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Abstract 

 The replication of coronavirus, a family of important animal and human pathogens, is 

closely associated with the cellular membrane compartments, especially the endoplasmic 

reticulum (ER). Coronavirus infection of cultured cells was previously shown to cause ER 

stress and induce the unfolded protein response (UPR), a process that aims to restore the ER 

homeostasis by global translation shutdown and increasing the ER folding capacity. However 

under prolonged ER stress, UPR can also induce apoptotic cell death. Accumulating evidence 

from recent studies has shown that induction of ER stress and UPR may constitute a major 

aspect of coronavirus-host interaction. Activation of the three branches of UPR modulates a 

wide variety of signaling pathways, such as mitogen-activated protein (MAP) kinases 

activation, autophagy, apoptosis and innate immune response.  ER stress and UPR activation 

may therefore contribute significantly to the viral replication and pathogenesis during 

coronavirus infection. In this review, we summarize current knowledge on coronavirus-

induced ER stress and UPR activation, with emphasis on their cross-talking to apoptotic 

signaling. 

 

Introduction 

Coronaviruses are a family of enveloped viruses with positive sense, non-segmented, 

single stranded RNA genomes. Many coronaviruses are important veterinary pathogens. For 

example, avian infectious bronchitis virus (IBV) reduces the performance of both meat-type 

and egg-laying chickens and causes severe economic loss to the poultry industry worldwide 

[1]. Certain coronaviruses, such as HCoV-229E and HCoV-OC43, infect humans and account 

for a significant percentage of adult common colds [2,3]. Moreover, in 2003, a highly 

pathogenic human coronavirus (SARS-CoV) was identified as the causative agent of severe 

acute respiratory syndrome (SARS) with high mortality rate and led to global panic [4]. 

Afterwards, it was found that the SARS-CoV was originated from bat and likely jumped to 

humans via some intermediate host (palm civets) [5,6]. Recently, a live SARS-like 

coronavirus was isolated from fecal samples of Chinese horseshoe bats, which could use the 

SARS-CoV cellular receptor - human angiotensin converting enzyme II (ACE2) for cell entry 

[7]. This indicates an intermediate host may not be necessary and direct human infection by 

some bat coronaviruses is possible. Moreover, a novel human coronavirus – the Middle East 

respiratory syndrome coronavirus (MERS-CoV), emerged in Saudi Arabia in September 2012 

[8]. Although the risk of sustained human-to-human transmission is considered low, infection 
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of MERS-CoV causes ~50% mortality in patients with comorbidities [9]. Initial studies had 

pointed to bats as the source of MERS-CoV [10], however, accumulating evidence strongly 

suggested the dromedary camels to be the natural reservoirs and animal source of MERS-CoV 

[11,12]. Thus, coronaviruses can cross the species barrier to become lethal human pathogens, 

and studies on coronaviruses are both economically and medically important. 

Taxonomically, the family Coronaviridae is classified into two subfamilies, the 

coronavirinae and the torovirinae. The coronavirinae is further classified into three 

genera, namely the Alphacoronavirus, Betacoronavirus and Gammacoronavirus [13]. 

The classification was originally based on antigenic relationships and later confirmed by 

sequence comparisons of entire viral genomes [14].  Almost all Alphacoronaviruses and 

Betacoronaviruses have mammalian hosts, including humans. In contrast, 

Gammacoronaviruses have mainly been isolated from avian hosts. 

Morphologically, coronaviruses are spherical or pleomorphic in shape with a mean 

diameter of 80-120 nm. They are characterized by the large (20 nm) “club-like” projections 

on the surface, which are the heavily glycosylated trimeric spike (S) proteins [13]. Two 

additional structural proteins are found on the envelope. The abundant membrane (M) 

proteins give the virion its shape, whereas the small envelope (E) proteins play an essential 

role during assembly [15,16]. Inside the envelope, the helical nucleocapsid is formed by 

binding of the nucleocapsid (N) proteins on the genomic RNA in a beads-on-a-string fashion. 

The genome, ranging from 27,000 to 32,000 nucleotides in size, is the largest RNA genomes 

known to date. 

Coronavirus infection starts with receptor binding via the S protein (Figure 1). The S 

proteins of most coronaviruses are cleaved by host protease into two functional subunits: an 

N-terminal receptor binding domain (S1) and a C-terminal domain (S2) responsible for 

membrane fusion [17,18,19]. The interaction between the cell surface receptor and the S1 

subunit is the major determinant of the tropism of coronaviruses [20]. Upon receptor binding 

of S1, a conformational change is triggered in the S2 subunit, exposing its hidden fusion 

peptide for insertion into the cellular membrane. This is followed by the packing of the two 

heptad repeats in the three monomers into a six-helix bundle fusion core. This close 

juxtaposition of the viral and cellular membrane enables fusion of the lipid bilayers, and the 

viral nucleocapsid is thus delivered into the cytoplasm [13]. 

After uncoating, the genomic RNA first acts as an mRNA for translation of the 

replicase polyprotein. The replicase gene consists of two open reading frames (ORF1a and 

ORF1b). Translation of ORF1a produces the polyprotein 1a (pp1a). Meanwhile, a ribosomal 



4 
 

frameshifting occurs at the junction of ORF1a and ORF1b, allowing translation to continue 

onto ORF1b, producing a larger polyprotein 1ab (pp1ab) [21]. Autoproteolytic cleavage of 

pp1a produces 11 non-structural proteins (nsp1-nsp11), while cleavage of pp1ab produces 15 

non-structural proteins (nsp1-nsp10, nsp12-nsp16). The functions of these nsps are partially 

understood. Particularly, the autoproteolytic cleavage relies on nsp3 (a papain-like proteinase) 

and nsp5 (the main proteinase), whereas the RNA-dependent RNA polymerase (RdRp) is 

contained within nsp12 [22,23]. 

