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Abstract

Background: Feline infectious peritonitis (FIP) is a lethal immune-mediated disease caused by feline coronavirus
(FCoV). Currently, no therapy with proven efficacy is available. In searching for agents that may prove clinically
effective against FCoV infection, five analogous overlapping peptides were designed and synthesized based on the
putative heptad repeat 2 (HR2) sequence of the spike protein of FCoV, and the antiviral efficacy was evaluated.
Methods: Plaque reduction assay and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
cytotoxicity assay were performed in this study. Peptides were selected using a plaque reduction assay to inhibit
Feline coronavirus infection.
Results: The results demonstrated that peptide (FP5) at concentrations below 20 μM inhibited viral replication by up
to 97%. The peptide (FP5) exhibiting the most effective antiviral effect was further combined with a known anti-viral
agent, human interferon-α (IFN-α), and a significant synergistic antiviral effect was observed.
Conclusion: Our data suggest that the synthetic peptide FP5 could serve as a valuable addition to the current FIP
prevention methods.
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Introduction

Feline coronavirus (FCoV) is a group 1a coronavirus [1] that
usually causes mild gastrointestinal symptoms in cats;
however, a small percentage of seropositive animals (5 to
12%) can develop highly lethal Feline infectious peritonitis
(FIP). Neither an effective vaccine nor any effective drugs are
currently available for the prevention and control of this disease
[2]. Interferon (IFN), immune inhibitors, immune modulators
and supportive therapy have been used in clinics, but their
efficacy has typically been poor [3,4].

Since the pandemic of severe acute respiratory syndrome
(SARS) in 2003, numerous antiviral drugs have been
developed to control SARS coronavirus (SARS-CoV), including
S protein heptad repeat (HR) peptides, carbohydrate-binding
agents, cathepsin inhibitors, HIV protease inhibitors, nitric
oxide, siRNA and interferons [5]. Except for the S protein HR
peptides, all the above-mentioned reagents have been tested
for their ability to inhibit FCoV replication [6-11], e.g., Cathepsin

L and cathepsin B can be inhibitors to inhibit the entry of
FIPV-1146 [9] and pyridine N-oxide derivatives were found
inhibitory against coronaviruses, in particular against the feline
coronavirus type II strain of FIPV[11].

The S protein of FCoV consists of the S1 and S2 subunits.
S1 is located at the N-terminus of the molecule and has a
spherical structure that includes the domain that binds to
receptors on the host cell [12]. S2 is located at the C-terminus
of the spike protein and contains HR1 and HR2, which are the
primary regions responsible for the fusion of the virus to the cell
membrane of the host. Upon the binding of S1 to the host
receptor, S2 undergoes a structural transformation that
exposes HR1 and HR2, which form a six-helix bundle structure
[13,14]. This type of helix structure formation is characteristic of
class I viral fusion [15]. Many in vitro studies of SARS-CoV
have reported that exogenous HR2 peptide can bind to viral
HR1, thereby efficiently blocking the entry of the virus into cells
and inhibiting the replication of the virus [16-19].

PLOS ONE | www.plosone.org 1 December 2013 | Volume 8 | Issue 12 | e82081

http://creativecommons.org/licenses/by/3.0/


Multiple agents that target different stages of viral replication
have been successfully used to control infections in humans,
such as Human immunodeficiency virus (HIV) and Human
hepatitis C virus (HCV) [20-22]. With regard to FCoV infection,
our previous in vitro study demonstrated that the combination
of nelfinavir and Galanthus nivalis agglutinin (GNA) has a
synergistic antiviral effect that inhibits FCoV replication [6]. In
order to find a less expensive and more effective antiviral
combination to improve the prognosis of cats with FIP, peptides
based on the putative HR2 of the S protein were designed and
tested for their inhibitory effect, and the possible synergism of
these peptides with other known anti-FCoV agent was
investigated.

Materials and Methods

Cell and virus
Felis catus whole fetus-4 (fcwf-4) cells [23], [24] (kindly

provided by Professor Peter J. M. Rottier, Utrecht University)
were maintained in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 5% fetal bovine serum (FBS), 100
IU/mL penicillin and 100 μg/mL streptomycin in 5% CO2 at
37°C. The type II NTU156 strain of the virus was isolated
locally [25].

