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ABSTRACT

Autophagy plays important roles in modulating viral
replication and antiviral immune response. Coronavirus
infection is associated with the autophagic process,
however, little is known about the mechanisms of
autophagy induction and its contribution to coronavirus
regulation of host innate responses. Here, we show that
the membrane-associated papain-like protease PLP2
(PLP2-TM) of coronaviruses acts as a novel autophagy-
inducing protein. Intriguingly, PLP2-TM induces incom-
plete autophagy process by increasing the accumula-
tion of autophagosomes but blocking the fusion of
autophagosomes with lysosomes. Furthermore, PLP2-
TM interacts with the key autophagy regulators, LC3 and
Beclin1, and promotes Beclin1 interaction with STING,
the key regulator for antiviral IFN signaling. Finally,
knockdown of Beclin1 partially reverses PLP2-TM’s
inhibitory effect on innate immunity which resulting in
decreased coronavirus replication. These results sug-
gested that coronavirus papain-like protease induces
incomplete autophagy by interacting with Beclin1, which
in turn modulates coronavirus replication and antiviral
innate immunity.
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INTRODUCTION

Autophagy is an evolutionarily conserved intracellular pro-
cess which plays an important role in eliminating damaged
organelles and long-live proteins for maintenance of cellular
homestasis (Mizushima, 2009). During autophagy, cyto-
plasmic constituents are engulfed by double-membrane
vesicles termed autophagosomes that are destined for
fusion with lysosomes for content degradation. Under stress
conditions such as starvation, autophagic acitivity is greatly
augmented from its basal levels, providing recyclable
resources that help maintain metabolism and ATP levels for
cell survival (Rabinowitz and White, 2010). Recent studies
have demonstrated that autophagy is involved in various
physiologic and pathologic processes including cancer,
cardiovascular disease, metabolism, viral infections and
immune response, etc. (Deretic, 2012; Levine and Deretic,
2007; Mihaylova and Shaw, 2011; Shintani and Klionsky,
2004; Yang et al., 2011).

Autophagy is a dynamic process which includes initiation,
nucleation, elongation and maturation. It is tightly regulated
by a number of autophagy-related genes (ATG) and other
multiple protein complexes (Kroemer and Levine, 2008). The
ULK1-Atg13-FIP 2000 and class III PI3K complex, which
contain Beclin1 and vps34, among other key components,Xiaojuan Chen and Kai Wang contributed equally to this work.
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regulate the initiation and nucleation of phagophore, the
precursor of autophagic membranes. In the stage of elon-
gation and complete closure of autophagosome mem-
branes, two ubiquitin-like conjugation systems come into
play. The first one is the Atg12-Atg5-Atg16L complex con-
jugation system and the second involves Atg4B, Atg3 and
Atg7. The net outcome of the ubiquitin-like reactions cata-
lyzed by these two systems is the conversion of microtubule
associated protein 1B light chain 3 (LC3) from its cytosolic
form (LC3-I) to the membrane bound, phosphatidylethanol-
amine conjugated form (LC3-II), a process known as LC3
lipidation. The conversion of LC3-I to LC3-II is a hallmark of
autophagy and is indicative of autophagic activity, which can
be monitored by LC3 immunoblotting or immunofluores-
cence (to monitor LC3 puncta formation) (Barth et al., 2010;
Choi et al., 2013; Kabeya et al., 2000; Mizushima et al.,
2010). The terminal step of autophagy, in which auto-
phagosome is fused with lysosomes for content degradation,
is assisted by UVRAG, VPS34, VPS15 and Beclin1 complex
(Glick et al., 2010; Kuballa et al., 2012; Weidberg et al.,
2011).