Using the genomic RNA as a template, the replicase then synthesizes the negative 

sense genomic RNAs, which are used as templates for synthesizing progeny positive sense 

RNA genomes. On the other hand, through discontinuous transcription of the genome, the 

replicase synthesizes a nested set of subgenomic RNAs (sgRNAs) [24]. Replication and 

transcription of the coronavirus genome involve the formation of the replication/transcription 

complexes (RTCs), which are anchored to the intracellular membranes via the multi-spanning 

transmembrane proteins nsp3, nsp4 and nsp6 [25]. Also, inside the infected cells, 

coronaviruses induce modification of the intracellular membrane network and formation of 

the double membrane vesicles (DMVs) [26]. Several studies have shown that the DMVs are 

closely associated with the coronavirus RTCs and the de novo synthesized viral RNAs [27,28] 

The sgRNAs are translated into structural proteins and accessory proteins. 

Transmembrane structural proteins (S, M and E) are synthesized, inserted and folded in the 

endoplasmic reticulum (ER) and transported to the ER-Golgi intermediate compartment 

(ERGIC). The N proteins are translated in the cytoplasm and encapsidate the nascent progeny 

genomic RNA to form the nucleocapsids. Virion assembly occurs in the ERGIC and is likely 

to be orchestrated by the M protein through protein-protein interactions [13]. 

The virions budded into the ERGIC are exported through secretory pathway in 

smooth-wall vesicles, which ultimately fuse with the plasma membrane and release the 

mature virus particles [29]. For some coronaviruses, a portion of the S protein escapes from 

viral assembly and is secreted to the plasma membrane. These S proteins cause fusion of the 

infected cell with neighboring uninfected cells, resulting in the formation of a large 

multinucleated cell known as a syncytium, which enables the virus to spread without being 

released into the extracellular space [13]. 

In eukaryotic cells, ER is the major site for synthesis and folding of secreted and 

transmembrane proteins. The amount of protein entering the ER can vary substantially under 

different physiological states and environmental conditions. When protein synthesis surpasses 

the folding capacity, unfolded proteins accumulate in the ER and lead to ER stress. ER stress 
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can also be activated by excessive lipids or pro-inflammatory cytokines [30,31]. To maintain 

homeostasis, cells have evolved signaling pathways that are collectively known as the 

unfolded protein response (UPR) [32]. The UPR signaling starts with the unfolded proteins 

activating the three ER stress transducers: PKR-like ER protein kinase (PERK), activating 

transcriptional factor-6 (ATF6) or inositol-requiring protein-1 (IRE1) (Figure 2). Once 

activated, these sensors transmit the signal across the ER membrane to the cytosol and the 

nucleus, and the cell responds by lowering the protein synthesis and increasing the ER folding 

capacity. If homeostasis cannot be re-established, apoptosis is induced for the benefit of the 

entire organism [33]. 

In this review, current studies on the involvement of the UPR in coronavirus infection 

and pathogenesis will be summarized. The role of UPR activation in host response, in 

particular the induction of apoptosis, will also be reviewed. 

Coronavirus infection and ER stress 

Global proteomic and microarray analyses have shown that the expression of several 

genes related to the ER stress, such as glucose-regulated protein 94 (GRP94) and glucose-

regulated protein 78 (GRP78, also known as immunoglobulin heavy chain-binding protein, or 

BiP), is up-regulated in cells infected with SARS-CoV or in cells over-expressing the SARS-

CoV S2 subunit [34,35]. Using a luciferase reporter system, Chan et al found that both 

GRP94 and GRP78 were induced in SARS-CoV infected FRhK4 cells [36]. Consistently, the 

mRNA level of homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-

like domain member 1 (HERPUD1), an ER stress marker, was up-regulated in L cells infected 

with mouse hepatitis virus (MHV) or SARS-CoV [37]. Data from this group have shown a 

similar induction of ER stress in IBV infected Vero, H1299 and Huh-7 cells (unpublished 

observations). Although no parallel studies have been performed on Alphacoronaviruses, it is 

likely that all three genera of coronaviruses may induce ER stress in the infected cells. 

Current evidence suggests the following three main mechanisms. 

Formation of double membrane vesicles (DMVs). It is well-known that the replication of 

many plus-stranded RNA viruses induces modification of cellular membranes [38]. Among 

them, coronaviruses have been shown to induce the formation of DMVs in infected cells [39]. 

Based on immunocytochemistry electron microscopy data, the DMVs co-localize with 

coronavirus major replicase proteins and are presumably the sites where coronavirus RTCs 

are located [27,28]. Indeed, DMVs are induced in HEK293T cells co-expressing the SARS-

CoV nsp3, nsp4 and nsp6, which are all multispanning transmembrane non-structural proteins 
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[40]. There have been different perspectives regarding the origin of the coronavirus-induced 

DMVs. The late endosomes, autophagosomes and the early secretary pathway have all been 

implicated as the membrane source of DMVs [41,42,43]. Also, co-localization has been 

observed between SARS-CoV non-structural proteins and protein disulfide isomerase (PDI), 

an ER marker [44]. Using high resolution electron tomography, Knoops et al have shown that 

infection of SARS-CoV reorganizes the ER into a reticulovesicular network, which consists 

of convoluted membranes and interconnected DMVs [26]. Recently, Reggiori et al have 

proposed a model in which coronaviruses hijack the EDEMosomes to derive ER membrane 

for DMVs formation [45]. The EDEMosomes are COPII-independent vesicles that export 

from the ER, which are normally used to fine-tune the level of ER degradation enhancer, 

mannosidase alpha-like 1 (EDEM1), a regulator of ER-associated degradation (ERAD) [46]. 

