1	JVI01055-13 Revised
2	Genetic characterization of Betacoronavirus lineage C viruses in bats
3	revealed marked sequence divergence in the spike protein of Pipistrellus bat
4	coronavirus HKU5 in Japanese pipistrelle: implications on the origin of the
5	novel Middle East Respiratory Syndrome Coronavirus
6	
7	Susanna K. P. Lau, ^{a,b,c,d} Kenneth S. M. Li, ^d Alan K. L. Tsang, ^d Carol S. F. Lam, ^d Shakeel
8	Ahmed, ^d Honglin Chen, ^d Kwok-Hung Chan, ^d Patrick C. Y. Woo, ^{a,b,c,d,#} and Kwok-Yung
9	Yuen ^{a,b,c,d,#}
10	
11	State Key Laboratory of Emerging Infectious Diseases, ^a Research Centre of Infection and
12	Immunology, ^b Carol Yu Centre for Infection, ^c Department of Microbiology, ^d The
13	University of Hong Kong, Hong Kong, China
14	
15	Running title: lineage C betacoronaviruses in bats
16	
17	Keywords: bats, human, beta, coronavirus, HKU5, MERS, EMC, spike, lesser bamboo,
18	Pipistrellus
19	
20	[#] Corresponding author. Mailing address: State Key Laboratory of Emerging Infectious
21	Diseases, Department of Microbiology, The University of Hong Kong, Room 423,
22	University Pathology Building, Queen Mary Hospital, Hong Kong, China. Phone: (852)

- 23 22554892. Fax: (852) 28551241. E-mail: kyyuen@hkucc.hku.hk (KY Yuen),
- 24 pcywoo@hkucc.hku.hk (PCY Woo)
- 25 Abstract: 250 words
- 26 Text: 4672 words

28 ABSTRACT

29 While the novel Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is closely 30 related to Tylonycteris bat CoV HKU4 (Ty-BatCoV HKU4) and Pipistrellus bat CoV HKU5 (Pi-BatCoV HKU5) in bats from Hong Kong, and other potential lineage C 31 32 betacoronaviruses in bats from Africa, Europe and America, its animal origin remains 33 obscure. To better understand the role of bats in its origin, we examined the molecular 34 epidemiology and evolution of lineage C betacoronaviruses among bats. Ty-BatCoV 35 HKU4 and Pi-BatCoV HKU5 were detected in 29% and 25% of alimentary samples from 36 lesser bamboo bat (*Tylonycteris pachypus*) and Japanese pipistrelle (*Pipistrellus abramus*) 37 respectively. Sequencing of their RdRp, S and N genes revealed that MERS-CoV is more 38 closely related to Pi-BatCoV HKU5 in RdRp (92.1-92.3% aa identities) but to Ty-39 BatCoV HKU4 in S (66.8-67.4% aa identities) and N (71.9-72.3% aa identities). 40 Although both viruses were under purifying selection, the S of Pi-BatCoV HKU5 41 displayed marked sequence polymorphisms and more positively selected sites than that of 42 Ty-BatCoV HKU4, suggesting that Pi-BatCoV HKU5 may generate variants to occupy 43 new ecological niches along with its host which faces diverse habitats. Molecular clock 44 analysis showed that they diverged from a common ancestor with MERS-CoV at least 45 several centuries ago. Although MERS-CoV may have diverged from potential lineage C 46 betacoronaviruses in European bats more recently, these bat viruses were unlikely the 47 direct ancestor of MERS-CoV. Intensive surveillance for lineage C betaCoVs in 48 Pipistrellus and related bats with diverse habitats, and other animals from the Middle 49 East may fill the evolutionary gap.

51 INTRODUCTION

52 Coronaviruses (CoVs) infect humans and a wide variety of animals, causing respiratory, 53 enteric, hepatic and neurological diseases of varying severity. They have been classified 54 traditionally into groups 1, 2 and 3, based on genotypic and serological characteristics (1, 55 2). Recently, the nomenclature and taxonomy of CoVs have been revised by the 56 Coronavirus Study Group of the International Committee for Taxonomy of Viruses 57 (ICTV). They are now classified into three genera, Alphacoronavirus, Betacoronavirus 58 and Gammacoronavirus, replacing the three traditional groups (3). Novel CoVs, which 59 represented a novel genus, Deltacoronavirus, have also been identified (4, 5). While 60 CoVs from all four genera can be found in mammals, bat CoVs are likely the gene source 61 of Alphacoronavirus and Betacoronavirus, and avian CoVs are the gene source of 62 Gammacoronavirus and Deltacoronavirus (5-7).

63 CoVs are well known for their high frequency of recombination and mutation 64 rates, which may allow them to adapt to new hosts and ecological niches (1, 8-12). This 65 is best exemplified by the severe acute respiratory syndrome (SARS) epidemic, which was caused by SARS CoV (13, 14). The virus has been shown to be originated from 66 67 animals, with horseshoe bats as the natural reservoir and palm civet as the intermediate host allowing animal-to-human transmission (15-18). Since the SARS epidemic, many 68 other novel CoVs in both humans and animals have been discovered (4, 7, 19-24). In 69 70 particular, a previously unknown diversity of CoVs have been described in bats from 71 China and other countries, suggesting that bats are important reservoirs of alphaCoVs and 72 betaCoVs (16, 18, 25-32).

73	In September 2012, two cases of severe community-acquired pneumonia were
74	reported in Saudi Arabia, which were subsequently found to be caused by a novel CoV,
75	Middle East Respiratory Syndrome Coronavirus (MERS-CoV), previously known as
76	human betaCoV 2c EMC/2012 (33, 34, 35). As of May 2013, a total of 40 laboratory
77	confirmed cases of MERS-CoV infection have been reported with 20 deaths (36), giving
78	a crude fatality rate of 50%. So far, most cases of MERS-CoV infection presented with
79	severe acute respiratory illness (36, 37). A macaque model for MERS-CoV infection has
80	also been established, which showed that the virus caused localized-to-widespread
81	pneumonia in all infected animals (38). The viral virulence may be related to the ability
82	of MERS-CoV to evade the innate immunity with attenuated interferon- β response (39-
83	41). Moreover, the ability to cause human-to-human transmission has raised the
84	possibility of another SARS-like epidemic (36, 37). However, the source of this novel
85	CoV is still obscure, which has hindered public health and infection control strategies for
86	disease prevention. Phylogenetically, MERS-CoV belongs to Betacoronavirus lineage C,
87	being closely related to Tylonycteris bat CoV HKU4 (Ty-BatCoV HKU4) and
88	Pipistrellus bat CoV HKU5 (Pi-BatCoV HKU5) previously discovered in lesser bamboo
89	bat (Tylonycteris pachypus) and Japanese pipistrelle (Pipistrellus abramus) in Hong
90	Kong, China respectively (31, 32, 42, 43). Moreover, potential viruses with partial gene
91	sequences closely related to MERS-CoV have also been detected in bats from Africa,
92	Europe and America, although complete genome sequences were not available (44, 45).
93	MERS-CoV is able to infect various mammalian cell lines including primate, porcine, bat
94	and rabbit cells, which may be explained by the use of the evolutionarily conserved
95	dipeptidyl peptidase 4 (DPP4) as its functional receptor (46, 47). These suggested that

MERS-CoV may possess broad species tropism and have emerged from animals.
However, the direct ancestor virus and animal reservoir of MERS-CoV is yet to be
identified.

99 To better understand the evolutionary origin of MERS-CoV and the possible role 100 of bats as the reservoir for its ancestral viruses, studies on the genetic diversity and 101 evolution of lineage C betaCoVs in bats would be important. We attempted to study the 102 epidemiology of lineage C betaCoVs, including Ty-BatCoV HKU4 and Pi-BatCoV 103 HKU5, among various bat species in Hong Kong, China. The complete RNA-dependent 104 RNA polymerase (RdRp), spike (S) and nucleocapsid (N) genes of 13 Ty-BatCoV HKU4 105 and 15 Pi-BatCoV HKU5 strains were sequenced to assess their genetic diversity and 106 evolution. The results revealed that the two viruses were stably evolving in their 107 respective hosts, and have diverged from their common ancestor long time ago. However, 108 the S protein of Pi-BatCoV HKU5 exhibited marked sequence divergence and much 109 more positively selected sites than that of Ty-BatCoV HKU4, which may suggest the 110 ability of Pi-BatCoV HKU5 along with its host to occupy new ecological niches. The 111 potential implications on the animal origin of MERS-CoV were also discussed.

113 METHODS

114 Collection of bat samples. Various bat species were captured from different locations in 115 Hong Kong, China over a 7-year period (April 2005 to August 2012). Their respiratory 116 and alimentary specimens were collected using procedures described previously (16, 48). 117 To prevent cross contamination, specimens were collected using disposable swabs with 118 protective gloves changed between samples. All specimens were immediately placed in 119 viral transport medium containing Earle's balanced salt solution (Invitrogen, New York, 120 United States), 20% glucose, 4.4% NaHCO3, 5% bovine albumin, 50000 ug/ml 121 vancomycin, 50000 ug/ml amikacin, 10000 units/ml nystatin, before transportation to the 122 laboratory for RNA extraction.

RNA extraction. Viral RNA was extracted from the respiratory and alimentary
specimens using QIAamp Viral RNA Mini Kit (QIAgen, Hilden, Germany). The RNA
was eluted in 50 μl of AVE buffer (QIAgen) and was used as the template for RT-PCR.