During their co-evolution with hosts, viruses have
acquired elaborate strategies to evade, counteract and
sometimes co-opt protective mechanisms of host cells.
Unfortunately, the autophagy pathway is one of these. While
this lysosomal degradation pathway can lead to degradation
of viral components, acting as an intrinsic antiviral defense
mechanism, many viruses either block autophagy or exploit
it for their own replication (Dong and Levine, 2013; Dreux
and Chisari, 2010; Richards and Jackson, 2013; Sumpter
and Levine, 2011). As a critical regulator in both the early
and late steps of autophagy, Beclin1 has emerged as a
prime target for different viruses, such as influenza virus,
HIV, and herpes viruses (Munz, 2011). However, targeting
Beclin1 by a positive-strand RNA virus has not been repor-
ted. Coronaviruses (CoVs) are a large group of positive-
strand RNA viruses that replicate in cytoplasm of host cells
but don’t induce high level of IFN products (Clementz et al.,
2010; Devaraj et al., 2007; Zhou and Perlman, 2007). These
viruses induce the formation of cytoplasmic double-mem-
brane vesicles (DMVs) which are believed to be the site for
assembly of viral transcription-replication complexes (Gosert
et al., 2002; Hagemeijer et al., 2010; Knoops et al., 2008;
Snijder et al., 2006). The origin of DMVs remains obscure,
but these structures are often decorated with an autophage
marker, LC3 (Bernasconi et al., 2012; Maier and Britton,
2012; Maier et al., 2013). Although coronavirus infections
are known to be accompanied with activation of autophagy
(Cottam et al., 2011; Knoops et al., 2008; Prentice et al.,
2004; Reggiori et al., 2010), relatively little is known about
the role autophagy may play in the coronavirus life cycle, as
are the mechanisms of autophagy induction and its contri-
bution(s) to viral regulation of host responses, especially
those concerning innate immunity. Overall, these aspects
have been under intense investigation, and new knowledge

stemmed from such studies hold the key(s) to a better
understanding of coronvirus pathogenesis.

Previously, it has been shown that the papain-like prote-
ase (PLP) domains contained in the nonstructural protein
(nsp) 3 of coronaviruses of SARS-CoV (Devaraj et al., 2007),
HCoV-NL63 (Clementz et al., 2010) and porcine epidemic
diarrhea Virus (PEDV) (Xing et al., 2013) act as IFN antag-
onists. Several mechanisms have been proposed. First, the
SARS-CoV PLpro forms a complex with IRF3 and blocks
IRF3 phosphorylation and nuclear translocation (Devaraj
et al., 2007). Second, SARS-CoV PLP and PLP2 of HCoV-
NL63 and PEDV also interact with and impede the dimer-
ization of stimulator of IFN genes (STING, a.k.a, MITA/
MPYS/ERIS) (Sun et al., 2012a). Third, the aforementioned
coronavirus PLPs possess de-ubiquitinating activity, which
may also contribute to the ability of these PLPs to disrupt
host innate immunity by removing ubiquitin moieties from
signaling molecules in the innate antiviral pathways (Bibeau-
Poirier and Servant, 2008; Chen, 2012; Loo and Gale, 2011).
Given that autophagy is increasingly implicated in virus-host
interactions and activation of this pathway is dependent on
ubiquitin-like reactions, we set out to determine whether PLP
impacts on autophagy. Our data show that the membrane-
associated PLP2 (PLP2-TM) of HCoV-NL63 and PEDV and
PLpro-TM of SARS-CoV and the new-emerging Middle East
respiratory syndrome coronavirus (MERS-CoV) (Yang et al.,
2014) represent a novel class of viral proteins encoded by
coronaviruses that induce autophagy. Interestingly, we found
that PLP2-TM induces incomplete autophagy, leading to
accumulation of autophagosomes while impairing the fusion
of autophagosomes with lysosomes. Intriguingly, PLP2-TM
was found to associate with LC3 and Beclin1, two critical
components of the autophagy pathway, and knockdown of
Beclin1 partially reversed the blockade of PLP2-TM on
innate immune signaling to the IFN-β promoter. The PLP-TM
targeting of Beclin1 to control autophagic activity may rep-
resent a novel mechanism of coronaviral regulation of anti-
viral innate immunity.