It has been demonstrated that MHV infection causes accumulation of EDEM1 and 

osteosarcoma amplified 9 (OS-9, another EDEMosome cargo), and that both EDEM1 and 

OS-9 co-localize with the RTCs of MHV [45]. These results thus add mechanical evidence to 

support the ER-origin of the coronavirus-induced DMVs.  

Glycosylation of coronaviral structural proteins. Except for the N protein, all coronavirus 

structural proteins are transmembrane proteins synthesized in the ER. The M protein, which is 

the most abundant component of the virus particle, is known to undergo either O-linked (for 

most betacoronaviruses) or N-linked (for all alpha- and gammacoronaviruses) glycosylation 

in the ER [47,48,49]. The glycosylation of M protein is proposed to play a certain function in 

alpha interferon induction and in vivo tissue tropism [50,51,52]. The pre-glycosylated S 

monomers are around 128-160 kDa, whereas sizes can reach 150-200 kDa post-glycosylation 

(exclusively N-linked), indicating that the S protein is highly glycosylated [13]. At least for 

transmissible gastroenteritis coronavirus (TGEV), glycosylation is presumed to facilitate 

monomer folding and trimerization [53]. Moreover, the glycans on SARS-CoV S proteins 

have been shown to bind C-type lectins DC-SIGN (dendritic cell-specific intercellular 

adhesion molecule-3-grabbing non-integrin) and L-SIGN (liver lymph node-specific 

intercellular adhesion molecule-3-grabbing non-integrin), which can serve as alternative 

receptors for SARS-CoV independent of the major receptor ACE2 [54]. The folding, 

maturation and assembly of the gigantic S trimeric glycoprotein rely heavily on the protein 

chaperons inside the ER, such as calnexin. In fact, the N-terminal part of the S2 domain of 

SARS-CoV S protein has been found to interact with calnexin, and knock-down of calnexin 

decreases the infectivity of pseudotyped lentivirus carrying the SARS-CoV S protein [55]. 

Also, treatment of α-glucosidase inhibitors, which inhibit the interactions of calnexin with its 
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substrates, dose dependently inhibits the incorporation of S into pseudovirus and suppresses 

SARS-CoV replication in cell cultures [55]. During coronavirus replication, massive amount 

of structural proteins is synthesized to assembly progeny virions. The production, folding and 

modification of these proteins undoubtedly increase the workload of the ER. 

Depletion of ER lipid during the budding of virions. Budding of coronaviruses occurs in 

the ERGIC, which is a structural and functional continuance of the ER. Thus the release of 

mature virions by exocytosis in effect depletes the lipid component of the ER. Taken together, 

coronavirus infection results in: 1. massive morphological rearrangement of the ER; 2. 

significant increase ER burden for protein synthesis, folding and modification; and 3. 

extensive depletion of ER lipid component. These factors together may contribute to the 

coronavirus-induced ER stress. 

In the following sections, the activation of the three individual branches of the UPR by 

coronavirus infection will be discussed in detail. 

The PERK branch of UPR 

PERK-eIF2α-ATF4 Signaling pathway. The PERK branch of the UPR is believed to be 

activated first in response to ER stress [56]. Activation of PERK begins with the dissociation 

from ER chaperon BiP, followed by oligomerization and auto-phosphorylation. Activated 

PERK then phosphorylates the α-subunit of eukaryotic initiation factor 2 (eIF2α). 

Phosphorylated eIF2α forms a stable complex with and inhibits the turnover of eIF2B, a 

guanine nucleotide exchange factor that recycles inactive eIF2-GDP to active eIF2-GTP. This 

results in a general shutdown of cellular protein synthesis and reduces the protein flux into the 

ER [32]. Besides PERK, three other kinases are known to phosphorylate eIF2α, namely the 

protein kinase RNA-activated (PKR), heme-regulated inhibitor kinase (HRI) and general 

control non-derepressible-2 (GCN2) [32]. PKR is induced by interferon (IFN) and activated 

by the binding of double-stranded RNA (dsRNA) after virus infection [57]. HRI is activated 

in red blood cells and hepatocytes by low levels of heme [58]. GCN2 senses amino acid 

deficiency and is activated via binding to uncharged transfer RNAs [59]. Due to common 

outcome (eIF2α phosphorylation and translation suppression), activation of these kinases is 

collectively known as the integrated stress response (ISR) [32]. 

Interestingly, the mRNAs of certain genes contain small open reading frames in their 

5’ UTR and bypass the eIF2α-dependent translation block. One of these is the activating 

transcription factor 4 (ATF4), which is preferentially translated under ISR. ATF4 in turn 

trans-activates genes involved in amino acid metabolism, redox reactions and stress response. 
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One of ATF4’s target genes is the growth arrest and DNA damage-inducible protein 153 

(GADD153, also known as C/EBP homologous protein, or CHOP). GADD153 induces the 

growth arrest and DNA damage-inducible protein 34 (GADD34), which recruits protein 

phosphatase 1 (PP1) to dephosphorylate eIF2α and release the translation block. To this end, 

if ER stress is resolved, normal protein synthesis can be resumed. However, if ER stress 

persists, GADD153 can induce apoptosis by suppressing the anti-apoptotic protein B-cell 

lymphoma 2 (Bcl-2) and inducing the pro-apoptotic proteins such as Bcl-2-interacting 

mediator of cell death (Bim) [60]. GADD153 also activates endoplasmic reticulum 

oxidoreductin-1α (ERO1α), which encodes an ER oxidase. The increase protein influx to a 

hyper-oxidizing ER aggravates ER stress and induces apoptosis [61] (Figure 3).  