126**RT-PCR for CoVs and DNA sequencing.** CoV detection was performed by127amplifying a 440-bp fragment of the RdRp gene of CoVs using conserved primers (5'-128GGTTGGGACTATCCTAAGTGTGA-3'129CCATCATCAGATAGAATCATCATA-3') designed by multiple alignments of the130nucleotide sequences of available RdRp genes of known CoVs as described previously

(17, 24). Reverse transcription was performed using the SuperScript III kit (Invitrogen,
San Diego, CA, USA). The PCR mixture (25 µl) contained cDNA, PCR buffer (10 mM
Tris-HCl pH 8.3, 50 mM KCl, 3 mM MgCl₂ and 0.01% gelatin), 200 µM of each dNTPs
and 1.0 U *Taq* polymerase (Applied Biosystem, Foster City, CA, USA). The mixtures
were amplified in 60 cycles of 94°C for 1 min, 48°C for 1 min and 72°C for 1 min and a

final extension at 72°C for 10 min in an automated thermal cycler (Applied Biosystem,
Foster City, CA, USA). Standard precautions were taken to avoid PCR contamination
and no false-positive was observed in negative controls.

The PCR products were gel-purified using the QIAquick gel extraction kit (QIAgen, Hilden, Germany). Both strands of the PCR products were sequenced twice with an ABI Prism 3700 DNA Analyzer (Applied Biosystems, Foster City, CA, USA), using the two PCR primers. The sequences of the PCR products were compared with known sequences of the RdRp genes of CoVs in the GenBank database to identify lineage C betaCoVs.

145 Sequencing and analysis of the complete RdRp, S and N genes of Ty-BatCoV 146 HKU4 and Pi-BatCoV HKU5 strains. To study the genetic diversity and evolution of 147 Ty-BatCoV HKU4 and Pi-BatCoV HKU5 detected in bats, the complete RdRp, S and N 148 genes of 13 Ty-BatCoV HKU4 strains and 15 Pi-BatCoV HKU5 strains detected at 149 different time and/or place, in addition to the nine previous strains with complete genome 150 sequences, were amplified and sequenced using primers designed according to available 151 genome sequences (Table 1) (32). The sequences of the PCR products were assembled 152 manually to produce the complete RdRp, S and N gene sequences. Multiple sequence 153 alignments were constructed using MUSCLE in MEGA version 5 (49, 50). Phylogenetic 154 trees were constructed using Maximum-likelihood method (51), with bootstrap values 155 calculated from 100 trees. Protein family analysis was performed using PFAM and 156 InterProScan (52, 53). Prediction of transmembrane domains was performed using 157 TMHMM (54). The heptad repeat (HR) regions were predicted by using the coiled-coil 158 prediction program MultiCoil2 (55).

Estimation of synonymous and non-synonymous substitution rates. The number of synonymous substitutions per synonymous site, *K*s, and the number of nonsynonymous substitutions per non-synonymous site, *K*a, for each coding region were calculated using the Nei-Gojobori method (Jukes-Cantor) in MEGA version 5 (50).

163 Detection of positive selection. Sites under positive selection in the S gene in Ty-164 BatCoV-HKU4 and Pi-BatCoV-HKU5 were inferred using single-likelihood ancestor 165 counting (SLAC), fixed effects likelihood (FEL) and random effects likelihood (REL) 166 methods as implemented in DataMonkey server (http://www.datamonkey.org) (56). 167 Positive selection for a site was considered to be statistically significant if the P-value 168 was <0.1 for SLAC and FEL methods or posterior probability was $\ge 90\%$ level for REL 169 method. A mixed-effects model of evolution (MEME) was further used to identify 170 positively selected sites under episodic diversifying selection in particular positions in 171 sublineages within a phylogenetic tree even when positive selection is not evident across 172 the entire tree (57). Positively selected sites with a P-value < 0.05 were reported.

173 Estimation of divergence time. As RdRp and N genes are relatively conserved 174 across CoVs and therefore most likely reflect viral phylogeny, divergence time was 175 calculated using complete RdRp and N gene sequence data of Ty-BatCoV HKU4, Pi-176 BatCoV HKU5 and MERS-CoV strains, and 904-bp partial RdRp sequence data of 177 lineage C betaCoVs from European bats, with Bayesian Markov Chain Monte Carlo 178 (MCMC) approach as implemented in BEAST (Version 1.7.4) as described previously (9, 179 17, 21, 44, 58, 59). One parametric model (Constant Size) and one non-parametric model 180 (Bayesian Skyline with five groups) tree priors were used for the inference. Analyses 181 were performed under Hasegawa-Kishino-Yano (HKY) model with coding sequence

182	partitioned into 1st + 2nd versus 3rd positions and rate variation between sites described
183	by a four-category discrete gamma distribution using both strict and relaxed [uncorrelated
184	lognormal (Ucld) and uncorrelated exponential (Uced)] molecular clocks. MCMC run
185	was 2×10^8 steps long, sampling every 1,000 steps. Convergence was assessed on the
186	basis of the effective sampling size after a 10% burn-in using Tracer software Version 1.5
187	(58). The mean time of the most recent common ancestor (tMRCA) and the highest
188	posterior density regions at 95% (HPD) were calculated, and the best-fitting model was
189	selected by a Bayes factor, using marginal likelihoods implemented in Tracer (60).
190	Bayesian Skyline under a relaxed clock model with Uced was adopted for making
191	inferences, as this model fitted the data better than other models tested by Bayes factor
192	analysis (data not shown) and allowed variations in substitution rates among lineages. All
193	trees were summarized in a target tree by the Tree Annotator program included in the
194	BEAST package by choosing the tree with the maximum sum of posterior probabilities
195	(maximum clade credibility) after a 10% burn-in.

196 Nucleotide sequence accession numbers. The nucleotide sequences of the
197 complete RdRp, S and N genes of Ty-BatCoV HKU4 and Pi-BatCoV HKU5 have been
198 lodged within the GenBank sequence database under accession no. KC522036 to
199 KC522119.

200 RESULTS

201 Detection of Ty-BatCoV HKU4 and Pi-BatCoV HKU5 from bat samples. A total of 202 5426 respiratory and 5260 alimentary specimens from 5481 bats of 21 different species 203 were obtained. RT-PCR for a 440-bp fragment in the RdRp genes of CoVs detected the 204 presence of lineage C betaCoVs from two bat species, including Ty-BatCoV HKU4 in 29 205 (29%) of 99 alimentary samples from lesser bamboo bat (Tylonycteris pachypus) and Pi-206 BatCoV HKU5 in 55 (25%) of 216 alimentary samples from Japanese pipistrelle 207 (Pipistrellus abramus) respectively (Table 2). None of the respiratory samples were 208 positive for lineage C betaCoVs. Bats positive for Ty-BatCoV HKU4 and Pi-BatCoV 209 HKU5 were from seven and 13 sampling locations in Hong Kong respectively. No 210 obvious disease was observed in bats positive for Ty-BatCoV HKU4 and Pi-BatCoV 211 HKU5. Ty-BatCoV HKU4 was found only in adult bats while Pi-BatCoV HKU5 was 212 found in both adult and juvenile bats.

Complete RdRp, S and N gene analysis of Ty-BatCoV HKU4 and Pi-BatCoV 213 214 **HKU5 strains.** To study the genetic diversity and evolution of lineage C betaCoVs in 215 bats, the complete RdRp, S and N gene sequences of 13 Ty-BatCoV HKU4 strains and 15 216 Pi-BatCoV HKU5 strains were sequenced. Comparison of the deduced aa sequences of 217 the RdRp, S and N genes of Ty-BatCoV HKU4 and Pi-BatCoV HKU5 to those of 218 MERS-CoV showed that MERS-CoV is more closely related to Pi-BatCoV HKU5 than 219 to Ty-BatCoV HKU4 (92.1-92.3% versus 89.6-90% identities) in the RdRp gene, but 220 more closely related to Ty-BatCoV HKU4 than to Pi-BatCoV HKU5 in the S (66.8-221 67.4% versus 63.4-64.5% identities) and N (71.9-72.3% versus 69.5-70.5% identities) 222 genes (Table 3). Moreover, MERS-CoV is more closely related to Ty-BatCoV HKU4 and

223 Pi-BatCoV HKU5 belonging to Betacoronavirus lineage C than to CoVs belonging to 224 Betacoronavirus lineages A, B and D (Table 3). Phylogenetic analysis of the complete 225 RdRp, S and N gene sequences of Ty-BatCoV HKU4 and Pi-BatCoV HKU5 showed that 226 the sequences from the 13 Ty-BatCoV HKU4 strains and 15 Pi-BatCoV HKU5 strains 227 formed two distinct clusters in all three genes, being closely related to each other and to 228 MERS-CoV (Fig. 1). Interestingly, unlike the S genes of the 13 Ty-BatCoV HKU4 229 strains which shared highly similar sequences with very short branch lengths, the S genes 230 of Pi-BatCoV HKU5 displayed marked sequence polymorphisms among the 15 strains, 231 with up to 14% nucleotide and 12% amino acid (aa) differences.

