strains, and those of other betaCoVs with available complete genome 784 

sequences. The trees were constructed by maximum-likelihood method with bootstrap 785 

values calculated from 100 trees. 937, 1535, and 546 aa positions in RdRp, S, and N 786 

genes respectively were included in the analysis. The scale bar indicates the estimated 787 

number of substitutions per 5 or 20 aa. HCoV-HKU1, human coronavirus HKU1, HCoV-788 

OC43, human coronavirus OC43; MHV, murine hepatitis virus; BCoV, bovine 789 

coronavirus; PHEV, porcine hemagglutinating encephalomyelitis virus; GiCoV, giraffe  790 

coronavirus; RCoV, rat coronavirus; ECoV, equine coronavirus; RbCoV HKU14, rabbit 791 

coronavirus HKU14; AntelopeCoV, sable antelope coronavirus; SARS-CoV, SARS 792 

coronavirus; SARSr-Rh-BatCoV HKU3, SARS-related Rhinolophus bat coronavirus 793 

HKU3; SARSr-CiCoV, SAR-related civet coronavirus; SARSr CoV CFB, SARS-related 794 

Chinese ferret badger coronavirus; Ty-BatCoV HKU4, Tylonycteris bat coronavirus 795 

HKU4; Pi-BatCoV HKU5, Pipistrellus bat coronavirus HKU5; MERS-CoV EMC, 796 

Middle East Respiratory Syndrome Coronavirus EMC; MERS-CoV England1, Middle 797 

East Respiratory Syndrome Coronavirus England1; Ro-BatCoV HKU9, Rousettus bat 798 

coronavirus HKU9. 799 

FIG 2 Distribution of amino acid changes in the spike protein of Ty-BatCoV HKU4 800 

(upper panel) and Pi-BatCoV HKU5 (lower panel). The positions of the amino acid 801 

changes are depicted by vertical lines. SS, predicted signal peptide; RBD, receptor 802 

binding domain; HR1, heptad repeat 1; HR2, heptad repeat 2; TM, transmembrane 803 

domain. 804 
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 805 

FIG 3 Graphical representation of multiple sequence alignment showing the amino acid 806 

changes in the spike protein of Pi-BatCoV HKU5. The height of symbols indicates the 807 

relative frequency of each amino acid at the position. Polar amino acids are indicated in 808 

green; neutral amino acids are indicated in purple; basic amino acids are indicated in blue; 809 

acidic amino acids are indicated in red; hydrophobic amino acids are indicated in black. 810 

The figure was generated using WebLogo (91). 811 

FIG 4 Distribution of positively selected sites in S proteins identified using REL in Ty-812 

BatCoV HKU4 (upper panel) and Pi-BatCoV HKU5 (lower panel). Positively selected 813 

sites with posterior probability greater than 0.5 are shown. 814 

FIG 5 Estimation of the tMRCA of Ty-BatCoV HKU4 and Pi-BatCoV HKU5. The time-815 

scaled phylogeny was summarized from all MCMC phylogenies of the (A) complete 816 

RdRp, (B) complete N and (C) 904-bp RdRp sequence data set analyzed under the 817 

relaxed clock model with an exponential distribution (Uced) in BEAST v 1.7.4. Viruses 818 

characterized in this study are bolded. 819 
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TABLE 1 Primers used in this study 820 
 821 

822 
Coronaviruses Primers  
 Forward Backward 
Ty-BatCoV HKU4   
RdRp LPW3283 5’-GTAATGTCTGTCAGTATTGGGTT-3’ LPW3232 5’-AACTAATATGCTCTTTAACACTTCAC-3’ 
 LPW2771 5’-TGYTAYGCTTTAMGNCAYTTYGA-3’ LPW2773 5’-GTTGGGTAATAACAAAATCACCAA-3’ 
 LPW2626 5’-GTTTTAACACTYGATAAYGARGA-3’ LPW2630 5’-AGTATATTGAARTTNGCACARTG-3’ 
 LPW2738 5’-CCACCCTAATTGTGTTAATTGTA-3’ LPW2775 5’-TAACTGAAGACCCTTCCTTGAAA-3’ 
 LPW3233 5’-GGCAATTTTAATAAAGATTTTTATGA-3’ LPW3234 5’-GCCAAAATCAATGACGCTAAAAT-3’ 
 LPW1507 5’-GGTTGGGACTATCCTAAGTGTGA-3’ LPW1508 5’-CCATCATCAGATAGAATCATCATA-3’ 
 LPW1037 5’-WTATKTKAARCCWGGTGG-3’ LPW1040 5’-KYDBWRTTRTARCAMACAAC-3’ 
 LPW3235 5’-CTTAATAAACACTTTTCTATGATGAT-3’ LPW2678 5’-TACTCACCGAGCTGTACTTTACTA-3’ 
   