Involvement of the PERK pathway during viral infections. Translation attenuation has been 

widely observed as a defensive mechanism of the host cells against viral infection. By 

reducing the translation of viral proteins, virus replication is hampered and the spread of 

infection is limited, giving enough time for the immune system to initiate effective antiviral 

responses. Among the four eIF2α kinases, PKR, due to its interferon-inducible nature and 

specific recognition of viral dsRNAs, plays an especially important role in inducing 

translation attenuation in virus infected cells [62]. It is therefore not surprising, that viruses 

have evolved various mechanisms to counteract PKR. For example, the non-structural 5A 

(NS5A) protein of hepatitis C virus directly interact with the catalytic site of PKR, whereas 

the NS1 protein in the influenza A virus binds to dsRNAs and thus blocks PKR activation 

[63,64].  

During virus infection, massive production of viral proteins can overload the folding 

capacities of ER and lead to activation of another eIF2α kinase – PERK. Activation of PERK 

has been observed in cells infected with various DNA and RNA viruses, such as vesicular 

stomatitis virus, bovine viral diarrhea virus and herpes simplex virus 1 (HSV1), to name just a 

few [65,66,67]. However, similar to PKR, viruses have adopted counter measures to inhibit 

PERK mediated translation attenuation. For example, the E2 protein of hepatitis C virus 

(HCV) and the glycoprotein gB of HSV1 binds to PERK and inhibits its kinase activity to 

rescue translation [68,69].  

Activation of PERK pathway during coronaviruses infection and its involvement in 

coronavirus-induced apoptosis. There have been diverging results on the activation of PKR 

and/or PERK during coronavirus infection. In an early study, it has been found that there is 

minimal transcriptional activation of PKR and another interferon stimulated gene, 2’5’-

oligoadenylate synthetase (OAS) in cells infected with MHV-1 [70]. In a separate study, 
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phosphorylation of PKR and eIF2α was also not observed in MHV A59-infected cells [71]. 

However, Bechill et al have detected significant eIF2α phosphorylation and up-regulation of 

ATF4 in cells infected with MHV A59, although no induction of GADD153 and GADD34 

was observed [72]. It has been suggested that due to the lack of GADD34-mediated eIF2α 

dephosphorylation, MHV infection induces sustained translation repression of most cellular 

proteins [72]. However, the translation of MHV mRNAs seems to be resistant to eIF2α 

phosphorylation, and the detailed mechanisms for such evasion are yet to be investigated. As 

for SARS-CoV, PKR, PERK and eIF2α phosphorylation are readily detectable in virus 

infected cells [73]. However, knock-down of PKR using specific morpholino oligomers did 

not affect SARS-CoV-induced eIF2α phosphorylation but significantly inhibited SARS-CoV-

induced apoptosis [73]. It is possible that eIF2α is phosphorylated by PERK in SARS-CoV-

infected cells, but similar loss-of-function experiments have not been performed, although 

over-expression of SARS-CoV accessory protein 3a has been shown to activate the PERK 

pathway [74]. 

 The discrepancy regarding the activation of PKR/PERK during coronavirus infection 

may be a result from the different cell culture systems and virus strains used. The 

interpretation is further complicated by the interferon-inducible nature of PKR. It is generally 

believed that coronaviruses are poor type I interferon inducers in vitro [75,76,77], although 

the interferon response may be essential for antiviral activities in vivo [78]. Moreover, it is 

known that coronaviruses employ multiple mechanisms to antagonize the interferon response. 

For example, the nsp16 has been shown to utilize the 2′-O-methyltransferase activity to 

modify coronavirus mRNAs, so as to evade from the cytosolic RNA sensor melanoma 

differentiation-associated protein 5 (MDA5) and type I IFN induction [79,80]. Furthermore, 

the activities of several interferon induced genes (ISGs) have also been shown to be 

modulated by coronaviruses during infection. For instance, Zhao et al have demonstrated that 

the MHV accessory protein ns2 cleaves 2’,5’-oligoadenylate, the product of an ISG called 

OAS [81]. This results in the suppression of the cellular endoribonuclease RNase L activity 

and facilitates virus replication in vitro and in vivo [81,82]. Thus, similar uncharacterized 

mechanisms may be used by MHV and other coronaviruses to block the activation and/or 

downstream signaling of PKR. In this regard, the activation of PERK via ER stress seems to 

be an alternative pathway to activate eIF2α, although coronaviruses may counteract by 

directly targeting eIF2α, as described below. 