232 The S proteins of Ty-BatCoV HKU4 and Pi-BatCoV HKU5 encoded 1350-1352 233 and 1352-1359 aa respectively. A potential cleavage site, though not perfectly conserved, 234 could be present in the S proteins of Ty-BatCoV HKU4 (S[TM]FR) and Pi-BatCoV 235 HKU5 (R[VFL][ALR]R). InterProScan analysis predicted them as type I membrane 236 glycoproteins, with most of the protein (residues 18/21/22 to 1294/1296/1297 for Ty-237 BatCoV HKU4 and residues 22 to 1296/1297/1298/1301/1302/1303 for Pi-BatCoV 238 HKU5) exposed on the outside of the virus, a transmembrane domain (residues 239 1317/1319/1320 for Ty-BatCoV 1295/1297/1298 to HKU4 and residues 240 1297/1298/1299/1302/1303/1304 to 1319/1320/1321/1324/1325/1326 for Pi-BatCoV 241 HKU5) at the C terminus, followed by a cytoplasmic tail rich in cysteine residues. Two 242 heptad repeats (HR), important for membrane fusion and viral entry (61), were located at 243 residues 978/980 to 1124/1126 (HR1) and 1251/1253 to 1285/1287 (HR2) for Ty-244 BatCoV HKU4, and residues 978/979/983/984 to 1124/1125/1129/1130 (HR1) and 245 1253/1254/1258/1259 to 1287/1288/1292/1293 (HR2) for Pi-BatCoV HKU5. All

246	cysteine residues are conserved between the S of Ty-BatCoV HKU4, Pi-BatCoV HKU5
247	and MERS-CoV. While CoVs are known to utilize a variety of host receptors for cell
248	entry, a number of closely related as well as distantly related CoVs may utilize the same
249	receptor. For example, aminopeptidase N (CD13) has been shown to be the receptor for
250	various alphaCoVs including HCoV 229E, canine CoV (CCoV), feline infectious
251	peritonitis virus (FIPV), porcine epidemic diarrhea coronavirus (PEDV) and
252	transmissible gastroenteritis coronavirus (TGEV) (62, 63). Moreover, human angiotensin-
253	converting enzyme 2 (hACE2) has been found to be the receptor for both HCoV NL63,
254	an alphaCoV, as well as SARS CoV, a betaCoV, although they utilize different receptor-
255	binding sites (64, 65). As for lineage A betaCoVs, HCoV OC43 and the closely related,
256	bovine CoV utilize N-acetyl-9-O acetyl neuramic acid as receptor, whereas
257	carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is the receptor
258	for mouse hepatitis virus (MHV) (66-70). The S proteins of Ty-BatCoV HKU4 and Pi-
259	BatCoV HKU5 as well as MERS-CoV did not exhibit significant sequence homology to
260	the known RBDs of other CoVs including the betaCoVs such as SARS CoV and HCoV
261	OC43 (71-78). Recently, DPP4 has been identified as a functional receptor for MERS-
262	CoV, although the exact receptor-binding domain is still unknown (47, 79). Based on the
263	X-ray crystal structure of the RBD domain in the SARS CoV S protein, residues 377 to
264	662 have been predicted as a possible RBD for MERS-CoV (80). Using the same
265	methodology, residues 387 to 587 in Ty-BatCoV HKU4 S protein and residues 389 to
266	580 Pi-BatCoV HKU5 S protein were predicted as their possible RBDs. However, further
267	studies are required to elucidate the receptors for Ty-BatCoV HKU4 and Pi-BatCoV
268	HKU5 and their RBDs.

269 Estimation of synonymous and non-synonymous substitution rates. In line 270 with phylogenetic analysis, multiple alignment of the S gene sequences showed that Pi-271 BatCoV HKU5 possessed more synonymous and non-synonymous substitutions than Ty-272 BatCoV HKU4 (Table 4). Compared to Ty-BatCoV HKU4 in which 58 aa positions 273 contained substitutions, 253 aa positions in Pi-BatCoV HKU5 contained substitutions 274 among which ≥ 2 aa were encoded at 67 aa positions (Fig. 2 and 3). The Ka/Ks ratios for 275 the RdRp, S and N genes among different strains of Ty-BatCoV HKU4 and Pi-BatCoV 276 HKU5 were determined (Table 4). The Ka/Ks ratios were generally low, although the S 277 genes of both viruses showed relatively higher ratios (0.118) compared to RdRp and N 278 genes. This suggested that these genes were under purifying selection. Nevertheless, the 279 Ka and Ks of the S genes of Pi-BatCoV HKU5 were relatively high compared to those of 280 Ty-BatCoV HKU4, which reflected the marked sequence polymorphisms among 281 different strains.

282 Detection of positive selection in S genes. The S genes of Pi-BatCoV HKU5 283 possessed more positively selected sites than the S genes of Ty-BatCoV HKU4 (Fig. 4). 284 Only two and five aa positions in Ty-BatCoV HKU4 were found to be under positive 285 selection using REL and MEME methods respectively, whereas no significant positive 286 selection was identified by SLAC and FEL methods. In contrast, two, 12, 27 and 43 aa 287 positions in Pi-BatCoV HKU5 were found to be under positive selection using SLAC, 288 FEL, REL and MEME methods respectively. Most of these sites were distributed within 289 the S1 domain, indicating that this domain may have been under functional constraints.

290 Estimation of divergence time. To estimate the divergence time of Ty-BatCoV
 291 HKU4, Pi-BatCoV HKU5 and MERS-CoV strains, their complete RdRp and N gene

292	sequences were subject to molecular clock analysis using the relaxed clock model with
293	Uced. Using complete RdRp gene sequences, tMRCA of MERS-CoV and Pi-BatCoV
294	HKU5 was estimated at 1520.09 (HPDs, 745.73 to 1956.12) (Fig. 5A). Using complete N
295	gene sequences, tMRCA of MERS-CoV, Ty-BatCoV HKU4 and Pi-BatCoV HKU5 was
296	estimated at 1323.51 (HPDs, 383.58 to 1897.75) (Fig. 5B). Since partial RdRp gene
297	sequences closely related to the corresponding sequence of MERS-CoV have recently
298	been detected in European bats, molecular clock analysis was also performed to estimate
299	their divergence time. Using the 904-bp partial RdRp sequences, tMRCA of MERS-CoV
300	and three European bat CoV strains (BtCoV 8-691, BtCoV 8-724 and BtCoV UKR-G17)
301	was estimated at 1859.32 (HPDs, 1636.67 to 1987.55) (Fig. 5C). The estimated mean
302	substitution rate of the complete RdRp and N gene, and partial RdRp sequence data set
303	was 5.12×10^{-4} , 8.642×10^{-4} and 7.407×10^{-4} substitution per site per year, comparable to
304	that observed in other CoVs (9, 17, 59, 81, 82).

305 DISCUSSION

306 In this study, Ty-BatCoV HKU4 and Pi-BatCoV HKU5 were found to be highly 307 prevalent among lesser bamboo bat and Japanese pipistrelle in Hong Kong respectively, 308 with detection rates of 25-29% in their alimentary samples. In line with previous studies, 309 MERS-CoV is closely related to *Betacoronavirus* lineage C than to lineages A, B and D 310 in the RdRp, S and N genes (34, 42, 43). Nevertheless, the genetic distance between 311 MERS-CoV and the various strains of Ty-BatCoV HKU4 and Pi-BatCoV HKU5 was still 312 large, with their S proteins having $\leq 67.4\%$ as identities. Two recent studies have 313 identified partial gene sequences closely related to MERS-CoV in bats from Africa, 314 Europe and America, suggesting that lineage C betaCoVs are distributed in bats 315 worldwide (44, 45). In one study, CoVs related to MERS-CoV were detected in 46 316 (24.9%) Nycteris bats and 40 (14.7%) Pipistrellus bats from Ghana and Europe using RT-317 PCR targeting a 398-bp fragment of the RdRp gene (44). The extended 904-bp RdRp 318 sequences of three strains from Romania and Ukraine showed that they shared 87.7-319 88.1% nucleotide and 98.3% amino acid identities to MERS-CoV, compared to 80.3-320 82%/82.4-83.7% nucleotide and 92-92.4%/94-94.4% amino acid identities between Ty-321 BatCoV HKU4/Pi-BatCoV HKU5 and MERS-CoV respectively in the corresponding 322 regions. In another study, screening of 606 bats from Mexico showed the presence of a 323 betaCoV also closely related MERS-CoV in a Nyctinomops lacticaudatus bat (45). 324 Although the authors claimed the use of a 329-bp fragment of the RdRp gene for RT-325 PCR and sequence analysis, the available sequence was in fact within nsp14. Analysis of 326 this partial nsp14 sequence showed that it shared 85.7% nucleotide and 95.5% amino acid 327 identities to MERS-CoV (45), compared to to 81.9%/83.4-84.2% nucleotide and

328	88.6%/92% amino acid identifies differences between Ty-BatCoV HUK4/Pi-BatCoV
329	HKU5 and MERS-CoV respectively in the corresponding regions. However, complete
330	gene sequences were not available from these bat CoVs to allow more detailed
331	phylogenetic analysis. Molecular clock analysis of the complete RdRp gene dated the
332	tMRCA of MERS-CoV and Pi-BatCoV HKU5 at around 1520, whereas analysis of the N
333	gene dated the tMRCA of MERS-CoV, Ty-BatCoV HKU4 and Pi-BatCoV HKU5 at
334	around 1324. Using the 904-bp RdRp sequences available from the three European
335	strains, the tMRCA of MERS-CoV and European bat CoV strains were dated at around
336	1859. Our results suggested that Ty-BatCoV HKU4, Pi-BatCoV HKU5 and MERS-CoV
337	have diverged at least centuries ago from their common ancestor. Although MERS-CoV
338	and the European bat CoV strains were estimated to have diverged more recently, this is
339	unlike the situation in SARS-related CoVs which only diverged between civet and bat
340	strains several years before the SARS epidemic (17). Therefore, these bat lineage C
341	betaCoVs were unlikely the direct ancestor of MERS-CoV. However, the present analysis
342	is limited by the lack of more sequences from potential intermediate virus species/strains
343	with widely distributed and well-determined dates, which better reflect the different
344	selective pressures over the long period of time as these viruses evolved. Further studies
345	on bats and other animals are required to fill the gap between these bat lineage C
346	betaCoVs and MERS-CoV during their evolution. Moreover, longer gene or complete
347	genome sequence data from these animal viruses would be important for more accurate
348	taxonomic and evolutionary studies.