Peptides and MTT cytotoxicity assay for peptides
The sequences of the FCoV S protein HR peptides (FCoV

HR peptides) were designed based on the S protein of type II
FCoV NTU156 (GenBank accession no. ACS44218.1), and all
the peptides were dissolved in aqueous NaOH (pH 11.3), the
aqueous NaOH were prepared from duble distilled water
adjusted to pH 11.3 by 1 N NaOH. The peptide sequences are
shown in Figure 1. To determine the cytotoxicity of each
peptide, fcwf-4 cells (3 ×104 cells/mL) were grown in 96-well
plates for 24 h. The cells were then pre-incubated with or
without different concentrations of peptides in triplicate at 37°C

for 72 h and assessed with the MTT (3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide) assay. Briefly, the cells in
each well were incubated with MTT reagent (10 mg/mL) at
37°C for 4 h. The cells were then lysed with lysis buffer (100 μl
of 10% SDS, 45% dimethyl formamide, adjusted to pH 4.5 by
glacial acid) after removing the MTT. The absorbance value at
570 nm was measured with a microELISA reader. The cell
viability was the relative absorbance at 570 nm of samples with
peptides relative to the absorbance for samples without
peptides.

Screening of effective peptides
The effective peptides were selected using a plaque

reduction assay. Fcwf-4 cells (5 ×104 cells/mL) were seeded in
48-well plates and incubated at 37°C for 24 h prior to use.
Various concentrations of peptides were incubated with
NTU156 at a multiplicity of infection (MOI) of 0.1. After
incubation for 1 h, the mixtures of peptide and virus were
incubated with fcwf-4 cells for 1 h. Then, the supernatants were
removed, and DMEM containing 2% FBS was added to each
well. The supernatants were collected 48 h postinfection and
incubated with fcwf-4 cells. After 1 h of incubation, the
supernatants were removed, and DMEM containing 2% FBS
was added. The cells were fixed and stained at 72 h
postinfection, and the extent of the cytopathic effect (CPE) was
assessed. Based on these results, the fifty percent inhibitory
concentrations (IC50) were calculated using an interpolation
method.

Combination of effective agents against FCoV
FCoV HR peptides were combined with human interferon-

alpha (IFN-α) (Roche). IFN-α was preincubated with cells
cultured in DMEM containing 2% FBS for 24 h. The
supernatants were removed, and the cells were infected with
NTU156 at an MOI of 0.1. The supernatants were removed
after 1 h of incubation. Peptides at the selected concentrations

Figure 1.  Schematic drawing of S protein of FCoV (NTU156) and the designed peptides.  The S2 subunit contains two heptad
repeats (HR1, HR2). The amino acid sequences of peptides (FP1-FP5) in HR2 are shown. ss, signal sequence. TM,
transmembrane domain. CY, cytoplasmic tail. The numbers of amino acid residues are indicated.
doi: 10.1371/journal.pone.0082081.g001
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were incubated with cells in DMEM containing 2% FBS. The
supernatants were collected after 48 h of incubation for
titration, and the viral titer in the presence of each combination
of peptide/IFN-α was determined using a plaque reduction
assay as previously described [6]. All samples were analyzed
in triplicate. Statistical analyses of the synergism of the antiviral
activity were performed using a two-way analysis of variance.

Results

HR2 peptides are non-cytotoxic to fcwf-4 cells
To assess the toxicity of the five FCoV HR2 peptides

designed in this study, six concentrations of each peptide,
ranging from 6.25 μM to 200 μM, were used to treat fcwf-4 cells
for 72 h, and the viability of the cells was evaluated. Under the
tested concentrations, the cell survival rates were all greater
than 95%, indicating that the peptides are not toxic to the host
cells with the CC50 value ≧200 μM.

Inhibition of FCoV replication by HR2 peptides
Based on the cell viability results, three concentrations of

peptide, i.e., 5 μM, 10 μM, and 20 μM, were chosen for further
testing of the peptide’s antiviral effects. The results showed
that among the five peptides, only FP4 and FP5 could
significantly reduce the viral titer, with reductions of 93% and
97%, respectively (Figure 2). This inhibition was concentration
dependent compared with untreated groups from the Table 1
(P<0.0001) (Figure 2). The IC50 values of FP4 and FP5 were
1.8 μM and 1.33 μM, respectively (Table 1). FP5 was the most
potent inhibitor of FCoV replication among the tested peptides.

Synergistic effect of FCoV HR peptide with human IFN-
α

Human IFN-α has been recommended as therapy for FIP.
However, the use of IFN-α alone cannot completely control
viral replication in cats.  To determine whether FP5, the most
effective inhibitor among the FCoV HR peptides, could
increase the anti-viral activity when combined with human IFN-
α, an inhibition assay was performed (Figure 3). The results
showed that when high concentrations of FP5 20 μM and IFN-α
1000 IU were used alone, viral titer reduced by 1.81 and 1.46
LogPFU/ml, respectively, the growth of FCoV could not be
blocked completely. However, when 20 μM FP5 was combined
with 10 to 1000 IU of IFN-α and when 10 μM FP5 was
combined with 1000 IU of IFN-α, a complete inhibitory effect
was observed, and viral titer reduced by up to 4.08 LogPFU/ml.
This inhibitory effect is higher than the additive effect mediated
by the two agents alone (Figure 3). These combinations
showed synergetic effects, as determined by a two-way
analysis of variance (P < 0.05).