Studies done by this group have shown that, phosphorylation of PKR, PERK and 

eIF2α were detectable at early stage of IBV infection (0-8 hpi) but diminished quickly 
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afterwards [83,84]. The rapid de-phosphorylation of eIF2α is likely due to the accumulation 

of GADD34, which is a component of the PP1 complex and a downstream target gene 

induced by GADD153 [84]. Despite of the rapid de-phosphorylation of eIF2α, significant 

induction of GADD153 was observed at late stage of infection (16-24h) at both mRNA and 

protein levels [83]. The up-regulation of GADD153 was likely mediated by both PKR and 

PERK, since knock-down of either PKR or PERK by siRNA reduces IBV-induced GADD153 

[83]. The up-regulation of GADD153 promotes apoptosis in IBV-infected cells, possibly via 

inducing the pro-apoptotic protein tribbles-related protein 3 (TRIB3) and suppressing the pro-

survival kinase extracellular signal-related kinase (ERK) [83]. Based on the findings so far 

obtained, it is safe to conclude that the PERK/PKR-eIF2α-ATF4-GADD153 pathway is 

activated by some, but not all, coronaviruses. In the infected cells, this pathway is activated at 

an early stage but quickly modulated by feedback de-phosphorylation. The PERK/PKR-

eIF2α-ATF4-GADD153 most likely plays a pro-apoptotic function during coronavirus 

infection.  

Integrated stress response pathways and innate immunity. Several recent studies have 

demonstrated the critical roles of cellular stress response pathways in modulating the innate 

immune activation [85]. One of the key regulators that bridge stress and innate immunity is 

GADD34, a negative regulator of eIF2α activation. It has been shown that when stimulated 

with polyriboinosinic:polyribocytidylic acid (polyI:C), the integrated stress response 

pathways were activated in dendritic cells (DCs), leading to up-regulation of ATF4 and 

GADD34 [86]. Interestingly, GADD34 expression did not significantly affect protein 

synthesis in DCs, but was shown to be crucial for the production of interferon β (IFN-β) and 

pro-inflammatory cytokines interleukin-6 (IL-6) [86]. In contrast, GADD34 has also been 

shown to specify PP1 to dephosphorylate the TGF-β-activated kinase 1 (TAK1), thus 

negatively regulating the Toll-like receptor (TLR) signaling and pro-inflammatory cytokines 

[IL-6 and TNF-α (Tumor necrosis factor alpha)] production in macrophages [87]. The 

functional disparities of GADD34 in DCs and macrophages indicate that the integrated stress 

response may be regulated by some other signaling pathways, resulting in cell-type specific 

outcomes in the innate immune activation. Since GADD34 induction was readily observed in 

cells infected with IBV [84], it will be intriguing to ask whether GADD34 also contributes to 

IBV-induced pro-inflammatory cytokines production, and to determine potential cross-talks 

between the PERK pathway and innate immune activation during IBV infection. 

 The massive production of pro-inflammatory cytokines (cytokine storm) has been 

associated with the immunopathogenesis and high mortality rate of SARS-CoV [88]. The 
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transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is 

a master regulator of pro-inflammatory response and innate immunity [89]. It has been well 

established that NF-κB is required for the induction of pro-inflammatory cytokines (such as 

IL-6 and IL-8) and the early expression of IFN-β during RNA virus infection 

[90,91,92,93,94]. Interestingly, induction of TNF-α, IL-6 and IL-8 has been detected in cells 

over-expressing the spike protein of SARS-CoV via the NF-κB pathway [95,96]. Thus it is 

intriguing to consider the involvement of ER stress in activating the NF-κB pathway during 

coronavirus infection. In its inactive form, NF-κB is sequestered in the cytoplasm by inhibitor 

of NF-κB alpha (IκBα), which masks the nuclear localization signal of NF-κB [97]. The basal 

level of IκBα is maintained by constitutive synthesis and degradation of the protein [98]. 

Under various stress conditions, phosphorylation of eIF2α leads to global translation 

repression and a net decrease in IκBα protein level [99]. This then results in the activation of 

NF-κB and induction of pro-inflammatory response (Figure 3). Nonetheless, further studies 

are needed to characterize the actual contributions of ER stress in NF-κB mediated cytokine 

induction during coronavirus infection. 

Previous study done by this group has shown that infection of IBV induced the 

production of IL-6 and IL-8, which was dependent on the phosphorylation of MAP kinase 

p38 [100]. Interestingly, a protein phosphatase called dual-specificity phosphatase 1 (DUSP1) 

was also up-regulated in IBV-infected cells and dephosphorylated p38 to modulate pro-

inflammatory cytokine production [100]. Previous studies have shown that the mRNA and 

protein levels of DUSP1 are modulated by ER stress [101,102]. ER stress-induced DUSP1 

up-regulation is likely to be mediated by ATF3 in the PERK pathway, since knock-down of 

ATF3 significantly reduced DUSP1 induction in cells under ER stress [103]. Thus, it is 

possible that IBV infection activates the PERK branch of UPR to induce DUSP1 expression, 

which in turn dephosphorylates p38 to modulate IBV-induced pro-inflammatory cytokine 

production (Figure 3).  

Besides p38, DUSP1 has also been shown to dephosphorylate c-Jun N-terminal kinase 

(JNK) and ERK [104,105]. It has been long proposed that ERK phosphorylation promotes 

cell survival, whereas prolonged JNK and p38 phosphorylation is linked to the induction of 

apoptosis [106]. Thus, the induction of DUSP1 by ER stress in coronavirus-infected cells may 

also contribute to virus-induced apoptosis via modulation of the MAP kinase pathways. 
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The IRE1 branch of UPR 

IRE1-XBP1 Signaling pathway. The IRE1-XBP1 branch of the UPR is evolutionarily 

conserved from yeast to humans. In response to unfolded proteins, IRE1 undergoes 

oligomerization [107]. This results in trans-autophosphorylation of the kinase domain and the 

activation of IRE1’s RNase domain. So far, the only known substrate for IRE1 RNase activity 

is the mRNA of the X box binding protein 1 (XBP1) gene [108,109]. IRE1 cuts the XBP1 

mRNA twice, removing a 26-nubleotide intron to form a frameshifted transcript, the spliced 

XBP1 (XBP1s). Whereas the unspliced XBP1 mRNA (XBP1u) encodes an inhibitor of the 

UPR, XBP1s encodes a potent transcriptional activator, which translocates to the nucleus and 

enhances the expression of many UPR genes, including those encoding molecular chaperones 

and proteins contributing to ER-associated degradation [110,111] (Figure 4).  