349 The divergent sequences of the S genes of Pi-BatCoV HKU5 may suggest that the 350 virus has a better ability to generate variants to occupy new ecological niches. The S

JVI Accepts published online ahead of print

351	proteins of CoVs are responsible for receptor binding and host adaptation, and are
352	therefore one of the most variable regions within CoV genomes (16, 18, 28). Studies on
353	SARS CoV have shown that changes in its S protein, both within and outside of receptor
354	binding domain, could govern CoV cross-species transmission and emergence in new
355	host populations (83, 84). We have also previously demonstrated recent interspecies
356	transmission of an alphaCoV, BatCoV HKU10, from Leschenault's rousettes to Pomona
357	leaf-nosed bats, and the virus has been rapidly adapting in the new host by changing its S
358	protein (59). In this study, Ty-BatCoV HKU4 and Pi-BatCoV HKU5 were exclusively
359	detected in lesser bamboo bat (Tylonycteris pachypus) and Japanese pipistrelle
360	(Pipistrellus abramus) respectively. Moreover, the Ka/Ks ratios of the RdRp, S and N
361	genes in both viruses were low, supporting that the two bat species were the respective
362	primary reservoirs for the two CoVs. Nevertheless, unlike that of Ty-BatCoV HKU4, the
363	S gene of Pi-BatCoV HKU5 exhibited much higher sequence divergence among different
364	strains due to both synonymous and non-synonymous substitutions. Moreover, a much
365	higher number of positively selected sites were observed in the S gene of Pi-BatCoV
366	HKU5 than that of Ty-BatCoV HKU4, with most of the sites under selection being
367	distributed within the S1 region which likely contains the RBD. This suggested that the
368	S1 region of Pi-BatCoV HKU5 may have been under functional constraints in its host
369	species, Japanese pipistrelle, which may have favored adaptation to new
370	host/environments.
a=4	

371 The marked polymorphisms in the S protein of Pi-BatCoV HKU5 may reflect the 372 biological characteristics of its host species, Japanese pipistrelle, which is a small-size, 373 insectivorous bat with body weight 4 to 10 g. It is considered the most common bat

374	species found in urban areas of Hong Kong (85). While it is abundant in wetland areas,
375	its roosts are frequently found in towns and villages, as well as various types of buildings
376	and other man-made structures, such as fans or air-conditioners. It is also known to utilize
377	bat houses or boxes as its roosts. Such diverse habitat and adaptability to harsh
378	environments may have favored the mutation of Pi-BatCoV HKU5 especially in its S
379	protein which is responsible for receptor binding and immunogenicity. Interestingly, this
380	bat species is not only widely distributed in China, Russia, Korea, Japan, Vietnam,
381	Burma and India, but also the Kingdom of Saudi Arabia and neighboring countries (42,
382	85). Moreover, other Pipistrellus bats including P. arabicus, P. ariel, P. kuhlii, P.
383	pipistrellus, P. rueppellii and P. savii have been recorded in the Arabian Peninsula
384	(<u>www.iucn.org</u>). In fact, the partial sequences closely related to MERS-CoV detected in
385	bats from Europe were also originated from Pipstrellus bats (P. pipistrellus, P. nathusii
386	and P. pygmaeus) of the family Vespertilionidae, and those from Ghana were originated
387	from Nycteris bats (Nycteris cf. gambiensis) of the related family Nycteridae (44).
388	Similarly, the bat betaCoV strain related to MERS-CoV detected in Meixco was
389	originated from a N. laticaudatus bat belonging to Molossidae, a closely related family of
390	Vespertilionidae (45, 86). The difference between this bat betCoV and MERS-CoV
391	within the partial nsp14 sequence was also found to be mainly due to substitutions in the
392	3 rd nucleotide positions, suggesting strong purifying selection (45). However, S gene
393	sequences were not available from these bat viruses for further analysis of
394	polymorphisms and selective pressures. Nevertheless, based on our existing data, bats
395	belonging to Vespertilionidae and related families, especially Pipistrellus bats and those
396	with diverse habitats, in the Arabian Peninsula should be intensively sought for potential

397 ancestral viruses of MERS-CoV, which may have evolved through mutations in the S 398 gene especially in the RBD, allowing efficient transmission to other animals or human. In 399 contrast, lesser bamboo bats, the host species for Ty-BatCoV HKU4 and one of the 400 smallest mammals in the world with body weight 3 to 7 g, have much more restricted 401 habitats. Though this species also belongs to the family Vespertilionidae, it is remarkably 402 adapted to roost inside bamboo stems, and is mainly found in rural areas in Hong Kong 403 and various Asian countries (85). This may, in turn, reflect the lower mutation rate 404 observed in the S gene of Ty-BatCoV HKU4.

405 It remains to be determined if Ty-BatCoV HKU4 and Pi-BatCoV HKU5, as well 406 as other lineage C betaCoVs in bats, utilize the same receptor as MERS-CoV. Recent 407 studies have shown that MERS-CoV utilizes DPP4 as its functional receptor (47, 79). 408 This suggested that these betaCoVs belonging to lineage C may utilize receptor(s) 409 different from those of other CoVs. Moreover, expression of bat (P. pipistrellus) DPP4 in 410 non-susceptible cells was found to enable infection by MERS-CoV (47), which is in line 411 with the ability of the virus to replicate in cell lines from *Rousettus*, *Rhinolophus*, 412 Pipistrellus, Myotis, and Carollia bats (79). As DPP4 is a evolutionarily conserved 413 protein (47), it may also explain the broad species tropism observed in primate, porcine, 414 and rabbit cell lines and reflect the zoonotic origin of MERS-CoV (46, 79). However, Ty-415 BatCoV HKU4 and Pi-BatCoV HKU5, as with other bat CoVs, have not been 416 successfully cultured *in vitro*, which hampers studies on their receptor binding and host 417 adaptation. Further discoveries of lineage C betaCoVs in animals and studies on the 418 receptors of the different animal counterparts in their respective hosts may help 419 understand the mechanism of interspecies transmission and emergence of MERS-CoV.

420	Bats are increasingly recognized as reservoir for various zoonotic viruses
421	including SARS CoV, lyssavirus, rabies virus, Hendra, Nipah, Ebola as well as influenza
422	virus (87, 88). While the existence of CoVs in bats was unknown before the SARS
423	epidemic, it is now known that the different bat populations harbor diverse CoVs, which
424	is likely the result of their species diversity, roosting behavior and migrating ability (16,
425	18, 29, 31, 32, 89). These warm-blooded flying vertebrates are also ideal hosts to fuel
426	CoV recombination and dissemination (5, 27, 59). It remains to be ascertained if bats
427	could also be the animal origin for the emergence of MERS-CoV either directly or via an
428	intermediate host, the latter as in the case of SARS CoV where the bat ancestral virus
429	may have jumped to the intermediate host when bats are in contact or mixed with other
430	animals (16). Since history of contact with animals such as camels and goats has been
431	reported in MERS-CoV-infected cases (90), the virus may have jumped from bats to
432	these animals before infecting humans. Surveillance studies of lineage C betaCoVs from
433	bats and other animals in the Middle East may help identify the origin and chain of
434	transmission of MERS-CoV.

436 ACKNOWLEDGEMENTS

We thank Director Alan Chi-Kong Wong and Siu-Fai Leung [HKSAR Department of
Agriculture, Fisheries, and Conservation (AFCD)] and Hong Kong Police Force for
facilitation and support; Chung-Tong Shek and Joseph W. K. So from AFCD; and Dr.
King-Shun Lo (Laboratory Animal Unit, The University of Hong Kong) and Dr. Cassius
Chan for their excellent technical assistance and collection of animal specimens.

442 We are grateful to the generous support of Mrs. Carol Yu, Professor Richard Yu, 443 Mr. Hui Hoy and Mr. Hui Ming in the genomic sequencing platform. This work is partly 444 supported by the Research Grant Council Grant, University Grant Council; Strategic 445 Research Theme Fund, and University Development Fund, The University of Hong Kong; 446 HKSAR Research Fund for the Control of Infectious Diseases of the Food and Health 447 Bureau; Shaw Foundation; Providence Foundation Limited in memory of the late Dr. Lui 448 Hac Minh; donation from Ms. Eunice Lam; and Consultancy Service for Enhancing Laboratory Surveillance of Emerging Infectious Disease for the HKSAR Department of 449 450 Health.

452 **REFERENCES**

- Lai MM, Cavanagh D. 1997. The molecular biology of coronaviruses. Adv. Virus
 Res. 48:1-100.
- 455 2. Ziebuhr J. 2004. Molecular biology of severe acute respiratory syndrome
 456 coronavirus. Curr. Opin. Microbiol. 7:412-419.
- de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya A, Holmes KV,
 Perlman S, Poon L, Rottier PJ, Talbot PJ, Woo PC, Ziebuhr J. 2011.
 Coronaviridae. In: Virus Taxonomy, Classification and Nomenclature of Viruses,
 Ninth Report of the International Committee on Taxonomy of Viruses,
 International Union of Microbiological Societies, Virology Division, King AMQ,
 Adams MJ, Carstens EB, Lefkowitz EJ., eds. Elsevier Academic Press, pp806-828.
- 464 Chan KH, Yuen KY. 2009. Comparative analysis of complete genome sequences
 465 of three avian coronaviruses reveals a novel group 3c coronavirus. J. Virol. 83:908466 917.

Woo PC, Lau SK, Lam CS, Lai KK, Huang Y, Lee P, Luk GS, Dyrting KC,

- 467 5. Woo PC, Lau SK, Lam CS, Lau CC, Tsang AK, Lau JH, Bai R, Teng JL, 468 Tsang CC, Wang M, Zheng BJ, Chan KH, Yuen KY. 2012. Discovery of seven 469 novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports 470 bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and 471 avian coronaviruses as the gene source of Gammacoronavirus and 472 Deltacoronavirus. J. Virol. 86:3995-4008.
- 473 6. Dong BQ, Liu W, Fan XH, Vijaykrishna D, Tang XC, Gao F, Li LF, Li GJ,
 474 Zhang JX, Yang LQ, Poon LL, Zhang SY, Peiris JS, Smith GJ, Chen H, Guan

463

4.