Discussion

The utilization of HR peptides derived from spike proteins to
interfere the fusion of the viral envelope with host membrane,
thus inhibiting viral replication, has been well-known to
successfully inhibit the infection of numerous viruses with class

I fusion proteins [16,17,26-34]. Among these peptides, the anti-
HIV-1 peptide, enfuvirtide (T-20), has already been
incorporated into a clinical regimen and shown strong efficacy
against HIV infection [35-37]. Although the crystal structure of
the S protein of FCoV remains to be determined, by aligning
the amino acid sequences derived from FCoV with other
members of coronaviruses [38], the HR2 domain was
predicted, and peptides corresponding to this domain were
designed. HR2 was chosen because it was found to be more
effective than HR1 in previous studies [26,31,39].

It has been reported that several peptides derived from HR2
domain are able to inhibit SARS-CoV infection with IC50 less
than 19 µM [18,19,40]. The inhibitory efficacy is not correlated
with the lengths of these reported HR2 peptides and the central
helix region of HR2 containing amino acid residue 1161 to
1175 are critical to inhibit SARS-CoV infection. In addition,
truncation of N-terminal was found to be more related to the
loss of potency than the C-terminal [16,19]. While examing the
inhibitory effect of our feline peptides we found that FP4 with
the extra residures NNTLVNL at its C-terminus compared to
FP3, showed a significant potential to inhibit viral replication
(Figure 2). The finding indicates that these residues might play
an important role in the process of membrane fusion, thus
inhibiting viral replication.

Human IFN-α has been reported to have anti-FCoV effects
and inhibit viral replication [7]. Synergistic effects were found
when IFN-α was combined with ribavirin [40]. However, due to
severe adverse reactions to ribavirin, this drug is not feasible
for clinical use [41]. The present study found that the
combination of the nontoxic peptide FP5 with human IFN-α
exhibits a satisfactory synergistic antiviral effect: 10 units of
IFN-α combined with 20 μM FP5 resulted in complete
inhibition.

One anti-viral HR2 peptide that is currently used for HIV
treatment (enfuvirtide, T-20) was shown to cause pain or
discomfort at the injection site [42], and other reactions,
including tuberous nodules, erythematosus, diarrhea,
regurgitation, and pruritus, have been reported [43]. The HR
peptide of FCoV must be tested in a follow-up clinical study to
determine whether it has adverse effects on felines.

Because FIP is an immune-mediated disease, in addition to
anti-viral drugs to control viral replication, the treatment of this
disease also requires IFN, immune inhibitors, or cytokine
antagonists to achieve a better prognosis. This study utilized in
vitro experiments to demonstrate that an HR peptide can inhibit
FCoV replication. Furthermore, when this peptide was
combined with human IFN-α, lower doses of both agents were
needed to achieve the complete inhibition of viral replication.
Our results suggest that the combined use of these two drugs
together with appropriate agents to modify immune function is
a potential therapy for the treatment of FIP.

Conclusions

We demonstrated in this study, that the synthetic peptide
FP5 could inhibit viral replication. This peptide exhibited a
significant synergistic antiviral effect when combined with IFN-
α. Our data suggest that combination of the two agents could
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Figure 2.  Inhibition of feline coronavirus replication by FCoV HR peptides.  The data are the means±standard errors of
triplicate wells. One representative experiment of more than two experiments is shown. * indicates significant inhibition of viral
replication (P<0.005), ** indicates extremely significant inhibition of viral replication (P<0.0001).
doi: 10.1371/journal.pone.0082081.g002

Table 1. Inhibitory effects of the FCoV HR peptides.

Peptides Highest concentration tested (μM) IC50 (μM) CC50 (μM) Selectivity index (SI) Inhibition of viral titer (%)
FP1 20 NA ≧200 NA 27
FP2 20 NA ≧200 NA 29
FP3 20 14.21 ≧200 ≧14.07 72
FP4 20 1.8 ≧200 ≧111.11 93
FP5 20 1.33 ≧200 ≧150.37 97.2

NA: not analyzed
doi: 10.1371/journal.pone.0082081.t001
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serve as a valuable addition in the treatment and prevent of
FIP.
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