Apart from the XBP1 pathway, activated IRE1 has been shown to recruit TNF 

receptor-associated factor 2 (TRAF2) and induce apoptosis by activating the JNK [112]. This 

IRE1-JNK pathway is independent of IRE1’s RNase activity, but requires IRE1’s kinase 

domain and involves TRAF2-dependent activation of caspase-12 [113]. Moreover, one recent 

study has demonstrated that the IRE1-JNK pathway is required for autophagy activation after 

pharmacological induction of ER stress. It was found that the kinase domain but not the 

RNase activity of IRE1 was required, and treatment of a JNK inhibitor (SP600125) abolished 

autophagosome formation after ER stress [114]. Therefore the IRE1 branch of UPR is closely 

associated with the JNK pathway and involved in JNK-mediated apoptosis and autophagy 

signaling. 

Activation of the IRE1 pathway during coronaviruses infection. The involvement of IRE1-

XBP1 pathway during coronavirus infection has been investigated by several studies, using 

MHV as a model. Either MHV infection or overexpression of the MHV S protein (but not 

other structural proteins) induces XBP1 mRNA splicing [37,72]. However, although XBP1 

mRNA is efficiently spliced, the protein product of spliced XBP1 cannot be detected in either 

the whole cell lysate or the nuclear fraction. Moreover, UPR downstream genes known to be 

activated by XBP1s, such as endoplasmic reticulum DNA J domain-containing protein 4 

(ERdj4), EDEM1 and protein kinase inhibitor of 58 kDa (p58
IPK

 ), are not significantly 

induced after infection [72]. Using a luciferase reporter system, it is shown that MHV 

infection does not inhibit transactivation of unfolded protein response element (UPRE) and 

ER stress response element (ERSE) promoter by XBP1s. Because MHV infection is 

associated with persistent eIF2α phosphorylation and host translational repression, it is likely 

that failure to translate the XBP1s protein may be the main reason why activation of the IRE1 
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branch does not occur even though XBP1 mRNA splicing is observed. On the other hand, 

although SARS-CoV belongs to the same genera of Betacoronavirus as MHV, neither 

infection with SARS-CoV nor overexpression of SARS-CoV S protein induces XBP1 mRNA 

splicing [37,115]. It is possible that other viral proteins of SARS-CoV (such as the E protein 

mentioned below), function as an antagonist of IRE1-XBP1 activation. 

Result from this group has also shown that the IRE1-XBP1 pathway is activated in 

cells infected with IBV. In IBV-infected Vero cells, significant splicing of XBP1 mRNA was 

detected starting from 12-16 hours post infection till the late stage of infection. The mRNA 

levels of XBP1 effector genes (EDEM1, ERdj4 and p58
IPK

) were up-regulated in IBV-

infected Vero cells. The activation of IRE1-XBP1 pathway was also detectable, though at a 

lower level, in other cell lines such as H1299 and Huh-7 cells. Treatment of IRE1 inhibitor 

effectively blocked IBV-induced XBP1 mRNA splicing and effector genes up-regulation in a 

dosage-dependent manner. Consistently, knockdown of IRE1 inhibited IBV-induced XBP1 

mRNA splicing, whereas overexpression of wild type IRE1 (but not its kinase dead or RNase 

domain deleted mutants) enhanced IBV-induced XBP1 mRNA splicing. These results suggest 

that the IRE1-XBP1 pathway is indeed activated in cells infected with IBV. Interestingly, an 

earlier onset and more significant apoptosis induction in IRE1-knockdown IBV-infected cells 

was observed, which is associated with hyper-phosphorylation of pro-apoptotic kinase JNK 

and hypo-phosphorylation of pro-survival kinase RAC-alpha serine/threonine-protein kinase 

(Akt). Taken together, IRE1 may modulate IBV-induced apoptosis and serve as a survival 

factor during coronavirus infection. 

Interestingly, a recent report by DeDiego et al demonstrates that the coronavirus E 

protein may modulate the IRE1-XBP1 pathway. Using a recombinant SARS-CoV that lacks 

the E protein (rSARS-CoV-ΔE), it is found that both XBP1 splicing and induction of UPR 

genes significantly increase in the absence of E protein. Moreover, E protein also suppresses 

ER stress induced by RSV and drugs (thapsigargin and tunicamycin) [115]. Whether the UPR 

modulating activity is related to the viroporin property of E protein remains to be 

investigated, but this study explains, at least in part, why SARS-CoV lacking the E protein is 

attenuated in animal models [116,117]. 

IRE1-dependent decay during virus infection. Notably, one recent study has demonstrated 

an alternative function of IRE1. It was found that at the late stage of ER stress, IRE1 mediates 

non-specific cleavage of membrane associated mRNA species. This was dubbed IRE1-

dependent decay (RIDD) and was proposed to resolve ER stress by reducing the amount of 

transcripts influx [118]. It is intriguing to think of RIDD as a host anti-viral mechanism. 
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During prolonged ER stress induced by infection, non-specific RNase activity of IRE1 may 

decay the membrane associated viral mRNA. In fact, it has been recently suggested that 

RIDD is activated during Japanese encephalitis virus (JEV) infection in Neuro2a cells [119]. 