- 475 Y. 2007. Detection of a novel and highly divergent coronavirus from Asian leopard
 476 cats and Chinese ferret badgers in Southern China. J. Virol. 81:6920-6926.
- 477 7. Mihindukulasuriya KA, Wu G, St Leger J, Nordhausen RW, Wang D. 2008.
 478 Identification of a novel coronavirus from a beluga whale by using a panviral
 479 microarray. J. Virol. 82:5084-5088.
- Herrewegh AA, Smeenk I, Horzinek MC, Rottier PJ, de Groot RJ. 1998. Feline
 coronavirus type II strains 79-1683 and 79-1146 originate from a double
 recombination between feline coronavirus type I and canine coronavirus. J. Virol.
 72:4508-4514.
- 484 9. Lau SK, Lee P, Tsang AK, Yip CC, Tse H, Lee RA, So LY, Lau YL, Chan KH,
 485 Woo PC, Yuen KY. 2011. Molecular epidemiology of human coronavirus OC43
 486 reveals evolution of different genotypes over time and recent emergence of a novel
 487 genotype due to natural recombination. J. Virol. 85:11325-11337.
- 488 10. Woo PC, Lau SK, Huang Y, Yuen KY. 2009. Coronavirus diversity, phylogeny
 489 and interspecies jumping. Exp. Biol. Med. (Maywood) 234:1117-1127.
- 490 11. Woo PC, Lau SK, Yip CC, Huang Y, Tsoi HW, Chan KH, Yuen KY. 2006.
- 491 Comparative analysis of 22 coronavirus HKU1 genomes reveals a novel genotype
 492 and evidence of natural recombination in coronavirus HKU1. J. Virol. 80:7136493 7145.
- 494 12. Zeng Q, Langereis MA, van Vliet AL, Huizinga EG, de Groot RJ. 2008.
 495 Structure of coronavirus hemagglutinin-esterase offers insight into corona and
 496 influenza virus evolution. Proc. Natl. Acad. Sci. USA 105:9065-9069.

497	13.	Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S,
498		Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD,
499		Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox
500		N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ; SARS Working Group.
501		2003. A novel coronavirus associated with severe acute respiratory syndrome. N.
502		Engl. J. Med. 348: 1953-1966.
503	14.	Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, Nicholls J, Yee WK,
504		Yan WW, Cheung MT, Cheng VC, Chan KH, Tsang DN, Yung RW, Ng TK,
505		Yuen KY. 2003. Coronavirus as a possible cause of severe acute respiratory
506		syndrome. Lancet 361: 1319-1325.
507	15.	Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, Luo SW, Li PH,
508		Zhang LJ, Guan YJ, Butt KM, Wong KL, Chan KW, Lim W, Shortridge KF,
509		Yuen KY, Peiris JS, Poon LL. 2003. Isolation and characterization of viruses
510		related to the SARS coronavirus from animals in southern China. Science 302:276-
511		278.
512	16.	Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, Wong SS, Leung SY,
513		Chan KH, Yuen KY. 2005. Severe acute respiratory syndrome coronavirus-like
514		virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. USA 102:14040-14045.
515	17.	Lau SK, Li KS, Huang Y, Shek CT, Tse H, Wang M, Choi GKY, Xu H, Lam
516		CSF, Guo R, Chan KH, Zheng BJ, Woo PC, Yuen KY. 2010. Ecoepidemiology
517		and complete genome comparison of different strains of severe acute respiratory
518		syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir

- 519 for acute, self-limiting infection that allows recombination events. J. Virol.520 84:2808-2819.
- Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z,
 Zhang H, Zhang J, McEachern J, Field H, Daszak P, Eaton BT, Zhang S,
 Wang LF. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science
 310:676-679.
- Fouchier RA, Hartwig NG, Bestebroer TM, Niemeyer B, de Jong JC, Simon JH, Osterhaus AD. 2004. A previously undescribed coronavirus associated with
 respiratory disease in humans. Proc. Natl. Acad. Sci. USA 101:6212-6216.
- 528 20. Hasoksuz M, Alekseev K, Vlasova A, Zhang X, Spiro D, Halpin R, Wang S,
 529 Ghedin E, Saif LJ. 2007. Biologic, antigenic, and full-length genomic
 530 characterization of a bovine-like coronavirus isolated from a giraffe. J. Virol.
 531 81:4981-4990.
- Lau SK, Woo PC, Yip CC, Fan RY, Huang Y, Wang M, Guo R, Lam CS,
 Tsang AK, Lai KK, Chan KH, Che XY, Zheng BJ, Yuen KY. 2012. Isolation
 and characterization of a novel *Betacoronavirus* subgroup A coronavirus, rabbit
 coronavirus HKU14, from domestic rabbits. J. Virol. 86:5481-5496.
- van der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJ,
 Wolthers KC, Wertheim-van Dillen PM, Kaandorp J, Spaargaren J, Berkhout
 B. 2004. Identification of a new human coronavirus. Nat. Med. 10:368-373.
- 539 23. Vlasova AN, Halpin R, Wang S, Ghedin E, Spiro DJ, Saif LJ. 2011. Molecular
- 540 characterization of a new species in the genus *Alphacoronavirus* associated with 541 mink epizootic catarrhal gastroenteritis. J. Gen. Virol. **92:**1369-1379.

542	24.	Woo PC, Lau SK, Chu CM, Chan KH, Tsoi HW, Huang Y, Wong BH, Poon
543		RW, Cai JJ, Luk WK, Poon LL, Wong SS, Guan Y, Peiris JS, Yuen KY. 2005.
544		Characterization and complete genome sequence of a novel coronavirus,
545		coronavirus HKU1, from patients with pneumonia. J. Virol. 79:884-895.
546	25.	Dominguez SR, O'Shea TJ, Oko LM, Holmes KV. 2007. Detection of group 1
547		coronaviruses in bats in North America. Emerg. Infect. Dis. 13:1295-1300.
548	26.	Gloza-Rausch F, Ipsen A, Seebens A, Göttsche M, Panning M, Felix Drexler J,
549		Petersen N, Annan A, Grywna K, Müller M, Pfefferle S, Drosten C. 2008.
550		Detection and prevalence patterns of group I coronaviruses in bats, northern
551		Germany. Emerg. Infect. Dis. 14:626-631.
552	27.	Lau SK, Poon RW, Wong BH, Wang M, Huang Y, Xu H, Guo R, Li KS, Gao
553		K, Chan KH, Zheng BJ, Woo PC, Yuen KY. 2010. Coexistence of different
554		genotypes in the same bat and serological characterization of Rousettus bat
555		coronavirus HKU9 belonging to a novel Betacoronavirus subgroup. J. Virol.
556		84: 11385-11394.
557	28.	Lau SK, Woo PC, Li KS, Huang Y, Wang M, Lam CS, Xu H, Guo R, Chan
558		KH, Zheng BJ, Yuen KY. 2007. Complete genome sequence of bat coronavirus
559		HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a
560		different evolutionary lineage from the rest of the genome. Virology 367: 428-439.
561	29.	Poon LL, Chu DK, Chan KH, Wong OK, Ellis TM, Leung YH, Lau SK, Woo
562		PC, Suen KY, Yuen KY, Guan Y, Peiris JS. 2005. Identification of a novel
563		coronavirus in bats. J. Virol. 79: 2001-2009.

JVI Accepts published online ahead of print

564	30.	Tong S, Conrardy C, Ruone S, Kuzmin IV, Guo X, Tao Y, Niezgoda M,
565		Haynes L, Agwanda B, Breiman RF, Anderson LJ, Rupprecht CE. 2009.
566		Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emerg.
567		Infect. Dis. 15:482-485.
568	31.	Woo PC, Lau SK, Li KS, Poon RW, Wong BH, Tsoi HW, Yip BC, Huang Y,
569		Chan KH, Yuen KY. 2006. Molercular diversity of coronaviruses in bats.
570		Virology 351: 180-187.
571	32.	Woo PC, Wang M, Lau SK, Xu H, Poon RW, Guo R, Wong BH, Gao K, Tsoi
572		HW, Huang Y, Li KS, Lam CS, Chan KH, Zheng BJ, Yuen KY. 2007.
573		Comparative analysis of twelve genomes of three novel group 2c and group 2d
574		coronaviruses reveals unique group and subgroup features. J. Virol. 81:1574-1585.
575	33.	Bermingham A, Chand MA, Brown CS, Aarons E, Tong C, Langrish C,
576		Hoschler K, Brown K, Galiano M, Myers R, Pebody RG, Green HK,
577		Boddington NL, Gopal R, Price N, Newsholme W, Drosten C, Fouchier RA,
578		Zambon M. 2012. Severe respiratory illness caused by a novel coronavirus, in a
579		patient transferred to the United Kingdom from the Middle East, September 2012.
580		Euro. Surveill. 17:20290.
581	34.	Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 2012.
582		Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N.
583		Engl. J. Med. 367: 1814-1820.
584	35.	de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L, Fouchier

- 585 RA, Galiano M, Gorbalenya AE, Memish Z, Perlman S, Poon LL, Snijder EJ,
- 586 Stephens GM, Woo PC, Zaki AM, Zambon M, Ziebuhr J. 2013. Middle East

- 587 Respiratory Syndrome Coronavirus (MERS-CoV); Announcement of the 588 Coronavirus Study Group. J. Virol. (in press) 589 World Health Organization. Global alert and response: Novel coronavirus 36. 590 infection update. Geneva: WHO. 591 http://www.who.int/csr/don/2013 05 15 ncov/en/index.html. Accessed 17 May, 592 2013. 593 Albarrak AM, Stephens GM, Hewson R, Memish ZA. 2012. Recovery from 37. 594 severe novel coronavirus infection. Saudi Med. J. 33:1265-1269. 595 Munster VJ, de Wit E, Feldmann H. 2013. Pneumonia from Human Coronavirus 38. 596 in a Macaque Model. N. Engl. J. Med. 368:1560-1562. 597 39. Chan RW, Chan MC, Agnihothram S, Chan LL, Kuok DI, Fong JH, Guan Y, 598 Poon LL, Baric RS, Nicholls JM, Peiris JS. 2013. Tropism and innate immune 599 responses of the novel human betacoronavirus lineage C virus in human ex vivo 600 respiratory organ cultures. J. Virol. 2013 Apr 3. [Epub ahead of print] 601 Zielecki F, Weber M, Eickmann M, Spiegelberg L, Zaki AM, Matrosovich M, 40. 602 Becker S, Weber F. 2013. Human cell tropism and innate immune system 603 interactions of human respiratory coronavirus EMC compared to SARS-604 coronavirus. J. Virol. 87:5300-5304. 605 41. Kindler E, Jónsdóttir HR, Muth D, Hamming OJ, Hartmann R, Rodriguez R, 606 Geffers R, Fouchier RA, Drosten C, Müller MA, Dijkman R, Thiel V. 2013. 607 Efficient Replication of the Novel Human Betacoronavirus EMC on Primary 608 Human Epithelium Highlights Its Zoonotic Potential. MBio. 4:e00611-12.
- JVI Accepts published online ahead of print