S LPW3797 5’-AGATTTATATAAAATTATGGGAA-3’ LPW4102 5’-TACGTGGTTTTAATATGCAATAAAA-3’ 
 LPW3899 5’-TCTCTTACTAATACATCGGCT-3’ LPW3900 5’-AAGACCTGACCATCTTCAGAAA-3’ 
 LPW4103 5’-TGGTGCAAACCAAGATGTTGAAA-3’ LPW3712 5’-CTAGCGCTATAACTTCTAAAAGTA-3’ 
 LPW3720 5’-CATTAGTAGTTAGTGATTGTAAA-3’ LPW2821 5’-GTCATAAAGTGGTGGTAAAACTT-3’ 
 LPW2319 5’-ATTAATGCTAGAGAYCTHMTTTG-3’ LPW2320 5’-TTTGGGTAACTCCAATNCCRTT-3’ 
 LPW2824 5’-TTTGCCGCTATACCTTTTGCACAA-3’ LPW4106 5’-TGAGTTATAGGTTCAGGTTTATAA-3’ 
 LPW4105 5’-TATTAGTGACATCCTTGCTAGGCTT-3’ LPW2317 5’-GAGCCAAACATACCANGGCCAYTT-3’ 
 LPW4107 5’-ATGGTCCTAACTTTGCAGAGATA-3’ LPW21565 5’-TGCCAGACATGCCACCACAA-3’ 
   
N LPW21407 5’-AACGAATCTTAATAACTCATTGTT-3’ LPW21408 5’-CTCTTGTTACTCTTCATTGGCAT-3’ 
Pi-BatCoV HKU5   
RdRp LPW3350 5’-TTTGTCAATTTTGGATAGGACAT-3’ LPW3352 5’-TGATGCATCACAGCARCCATA-3’ 
 LPW3351 5’-ATCAGAATAACTGTGAAGTGCTT-3’ LPW3275 5’-GACAATTGGACCAAAAGACGTT-3’ 
 LPW3382 5’-CAAATTGTGTGAACTGTACTGAT-3’ LPW3387 5’-ATATATCTCGAAGTAACGATCAA-3’ 
 LPW3172 5’-GTCCTGGCAACTTTAATAAAGATT-3’ LPW3130 5’-CTAATATGAGAGATGCAAAGA-3’ 
 LPW1507 5’-GGTTGGGACTATCCTAAGTGTGA-3’ LPW1508 5’-CCATCATCAGATAGAATCATCATA-3’ 
 LPW3384 5’-CTAAATTTGTGGACAGGTATTAT-3’ LPW3399 5’-CTTCGTATACACGTACCACAA-3’ 
   
S LPW21416 5’-CTCTTGTCGCAGGGTAAACTT-3’ LPW4284 5’-AAAGACTCTACCTGTGCAGAATA-3’ 
 LPW4086 5’-TAACTTATACTGGACTGTACCCAAA-3’ LPW4193 5’-AAGCCATTTGAAGGTTACCATT-3’ 
 LPW4192 5’-ACTTTGCTACTTTACCTGTGTAT-3’ LPW4137 5’-AGTAACACCAAATGTGAAATT-3’ 
 LPW4285 5’-AATCGCCACTCTAAACTTTACTA-3’ LPW4286 5’-AAGAGGCTGGGTATTCTGGGTT-3’ 
 LPW4138 5’-AAGATGAGTCTATTGCTAATCTAT-3’ LPW4139 5’-AGCTTCCATATAGGGGTCATA-3’ 
 LPW4287 5’-TGTGCACAATATGTTGCTGGCTA-3’ LPW4288 5’-AAAGAACTACCAGTATAATACCAA-3’ 
 LPW4140 5’-AACACTGAGAATCCACCAAA-3’ LPW21417 5’-CACACGCATCATAAGTTCGTT-3’ 
   
N LPW21361 5’-GAATCTTATTATCTCATTGTT-3’ LPW21362 5’-CTATTACGTTCAATTGGCAAT-3’ 
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TABLE 2 Detection of Ty-BatCoV HKU4 and Pi-BatCoV HKU5 in bats by RT-PCR 823 
Bats     
Scientific name Common name No. of bats 

tested 
No. (%) of bats positive for CoV 
in respiratory samples 

No. (%) of bats positive for CoV 
in alimentary samples 

Ty-BatCoV 
HKU4 

Pi-BatCoV 
HKU5 

Ty-BatCoV 
HKU4 

Pi-BatCoV 
HKU5 

Megachiroptera    
Pteropodidae    
Cynopterus sphinx Short-nosed fruit bat 26 0 (0) 0 (0) 0 (0) 0 (0)
Rousettus leschenaulti Leschenault’s rousette 73 0 (0) 0 (0) 0 (0) 0 (0)

Microchiroptera    
Hipposideridae    
Hipposideros armiger Himalayan leaf-nosed bat 198 0 (0) 0 (0) 0 (0) 0 (0)
Hipposideros pomona Pomona leaf-nosed bat 642 0 (0) 0 (0) 0 (0) 0 (0)

Rhinolophidae    
Rhinolophus affinus Intermediate horseshoe bat 359 0 (0) 0 (0) 0 (0) 0 (0)
Rhinolophus pusillus Least horseshoe bat 89 0 (0) 0 (0) 0 (0) 0 (0)
Rhinolophus sinicus Chinese horseshoe bat 2012 0 (0) 0 (0) 0 (0) 0 (0)