Interestingly, RIDD specifically degraded known target mRNA transcripts but not JEV 

RNAs. Also, treatment with IRE1 RNase activity inhibitor suppressed viral replication, 

indicating that JEV benefits from RIDD activation  [119].  

IRE1 pathway and innate immunity. Similary to the integrated stress response, the IRE1 

pathway has also been implicated in the innate immune response [85]. Martinon et al have 

shown that in murine macrophages, the IRE1-XBP1 pathway is specifically activated by 

TLR4 and TLR2 [120]. Interestingly, the ER stress and TLR activation synergistically 

activate IRE1 and induce the production of pro-inflammatory cytokines such as IL-1β and IL-

6 [120]. Consistently, Hu et al have demonstrated that the IRE1-XBP1 pathway is also 

involved in IFN-β and pro-inflammatory cytokines production in murine DCs induced by 

polyI:C [121]. Significantly, it has been shown that overexpression of the spliced form of 

XBP1 enhanced IFN-β production in DCs and significantly suppressed vesicular stomatitis 

virus infection [121]. Preliminary results from this group have also found that the activation 

of IRE1-XBP1 pathway is required for IL-8 induction in cells infected with IBV (unpublished 

data). On the other hand, the kinase but not the RNAse activity of IRE1 has been associated 

with ER stress induced NF-kB activation [122]. Under ER stress, IRE1 has been shown to 

phosphorylate TRAF2, which activates the IκB kinase (IKK) and contributes to its basal 

activity (Figure 4). IKK in turns phosphorylates IκBα and promotes its proteasomal 

degradation, releasing NF-κB to activate downstream genes [122]. Taken together, these 

findings suggest that IRE1 may act synergistically with players in innate immunity and serve 

as a supplementary sensor and/or signaling factors during coronavirus infection. 

The ATF6 branch of UPR 

 The ER stress sensor ATF6 has an N-terminal cytoplasmic domain, a single 

transmembrane segment and an ER luminal domain that sense the presence of 

unfolded/misfolded proteins. Under ER stress, ATF6 is translocated from the ER to the Golgi 

apparatus and cleaved by protease S1P and S2P [123]. The cleavage releases the cytosolic 

basic leucine zipper (bZIP) domain, which translocates into the nucleus and activates genes 

harboring the ERSE or ERSE II [124]. The identified targets genes of ATF6 include ER 

chaperones (such as GRP78, GRP94), protein disulfide isomerase and the UPR transcription 

factors GADD153 and XBP1 [56]. Previously, it was proposed the ATF6 pathway is mainly 
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pro-survival, as it enhances the ER protein folding capacity to counteract ER stress [56]. 

However, recent studies have demonstrated that, under certain circumstances, ATF6-mediated 

signals may also contribute to ER-stress induced apoptosis, possibly via activation of CHOP 

and/or suppression of myeloid cell leukemia sequence 1 (Mcl-1) [125,126,127] . 

The infection of cells by several viruses has been shown to activate the ATF6 

pathway, including the Tick-borne encephalitic virus,  African swine fever virus (ASFV), 

West Nile virus (WNV) and HCV [128,129,130,131]. In the case of ASFV, ATF6 activation 

has been shown to modulate ASFV-induced apoptosis and facilitate viral replication [129]. 

For WNV, it has been shown that ATF6 activation promotes efficient WNV replication by 

suppressing signal transducer and activator of transcription 1 (STAT1) phosphorylation and 

late-phase interferon signaling [132]. The NS4B protein of HCV has been shown to activate 

ATF6 signaling in cultured cells [133]. Induction of chronic ER stress and adaptation of 

infected hepatocyte to UPR have been considered important for HCV persistent infection and 

pathogenesis in vivo [131,134]. 

Compared with the PERK and IRE1 pathway, the induction of ATF6 pathway during 

coronaviruses infection has not been deeply investigated. In MHV-infected cells, significant 

cleavage of ATF6 could be detected starting from 7 hours post infection [72]. However, the 

levels of both full length and cleaved ATF6 protein diminished at later time points during 

infection. Moreover, activation of ATF6 target genes was not observed at the mRNA level, as 

determined by luciferase reporter constructs under the control of ERSE promoters [72]. It is 

also unlikely that MHV infection suppresses downstream signaling of the ATF6 pathway, 

because the reporter induction by overexpressed ATF6 was not inhibited by MHV infection. 

The authors thus conclude that global translation shutdown via eIF2α phosphorylation prevent 

accumulation of ATF6 and activation of ATF6 target genes [72]. The involvement of ATF6 

pathway during infection of other coronaviruses has not been well characterized. 

Although the spike proteins of coronaviruses have been considered the major 

contributor in ER stress induction, overexpression of SARS-CoV spike protein fails to 

activate ATF6 reporter constructs [36]. On the other hand, the accessory protein 8ab of 

SARS-CoV has been identified to induce ATF6 activation [135]. The 8ab protein was found 

in SARS-CoV isolated from animals and early human isolates. In SARS-CoV isolated from 

humans during the peak of the epidemic, there is a 29-nt deletion in the middle of ORF8, 

resulting in the splitting of ORF8 into two smaller ORFs, namely ORF8a and ORF8b, which 

encode two truncated polypeptides 8a and 8b [136]. ATF6 cleavage and nuclear translocation 

was observed in cells transfected with SARS-CoV 8ab [135]. Physical interaction between 
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8ab and the luminal domain of ATF6 was also demonstrated by co-immunoprecipitation. 