609	42.	van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM,
610		Osterhaus AD, Haagmans BL, Gorbalenya AE, Snijder EJ, Fouchier RA. 2012.
611		Genomic characterization of a newly discovered coronavirus associated with acute
612		respiratory distress syndrome in humans. MBio. 3:e00473-12.
613	43.	Woo PC, Lau SK, Li KS, Tsang AK, Yuen KY. 2012. Genetic relatedness of the
614		novel human group C betacoronavirus to Tylonycteris bat coronavirus HKU4 and
615		Pipistrellus bat coronavirus HKU5. Emerg. Microbes Infect. 1:e35.
616	44.	Annan A, Baldwin HJ, Corman VM, Klose SM, Owusu M, Nkrumah EE,
617		Badu EK, Anti P, Agbenyega O, Meyer B, Oppong S, Sarkodie YA, Kalko
618		EKV, Lina PHC, Godlevska EV, Reusken C, Seebens A, Gloza-Rausch F,
619		Vallo P, Tschapka M, Drosten C, Drexler JF. 2013. Human Betacoronavirus 2c
620		EMC/2012-related Viruses in Bats, Ghana and Europe. Emerg. Infect. Dis. 19:456-
621		460
622	45.	Anthony S, Ojeda-Flores R, Rico-Chávez O, Navarrete-Macias I, Zambrana-
623		Torrelio C, Rostal MK, Epstein JH, Tipps T, Liang E, Sanchez-Leon M,
624		Sotomayor-Bonilla J, Aguirre AA, Avila R, Medellín RA, Goldstein T, Suzán
625		G, Daszak P, Lipkin WI. Coronaviruses in bats from Mexico. J. Gen. Virol.
626		94: 1028-1038.
627	46.	Chan JF, Chan KH, Choi GK, To KK, Tse H, Cai P, Yeung PM, Cheng VC,
628		Chen H, Che XY, Lau SK, Woo PC, Yuen KY. Differential susceptibility of
629		different cell lines to the emerging novel human betacoronavirus 2c EMC/2012
630		(HCoV-EMC): implications on disease pathogenesis and clinical manifestation. J.
631		Infect. Dis. 207:1743-1752.

632	47.	Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA, Dijkman R, Muth D,
633		Demmers JA, Zaki A, Fouchier RA, Thiel V, Drosten C, Rottier PJ, Osterhaus
634		AD, Bosch BJ, Haagmans BL. 2013. Dipeptidyl peptidase 4 is a functional
635		receptor for the emerging human coronavirus-EMC. Nature 495:251-254.
636	48.	Yob JM, Field H, Rashdi AM, Morrissy C, van der Heide B, Rota P, bin
637		Adzhar A, White J, Daniels P, Jamaluddin A, Ksiazek T. 2001. Nipah virus
638		infection in bats (order Chiroptera) in peninsular Malaysia. Emerg. Infect. Dis.
639		7:439-441.
640	49.	Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and
641		high throughput. Nucleic Acids Res. 32:1792-1797.
642	50.	Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5:
643		molecular evolutionary genetics analysis using maximum likelihood, evolutionary
644		distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739.
645	51.	Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010.
646		New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies:
647		Assessing the Performance of PhyML 3.0. Syst. Biol. 59:307-321.
648	52.	Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, Bucher
649		P, Cerutti L, Corpet F, Croning MD, Durbin R, Falquet L, Fleischmann W,
650		Gouzy J, Hermjakob H, Hulo N, Jonassen I, Kahn D, Kanapin A,
651		Karavidopoulou Y, Lopez R, Marx B, Mulder NJ, Oinn TM, Pagni M, Servant
652		F, Sigrist CJ, Zdobnov EM. 2001. The InterPro database, an integrated
653		documentation resource for protein families, domains and functional sites. Nucleic
654		Acids Res. 29:37-40.

655	53.	Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-
656		Jones S, Howe KL, Marshall M, Sonnhammer EL. 2002. The Pfam protein
657		families database. Nucleic Acids Res. 30:276-280.
658	54.	Sonnhammer EL, von Heijne G, Krogh A. 1998. A hidden Markov model for
659		predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst.
660		Mol. Biol. 6:175-182.
661	55.	Trigg J, Gutwin K, Keating AE, Berger B. 2011. Multicoil2: predicting coiled
662		coils and their oligomerization states from sequence in the twilight zone. PLoS One
663		6: e23519.
664	56.	Pond SL, Frost SD. 2005. Datamonkey: rapid detection of selective pressure on
665		individual sites of codon alignments. Bioinformatics 21:2531-2533.
666	57.	Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond
667		SL. 2012. Detecting individual sites subject to episodic diversifying selection.
668		PLoS Genet. 8:e1002764.
669	58.	Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by
670		sampling trees. BMC Evol. Biol. 7:214.
671	59.	Lau SK, Li KS, Tsang AK, Shek CT, Wang M, Choi GKY, Guo R, Wong BH,
672		Poon RW, Lam CS, Wang SY, Fan RY, Chan KH, Zheng BJ, Woo PC, Yuen
673		KY. 2012. Recent transmission of a novel alphacoronaivurs, bat coronavirus
674		HKU10, from Leschenault's rousettes to Pomona leaf-nosed bats: first evidence of
675		interspecies transmission of coronavirus between bats of different suborders. J.
676		Virol. 86:11906-11918.

- 677 60. Suchard MA, Weiss RE, Sinsheimer JS. 2001. Bayesian selection of continuous678 time Markov chain evolutionary models. Mol. Biol. Evol. 18:1001-1013.
- 679 61. Chan WE, Chuang CK, Yeh SH, Chang MS, Chen SS. 2006. Functional
 680 characterization of heptad repeat 1 and 2 mutants of the spike protein of severe
 681 acute respiratory syndrome coronavirus. J. Virol. 80:3225-3237.
- 682 62. Delmas B, Gelfi J, L'Haridon R, Vogel LK, Sjostrom H, Noren O, Laude H.
 683 1992. Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus
 684 TGEV. Nature 357:417-420.
- 685 63. Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look
 686 AT, Holmes KV. 1992. Human aminopeptidase N is a receptor for human
 687 coronavirus 229E. Nature 357:420-422.
- 64. Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pohlmann S. 2005.
 Human coronavirus NL63 employs the severe acute respiratory syndrome
 coronavirus receptor for cellular entry. Proc. Natl. Acad. Sci. USA 102:7988-7993.
- 691 65. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M,
 692 Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. 2003.
 693 Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus.
 694 Nature 426:450-454.
- 695 66. Krempl C, Schultze B, Herrler G. 1995. Analysis of cellular receptors for human
 696 coronavirus OC43. Adv. Exp. Med. Biol. 380:371-374.
- 697 67. Schultze B, Herrler G. 1992. Bovine coronavirus uses N-acetyl-9-O698 acetylneuraminic acid as a receptor determinant to initiate the infection of cultured
 699 cells. J. Gen. Virol. 73:901-906.

- 700 68. Smits SL, Gerwig GJ, van Vliet AL, Lissenberg A, Briza P, Kamerling JP, 701 Vlasak R, de Groot RJ. 2005. Nidovirus sialate-O-acetylesterases: evolution and 702 substrate specificity of coronaviral and toroviral receptor-destroying enzymes. J. 703 Biol. Chem. 280:6933-6941. 704 Vlasak R, Luytjes W, Spaan W, Palese P. 1988. Human and bovine 69. 705 coronaviruses recognize sialic acid-containing receptors similar to those of 706 influenza C viruses. Proc. Natl. Acad. Sci. USA. 85:4526-4529. 707 Williams RK, Jiang GS, Holmes KV. 1991. Receptor for mouse hepatitis virus is 70. 708 a member of the carcinoembryonic antigen family of glycoproteins. Proc. Natl. 709 Acad. Sci. USA 88:5533-5536. 710 Bonavia A, Zelus BD, Wentworth DE, Talbot PJ, Holmes KV. 2003. 71. 711 Identification of a receptor-binding domain of the spike glycoprotein of human 712 coronavirus HCoV-229E. J. Virol. 77:2530-2538. 713 Godet M, Grosclaude J, Delmas B, Laude H. 1994. Major receptor-binding and 72. 714 neutralization determinants are located within the same domain of the transmissible 715 gastroenteritis virus (coronavirus) spike protein. J. Virol. 68:8008-8016. 716 Hofmann H, Simmons G, Rennekamp AJ, Chaipan C, Gramberg T, Heck E, 73. 717 Geier M, Wegele A, Marzi A, Bates P, Pohlmann S. 2006. Highly conserved 718 regions within the spike proteins of human coronaviruses 229E and NL63 719 determine recognition of their respective cellular receptors. J. Virol. 80:8639-8652. 720 Kubo H, Yamada YK, Taguchi F. 1994. Localization of neutralizing epitopes and 74. 721 the receptor-binding site within the amino-terminal 330 amino acids of the murine 722 coronavirus spike protein. J. Virol. 68:5403-5410.
- JVI Accepts published online ahead of print