Vespertilionidae    
Hypsugo pulveratus Chinese pipistrelle 1 0 (0) 0 (0) 0 (0) 0 (0)
Miniopterus magnater Greater bent-winged bat 15 0 (0) 0 (0) 0 (0) 0 (0)
Miniopterus pusillus Lesser bent-winged bat 450 0 (0) 0 (0) 0 (0) 0 (0)
Miniopterus schreibersii Common bent-winged bat 758 0 (0) 0 (0) 0 (0) 0 (0)
Myotis chinensis Chinese myotis 122 0 (0) 0 (0) 0 (0) 0 (0)
Myotis horsfieldii Horsfield’s Bat 7 0 (0) 0 (0) 0 (0) 0 (0)
Myotis muricola Whiskered myotis 4 0 (0) 0 (0) 0 (0) 0 (0)
Myotis ricketti Rickett's big-footed bat 307 0 (0) 0 (0) 0 (0) 0 (0)
Nyctalus noctula Brown noctule 54 0 (0) 0 (0) 0 (0) 0 (0)
Pipistrellus abramus Japanese pipistrelle 219 0 (0) 0 (0) 0 (0) 55 (25%) 
Pipistrellus tenuis Least pipistrelle 11 0 (0) 0 (0) 0 (0) 0 (0)
Scotophilus kuhlii Lesser yellow bat 18 0 (0) 0 (0) 0 (0) 0 (0)
Tylonycteris pachypus Lesser bamboo bat 115 0 (0) 0 (0) 29 (29%) 0 (0)
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Tylonycteris robustula Greater bamboo bat 1 0 (0) 0 (0) 0 (0) 0 (0) 
 824 
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TABLE 3 Pairwise amino acid identities between the RdRp, S and N genes of Ty-BatCoV HKU4, Pi-BatCoV HKU5 and MERS-825 
CoV to those of other betaCoVs 826 

Coronaviruses Pairwise amino acid identity (%) 
Ty-BatCoV HKU4_2 Pi-BatCoV HKU5_31 MERS-CoV 
RdRp S N RdRp S N RdRp S N 

Betacoronavirus lineage A          
   HCoV-OC43 68.8 33.4 33.2 68.7 31.2 34.2 68.3 32 35.3 
   BCoV 68.7 33.5 33.2 68.6 31.3 34.8 68.2 31.3 35.6 
   PHEV 68.8 33.2 32.7 68.7 31.2 33.9 68.3 32.5 35.1 
   GiCoV 68.7 33.9 32.8 68.6 31.6 34.8 68.2 31.4 35.3 
   RCoV 68.8 32.4 33.7 68.8 31.4 34.3 68.7 32 34.8 
   RbCoV HKU14 68 33.8 33.2 68 30.9 34.9 68 32.2 35.3 
   AntelopeCoV 68.7 33.7 32.8 68.6 31.2 34.8 68.2 31.4 35.3 
   ECoV 69.1 32.4 34.9 68.7 31.5 35.6 68.3 31.6 35.7 
   MHV 68.7 32.7 34.1 68.8 31.9 34.7 68.6 31.5 34.3 
   HCoV-HKU1 67.6 32.1 32.8 68.1 30.2 33.3 67.9 31.8 32.3 
Betacoronavirus lineage B          
   SARS-CoV 71.6 33.6 45.8 71.8 33.5 43.6 71.9 31.6 46.6 
   SARSr-Rh-BatCoV HKU3 71.7 33.6 45.2 71.7 32.8 43.9 71.8 30.6 46.2 
Betacoronavirus lineage C          
   Ty-BatCoV HKU4 99.5-100 97.3-99.6 99.5-100 92-92.5 67.7-68.1 73.5-74 89.6-90 66.8-67.4 71.9-72.3 
   Pi-BatCoV HKU5 92.1-92.4 67.5-68.4 73.7-75.1 99.4-99.7 88.3-97 97.2-98.6 92.1-92.3 63.4-64.5 69.5-70.5 
   MERS-CoV 89.9 67.3-67.4 71.6-72.1 92.1 64.3 68.8-69.5 - - - 
Betacoronavirus lineage D          
   Ro-BatCoV HKU9 69.3 30.8 37.3 68.7 31 36.9 68.4 30.3 37.8 

 827 
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TABLE 4 Estimation of non-synonymous and synonymous substitution rates in the 828 
RdRp, S and N genes of Ty-BatCoV HKU4, Pi-BatCoV HKU5 and MERS-CoV 829 
 830 

Gene Ty-BatCoV HKU4 
(18 strains)  

Pi-BatCoV HKU5  
(19 strains) 

MERS-CoV  
(2 strains) 

 Ka Ks Ka/Ks Ka Ks Ka/Ks Ka Ks Ka/Ks
RdRp 0.001 0.033 0.03 0.001 0.128 0.0078 0 0.006 0 
S 0.004 0.034 0.118 0.038 0.321 0.118 0.001 0.008 0.125 
N 0.001 0.019 0.053 0.005 0.095 0.053 0.002 0.010 0.2 

 831 
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