However, similar experiments have not been performed for the 8a and 8b proteins. Also, 

further studies using recombinant SARS-CoV lacking 8a, 8b or 8ab would be required. 

Conclusion 

 Coronaviruses constitute human and animal pathogens that are medically and 

economically important. Much remains unknown regarding the host virus interactions during 

infection. Recent studies have demonstrated that coronaviruses infection induces ER stress in 

infected cells and activates the UPR. Activation of the PERK pathway (possibly in synergy 

with PKR and/or other integrated stress response kinases) leads to phosphorylation of eIF2α 

and a global translation shutdown. At late stage of infection, up-regulation of transcription 

factor GADD153 likely contributes to coronaviruses induced apoptosis. Activation of the 

IRE1 pathway induces XBP1 mRNA splicing and expression of downstream UPR genes. 

Interestingly, IRE1 but not XBP1 is also shown to modulate the JNK and Akt kinase 

activities, thus protecting infected cells from virus induced apoptosis. The ATF6 pathway is 

also activated in coronaviruses infected cells, resulting in the up-regulation of chaperon 

proteins to counteract ER stress.  

However, many questions remain to be addressed. First, although the coronaviruses 

spike proteins are demonstrated to induce ER stress and UPR, detailed mechanisms regarding 

molecular interactions between the spike proteins and PERK/IRE1/ATF6 have not been 

determined. Secondly, it should be noted that the phenotypes observed in cells overexpressing 

viral proteins may not essentially reflect their physiological functions in the setting of a real 

infection. Further experiments using recombinant viruses with deletion of or modification in 

the target viral proteins should be performed to validate these findings [115]. Last but not the 

least, the three branches of UPR should not be considered functionally independent, but rather 

as an integrated regulatory network [32]. For example, besides being spliced by IRE1, XBP1 

is also transcriptionally activated by PERK and ATF6 [109,137]. Also, it is difficult to 

separate the translation shutdown effect mediated by PERK and the induction of UPR genes 

by PERK and the other two ER stress sensors, as in the studies with MHV [72].  

Nonetheless, there are scientific and clinical significance for studies on ER stress and 

UPR induction during infection with coronaviruses and other viruses. As an evolutionarily 

conserved and well characterized stress response pathway, it serves as a perfect model to 

study host-virus interactions and pathogenesis. Moreover, besides apoptosis, UPR has been 

recently demonstrated to crosstalk with other major cellular signaling pathways, including 
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MAP kinases pathways, autophagy and innate immune responses [86,113,114,120,121]. Thus, 

further investigations on coronaviruses induced UPR may also help identifying new targets 

for antiviral agents and developing more effective vaccines against coronaviruses.  
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Figure legends 
 

Figure 1 

Schematic diagram showing the replication cycle of coronavirus and the stages in which ER 

stress may be induced during coronavirus infection. Infection starts with receptor binding and 

entry by membrane fusion. After uncoating, the genomic RNA is used as a template to 

synthesize progeny genomes and a nested set of subgenomic RNAs. The replication 

transcription centers are closely associated with double membrane vesicles, which are 

proposed to be adopted from the modified ER, possibly by the combined activities of non-

structural proteins nsp3, nsp4 and nsp6. The S, E and M proteins are synthesized and 

anchored on the ER, whereas the N protein is translated in the cytosol. Assembly takes place 

in the ERGIC and mature virions are released via smooth-walled vesicles by exocytosis. The 

three stages that presumably induce ER stress are highlighted with numbered star signs, 

namely: 1. formation of double membrane vesicles, 2. massive production and modification 

of structural proteins and 3. depletion of ER membrane during budding. 

 

Figure 2 

Flowchart showing the induction of ER stress and its physiological outcomes during 

coronavirus infection. The integrated stress response pathways (including PERK) trigger 

translation shutdown and modulate apoptosis. The ATF6 pathway enhances the ER folding 

capacity, and the IRE1 pathway affects both ER folding and apoptosis induction. Pointed 

arrows indicate activation, and blunt-ended lines indicate inhibition. The dotted line suggests 

uncharacterized function of GCN2 and HRI during coronavirus infection. 

 

Figure 3 

Working model of PKR/PERK-eIF2α-ATF4-GADD153 pathway activation during 

coronavirus infection, using IBV as an example. Phosphorylation of eIF2α by PERK and PKR 

induces the expression of ATF4, ATF3, and GADD153. GADD153 exerts its pro-apoptotic 

activities via suppressing Bcl2 and ERKs by inducing TRIB3. The potential induction of 

DUSP1 by ATF3 may modulate phosphorylation of p38 and JNK, thus regulating IBV-

induced apoptosis and cytokine production. The translation attenuation due to eIF2α 

activation can also lead to reduced inhibition of IκBα on NF-κB, which in turn promote 

cytokine production. Pointed arrows indicate activation, and blunt-ended lines indicate 

inhibition. The question mark indicates hypothetical mechanism. 

 

Figure 4 

Working model of IRE1-XBP1 signaling pathway during coronavirus infection, using IBV as 

an example. IRE1 mediates XBP1 splicing, which up-regulates UPR target genes to restore 

ER stress, and the spliced XBP1 may also modulate the interferon and cytokine secretion. 

IRE1 activation modulates the phosphorylation of Akt and JNK, thus affecting IBV-induced 

apoptosis. IRE1 is also responsible for basal activity of IKK, which phosphorylates IκBα to 

remove its inhibition on NF-κB, thus facilitating the production of type I interferon and pro-

inflammatory cytokines. Pointed arrows indicate activation, and blunt-ended lines indicate 

inhibition. The question mark indicates hypothetical mechanism. 
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