- 723 75. Peng G, Sun D, Rajashankar KR, Qian Z, Holmes KV, Li F. 2011. Crystal 724 structure of mouse coronavirus receptor-binding domain complexed with its murine 725 receptor. Proc. Natl. Acad. Sci. USA 108:10696-10701. 726 Prabakaran P, Gan J, Feng Y, Zhu Z, Choudhry V, Xiao X, Ji X, Dimitrov DS. 76. 727 2006. Structure of severe acute respiratory syndrome coronavirus receptor-binding 728 domain complexed with neutralizing antibody. J. Biol. Chem. 281:15829-15836. 729 Wu K, Li W, Peng G, Li F. 2009. Crystal structure of NL63 respiratory 77. 730 coronavirus receptor-binding domain complexed with its human receptor. Proc. 731 Natl. Acad. Sci. USA 106:19970-19974. 732 Zhou T, Wang H, Luo D, Rowe T, Wang Z, Hogan RJ, Qiu S, Bunzel RJ, 78. 733 Huang G, Mishra V, Voss TG, Kimberly R, Luo M. 2004. An exposed domain 734 in the severe acute respiratory syndrome coronavirus spike protein induces 735 neutralizing antibodies. J. Virol. 78:7217-7226. 736 79. Müller MA, Raj VS, Muth D, Meyer B, Kallies S, Smits SL, Wollny R, 737 Bestebroer TM, Specht S, Suliman T, Zimmermann K, Binger T, Eckerle I, 738 Tschapka M, Zaki AM, Osterhaus AD, Fouchier RA, Haagmans BL, Drosten 739 C. 2012. Human Coronavirus EMC Does Not Require the SARS-Coronavirus 740 Receptor and Maintains Broad Replicative Capability in Mammalian Cell Lines. 741 MBio. **3:**e00515-12. 742 Jiang S, Lu L, Du L, Debnath AK. 2012. A predicted receptor-binding and 80. 743 critical neutralizing domain in S protein of the novel human coronavirus HCoV-
- 744 EMC. J. Infect. **66:**464-466.

- 745 81. Pyrc K, Dijkman R, Deng L, Jebbink MF, Ross HA, Berkhout B, van der Hoek 746 L. 2006. Mosaic structure of human coronavirus NL63, one thousand years of 747 evolution. J. Mol. Biol. 364:964-973. 748 Vijgen L, Keyaerts E, Moës E, Thoelen I, Wollants E, Lemey P, Vandamme 82. 749 AM, Van Ranst M. 2005. Complete genomic sequence of human coronavirus 750 OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus 751 transmission event. J. Virol. 79:1595-1604. 752 Graham RL, Baric RS. 2010. Recombination, reservoirs, and the modular spike: 83. 753 mechanisms of coronavirus cross-species transmission. J. Virol. 84:3134-3146. 754 84. Perlman S, Netland J. 2009. Coronaviruses post-SARS: update on replication and 755 pathogenesis. Nat. Rev. Microbiol. 7:439-450. 756 85. Shek CT. 2006. From Leschenault's Rousette. In A field guide to the terrestrial 757 mammals of Hong Kong. Hong Kong: Friends of Country Park and Cosmos book 758 Limited, pp108-112. 759 Teeling EC, Springer MS, Madsen O, Bates P, O'brien SJ, Murphy WJ. 2005. 86. 760 A molecular phylogeny for bats illuminates biogeography and the fossil record. 761 Science 307:580-584. 762 Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, 87. 763 Délicat A, Paweska JT, Gonzalez JP, Swanepoel R. 2005. Fruit bats as reservoirs 764 of Ebola virus. Nature 438:575-576. 765 88. Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA, Chen LM, Recuenco S, 766 Ellison JA, Davis CT, York IA, Turmelle AS, Moran D, Rogers S, Shi M, Tao
 - 767 Y, Weil MR, Tang K, Rowe LA, Sammons S, Xu X, Frace M, Lindblade KA,

JVI Accepts published online ahead of print

768		Cox NJ, Anderson LJ, Rupprecht CE, Donis RO. 2012. A distinct lineage of
769		influenza A virus from bats. Proc. Natl. Acad. Sci. USA 109:4269-4274.
770	89.	Tang XC, Zhang JX, Zhang SY, Wang P, Fan XH, Li LF, Li G, Dong BQ, Liu
771		W, Cheung CL, Xu KM, Song WJ, Vijaykrishna D, Poon LL, Peiris JS, Smith
772		GJ, Chen H, Guan Y. 2006. Prevalence and genetic diversity of coronaviruses in
773		bats from China. J. Virol. 80:7481-7490.
774	90.	Buchholz U, Müller MA, Nitsche A, Sanewski A, Wevering N, Bauer-Balci T,
775		Bonin F, Drosten C, Schweiger B, Wolff T, Muth D, Meyer B, Buda S, Krause
776		G, Schaade L, Haas W. 2013. Contact investigation of a case of human novel
777		coronavirus infection treated in a German hospital, October-November 2012. Euro
778		Surveill. 18:20406.
779	91.	Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004. WebLogo: a sequence
		1 C D 14 1100 1100

JVI Accepts published online ahead of print

782 LEGENDS TO FIGURES

783 FIG 1 Phylogenetic analysis of RdRp, S and N genes of Ty-BatCoV HKU4 and Pi-784 BatCoV HKU5 strains, and those of other betaCoVs with available complete genome 785 sequences. The trees were constructed by maximum-likelihood method with bootstrap 786 values calculated from 100 trees. 937, 1535, and 546 aa positions in RdRp, S, and N 787 genes respectively were included in the analysis. The scale bar indicates the estimated 788 number of substitutions per 5 or 20 aa. HCoV-HKU1, human coronavirus HKU1, HCoV-789 OC43, human coronavirus OC43; MHV, murine hepatitis virus; BCoV, bovine 790 coronavirus; PHEV, porcine hemagglutinating encephalomyelitis virus; GiCoV, giraffe 791 coronavirus; RCoV, rat coronavirus; ECoV, equine coronavirus; RbCoV HKU14, rabbit 792 coronavirus HKU14; AntelopeCoV, sable antelope coronavirus; SARS-CoV, SARS 793 coronavirus; SARSr-Rh-BatCoV HKU3, SARS-related Rhinolophus bat coronavirus 794 HKU3; SARSr-CiCoV, SAR-related civet coronavirus; SARSr CoV CFB, SARS-related 795 Chinese ferret badger coronavirus; Ty-BatCoV HKU4, Tylonycteris bat coronavirus 796 HKU4; Pi-BatCoV HKU5, Pipistrellus bat coronavirus HKU5; MERS-CoV EMC, 797 Middle East Respiratory Syndrome Coronavirus EMC; MERS-CoV England1, Middle 798 East Respiratory Syndrome Coronavirus England1; Ro-BatCoV HKU9, Rousettus bat 799 coronavirus HKU9.

FIG 2 Distribution of amino acid changes in the spike protein of Ty-BatCoV HKU4 (upper panel) and Pi-BatCoV HKU5 (lower panel). The positions of the amino acid changes are depicted by vertical lines. SS, predicted signal peptide; RBD, receptor binding domain; HR1, heptad repeat 1; HR2, heptad repeat 2; TM, transmembrane domain.

806	FIG 3 Graphical representation of multiple sequence alignment showing the amino acid
807	changes in the spike protein of Pi-BatCoV HKU5. The height of symbols indicates the
808	relative frequency of each amino acid at the position. Polar amino acids are indicated in
809	green; neutral amino acids are indicated in purple; basic amino acids are indicated in blue;
810	acidic amino acids are indicated in red; hydrophobic amino acids are indicated in black.
811	The figure was generated using WebLogo (91).
812	FIG 4 Distribution of positively selected sites in S proteins identified using REL in Ty-
813	BatCoV HKU4 (upper panel) and Pi-BatCoV HKU5 (lower panel). Positively selected
814	sites with posterior probability greater than 0.5 are shown.
815	FIG 5 Estimation of the tMRCA of Ty-BatCoV HKU4 and Pi-BatCoV HKU5. The time-
816	scaled phylogeny was summarized from all MCMC phylogenies of the (A) complete
817	RdRp, (B) complete N and (C) 904-bp RdRp sequence data set analyzed under the
818	relaxed clock model with an exponential distribution (Uced) in BEAST v 1.7.4. Viruses

819 characterized in this study are bolded.

TABLE 1 Primers used in this study

Coronaviruses	Primers	8	321
	Forward	Backward	222
Ty-BatCoV HKU4			,
RdRp	LPW3283 5'-GTAATGTCTGTCAGTATTGGGTT-3'	LPW3232 5'-AACTAATATGCTCTTTAACACTTCAC-	3'
-	LPW2771 5'-TGYTAYGCTTTAMGNCAYTTYGA-3'	LPW2773 5'-GTTGGGTAATAACAAAATCACCAA-3'	
	LPW2626 5'-GTTTTAACACTYGATAAYGARGA-3'	LPW2630 5'-AGTATATTGAARTTNGCACARTG-3'	
	LPW2738 5'-CCACCCTAATTGTGTTAATTGTA-3'	LPW2775 5'-TAACTGAAGACCCTTCCTTGAAA-3'	
	LPW3233 5'-GGCAATTTTAATAAAGATTTTTATGA-3'	LPW3234 5'-GCCAAAATCAATGACGCTAAAAT-3'	
	LPW1507 5'-GGTTGGGACTATCCTAAGTGTGA-3'	LPW1508 5'-CCATCATCAGATAGAATCATCATA-3'	
	LPW1037 5'-WTATKTKAARCCWGGTGG-3'	LPW1040 5'-KYDBWRTTRTARCAMACAAC-3'	
	LPW3235 5'-CTTAATAAACACTTTTCTATGATGAT-3'	LPW2678 5'-TACTCACCGAGCTGTACTTTACTA-3'	
S	LPW3797 5'-AGATTTATATAAAATTATGGGAA-3'	LPW4102 5'-TACGTGGTTTTAATATGCAATAAAA-3	,
	LPW3899 5'-TCTCTTACTAATACATCGGCT-3'	LPW3900 5'-AAGACCTGACCATCTTCAGAAA-3'	
	LPW4103 5'-TGGTGCAAACCAAGATGTTGAAA-3'	LPW3712 5'-CTAGCGCTATAACTTCTAAAAGTA-3'	
	LPW3720 5'-CATTAGTAGTTAGTGATTGTAAA-3'	LPW2821 5'-GTCATAAAGTGGTGGTAAAACTT-3'	
	LPW2319 5'-ATTAATGCTAGAGAYCTHMTTTG-3'	LPW2320 5'-TTTGGGTAACTCCAATNCCRTT-3'	
	LPW2824 5'-TTTGCCGCTATACCTTTTGCACAA-3'	LPW4106 5'-TGAGTTATAGGTTCAGGTTTATAA-3'	
	LPW4105 5'-TATTAGTGACATCCTTGCTAGGCTT-3'	LPW2317 5'-GAGCCAAACATACCANGGCCAYTT-3'	
	LPW4107 5'-ATGGTCCTAACTTTGCAGAGATA-3'	LPW21565 5'-TGCCAGACATGCCACCACAA-3'	
Ν	LPW21407 5'-AACGAATCTTAATAACTCATTGTT-3'	LPW21408 5'-CTCTTGTTACTCTTCATTGGCAT-3'	
Pi-BatCoV HKU5			
RdRp	LPW3350 5'-TTTGTCAATTTTGGATAGGACAT-3'	LPW3352 5'-TGATGCATCACAGCARCCATA-3'	
	LPW3351 5'-ATCAGAATAACTGTGAAGTGCTT-3'	LPW3275 5'-GACAATTGGACCAAAAGACGTT-3'	
	LPW3382 5'-CAAATTGTGTGAACTGTACTGAT-3'	LPW3387 5'-ATATATCTCGAAGTAACGATCAA-3'	
	LPW3172 5'-GTCCTGGCAACTTTAATAAAGATT-3'	LPW3130 5'-CTAATATGAGAGATGCAAAGA-3'	
	LPW1507 5'-GGTTGGGACTATCCTAAGTGTGA-3'	LPW1508 5'-CCATCATCAGATAGAATCATCATA-3'	
	LPW3384 5'-CTAAATTTGTGGACAGGTATTAT-3'	LPW3399 5'-CTTCGTATACACGTACCACAA-3'	
S	LPW21416 5'-CTCTTGTCGCAGGGTAAACTT-3'	LPW4284 5'-AAAGACTCTACCTGTGCAGAATA-3'	
	LPW4086 5'-TAACTTATACTGGACTGTACCCAAA-3'	LPW4193 5'-AAGCCATTTGAAGGTTACCATT-3'	
	LPW4192 5'-ACTTTGCTACTTTACCTGTGTAT-3'	LPW4137 5'-AGTAACACCAAATGTGAAATT-3'	
	LPW4285 5'-AATCGCCACTCTAAACTTTACTA-3'	LPW4286 5'-AAGAGGCTGGGTATTCTGGGTT-3'	
	LPW4138 5'-AAGATGAGTCTATTGCTAATCTAT-3'	LPW4139 5'-AGCTTCCATATAGGGGTCATA-3'	
	LPW4287 5'-TGTGCACAATATGTTGCTGGCTA-3'	LPW4288 5'-AAAGAACTACCAGTATAATACCAA-3'	
	LPW4140 5'-AACACTGAGAATCCACCAAA-3'	LPW21417 5'-CACACGCATCATAAGTTCGTT-3'	
Ν	LPW21361 5'-GAATCTTATTATCTCATTGTT-3'	LPW21362 5'-CTATTACGTTCAATTGGCAAT-3'	

TABLE 2 Detection of Ty-BatCoV HKU4 and Pi-BatCoV HKU5 in bats by RT-PCR Bats 823

Scientific name	Common name	No. of bats tested	No. (%) of bat in respiratory s	s positive for CoV samples	No. (%) of bats positive for CoV in alimentary samples		
			Ty-BatCoV HKU4	Pi-BatCoV HKU5	Ty-BatCoV HKU4	Pi-BatCoV HKU5	
Megachiroptera							
Pteropodidae							
Cynopterus sphinx	Short-nosed fruit bat	26	0 (0)	0 (0)	0 (0)	0 (0)	
Rousettus leschenaulti	Leschenault's rousette	73	0 (0)	0 (0)	0 (0)	0 (0)	
Microchiroptera							
Hipposideridae							
Hipposideros armiger	Himalayan leaf-nosed bat	198	0 (0)	0 (0)	0 (0)	0 (0)	
Hipposideros pomona	Pomona leaf-nosed bat	642	0 (0)	0 (0)	0 (0)	0 (0)	
Rhinolophidae							
Rhinolophus affinus	Intermediate horseshoe bat	359	0 (0)	0 (0)	0 (0)	0 (0)	
Rhinolophus pusillus	Least horseshoe bat	89	0 (0)	0 (0)	0 (0)	0 (0)	
Rhinolophus sinicus	Chinese horseshoe bat	2012	0 (0)	0 (0)	0 (0)	0 (0)	
Vespertilionidae							
Hypsugo pulveratus	Chinese pipistrelle	1	0 (0)	0 (0)	0 (0)	0 (0)	
Miniopterus magnater	Greater bent-winged bat	15	0 (0)	0 (0)	0 (0)	0 (0)	
Miniopterus pusillus	Lesser bent-winged bat	450	0 (0)	0 (0)	0 (0)	0 (0)	
Miniopterus schreibersii	Common bent-winged bat	758	0 (0)	0 (0)	0 (0)	0 (0)	
Myotis chinensis	Chinese myotis	122	0 (0)	0 (0)	0 (0)	0 (0)	
Myotis horsfieldii	Horsfield's Bat	7	0 (0)	0 (0)	0 (0)	0 (0)	
Myotis muricola	Whiskered myotis	4	0 (0)	0 (0)	0 (0)	0 (0)	
Myotis ricketti	Rickett's big-footed bat	307	0 (0)	0 (0)	0 (0)	0 (0)	
Nyctalus noctula	Brown noctule	54	0 (0)	0 (0)	0 (0)	0 (0)	
Pipistrellus abramus	Japanese pipistrelle	219	0 (0)	0 (0)	0 (0)	55 (25%)	
Pipistrellus tenuis	Least pipistrelle	11	0 (0)	0 (0)	0 (0)	0 (0)	
Scotophilus kuhlii	Lesser yellow bat	18	0 (0)	0 (0)	0 (0)	0 (0)	
Tylonycteris pachypus	Lesser bamboo bat	115	0 (0)	0 (0)	29 (29%)	0 (0)	

	Tylonycteris robustula	Greater bamboo bat	1	0 (0)	0 (0)	0 (0)	0 (0)
824							

825	TABLE 3 Pairwise amino acid identities between the RdRp, S and N genes of Ty-BatCoV HKU4, Pi-BatCoV HKU5 and MERS-
826	CoV to those of other betaCoVs

Coronaviruses	Pairwise an	nino acid identi	ty (%)						
	Ty-BatCoV	HKU4_2		Pi-BatCoV HKU5 31			MERS-Cov		
	RdRp	S	N	RdRp	S	N	RdRp	S	Ν
Betacoronavirus lineage A									
HCoV-OC43	68.8	33.4	33.2	68.7	31.2	34.2	68.3	32	35.3
BCoV	68.7	33.5	33.2	68.6	31.3	34.8	68.2	31.3	35.6
PHEV	68.8	33.2	32.7	68.7	31.2	33.9	68.3	32.5	35.1
GiCoV	68.7	33.9	32.8	68.6	31.6	34.8	68.2	31.4	35.3
RCoV	68.8	32.4	33.7	68.8	31.4	34.3	68.7	32	34.8
RbCoV HKU14	68	33.8	33.2	68	30.9	34.9	68	32.2	35.3
AntelopeCoV	68.7	33.7	32.8	68.6	31.2	34.8	68.2	31.4	35.3
ECoV	69.1	32.4	34.9	68.7	31.5	35.6	68.3	31.6	35.7
MHV	68.7	32.7	34.1	68.8	31.9	34.7	68.6	31.5	34.3
HCoV-HKU1	67.6	32.1	32.8	68.1	30.2	33.3	67.9	31.8	32.3
Betacoronavirus lineage B									
SARS-CoV	71.6	33.6	45.8	71.8	33.5	43.6	71.9	31.6	46.6
SARSr-Rh-BatCoV HKU3	71.7	33.6	45.2	71.7	32.8	43.9	71.8	30.6	46.2
Betacoronavirus lineage C									
Ty-BatCoV HKU4	99.5-100	97.3-99.6	99.5-100	92-92.5	67.7-68.1	73.5-74	89.6-90	66.8-67.4	71.9-72.3
Pi-BatCoV HKU5	92.1-92.4	67.5-68.4	73.7-75.1	99.4-99.7	88.3-97	97.2-98.6	92.1-92.3	63.4-64.5	69.5-70.5
MERS-CoV	89.9	67.3-67.4	71.6-72.1	92.1	64.3	68.8-69.5	-	-	-
Betacoronavirus lineage D									
Ro-BatCoV HKU9	69.3	30.8	37.3	68.7	31	36.9	68.4	30.3	37.8

TABLE 4 Estimation of non-synonymous and synonymous substitution rates in the
 RdRp, S and N genes of Ty-BatCoV HKU4, Pi-BatCoV HKU5 and MERS-CoV

04	~
83	60

Gene	Ty-BatCoV HKU4			Pi-B	atCoV I	HKU5	MERS-CoV		
	(1	18 strain	s)	(19 strair	ns)	(2 strains)		
	Ka	Ks	Ka/Ks	Ka	Ks	Ka/Ks	Ka	Ks	Ka/Ks
RdRp	0.001	0.033	0.03	0.001	0.128	0.0078	0	0.006	0
S	0.004	0.034	0.118	0.038	0.321	0.118	0.001	0.008	0.125
Ν	0.001	0.019	0.053	0.005	0.095	0.053	0.002	0.010	0.2

Ty-BatCoV HKU4