RESULTS

PLP2-TM is a novel autophagy-inducing protein
encoded by coronavirus

To determine whether coronavirus PLPs regulate autophagy,
we first studied the impact of ectopic expression of the trans-
membrane (TM)-containing form of PLP2 (PLP2-TM) of
HCoV-NL63 on formation of autophagosomes (Chen et al.,
2007; Clementz et al., 2010; Sun et al., 2012a) (Fig. 1A).
HEK293T cells were co-transfected with an eGFP-LC3B-
expressing plasmid and the V5 eiptope-tagged PLP2-TM. At
48 h post-transfection, cells were fixed, immunostained using
an anti-V5 antibody, and examined for PLP expression and
evidence of autophagosome formation by confocal fluores-
cencemicroscopy. As a positive control, cells transfected with
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eGFP-LC3B for 48 h were treated with Rapamycin, a well-
known autophagy inducer, for 6 h. eGFP-LC3 fluorescence
microscopy is a well-accepted method of monitoring auto-
phagosome formation, asmeasured by a change in the eGFP-
LC3 fluorescence pattern from diffuse to punctate distribution
(Klionsky et al., 2012). As shown in Fig. 1B and Fig. 1C,
HEK293T cells had very low basal autophagic activity, with
less than 5% of cells exhibiting punctate eGFP-LC3. Short-
term treatment with Rapamycin efficiently induced autophagy,
resulting in eGFP-LC3 puncta formation in ∼40% of cells.
Ectopic expression of PLP2-TM caused a clear redistribution
of eGFP-LC3B to punctate structures, indicative of formation
of autophagosomes (Fig. 1B). Quantitative analysis revealed
thatwhile∼60%of cells expressingPLP2-TMexhibited eGFP-
LC3 punctation (Fig. 1C). These results suggest that besides
the deubiquitinase (DUB) activity and IFNantagonist (Barretto
et al., 2005; Chen et al., 2007; Clementz et al., 2010; Devaraj
et al., 2007; Sun et al., 2012a), the PLP2-TM encoded by
human coronavirus NL63 is a novel autophagy-inducer.

To corroborate this finding, we performed transmission
electron microscopy (TEM) to directly visualize autophago-
somes in cells expressing PLP2-TM, and as a negative
control, in cells expressing the empty vector. Double mem-
brane vacuoles containing cytoplasmic organelles, which are
characteristic of autophagosomes, were readily visible in the
cytoplasm of PLP2-TM-transfected cells (Fig. 1D, middle
panel), as were in cytoplasm of Rapamycin-treated cells
(Fig. 1D, right panel). In contrast, no autophagosome-like
structures were observed in cells transfected with the empty
vector (Fig. 1D, left panel). The number of autophagic vac-
uoles per cell was significantly higher in the PLP2-TM-
transfected cells as compared with that in the empty vector-
transfected cells (Fig. 1D, middle panel vs. left panel). These
data provide morphological evidence that PLP2-TM pro-
motes autophagosome accumulation. In addition, they con-
firm that the autophagy-inducing effect was attributed to
expression of PLP2-TM but not to the transfection reagent/
process per se.

Expression of PLP2-TM induces autophagy in multiple
cell lines

Next, we investigated whether PLP2-TM induces autophagic
vesicle formation in cell lines other than HEK293T cells. To
this end, HeLa and MCF-7 cells were co-transfected with
eGFP-LC3B and either PLP2-TM or the empty vector, fol-
lowed by examination of eGFP-LC3 puncta formation. Both
cell lines had higher basal levels of autophagic activity than
HEK293T cells, as demonstrated by the presence of a small
number of eGFP-LC3 puncta in 30%–40% of cells
expressing the empty vector (Fig. 2A and 2B). The high
basal levels of autophagic activity in control HeLa cells were
not unexpected, as similar finding has been reported by
others (Mizushima et al., 2010). Importantly, ectopic
expression of PLP2-TM doubled the percentage of cells

exhibiting eGFP-LC3 puncta in both HeLa and MCF-7 cells
(Fig. 2B).

Activation of autophagy involves the association of LC3
with autophagic phagophore membranes that depends on
the conversion from the cytosolic, soluble form, LC3-I, to the
membrane-bound form, LC3-II. This ubiquitin-like modifica-
tion, termed lipidation, can be illustrated by a change in
migration on SDS-PAGE gel and is a widely used marker for
monitoring autophagy (Klionsky et al., 2012; Mizushima
et al., 2010). To further validate the finding that PLP2-TM
promotes autophagy, we measured the expression levels of
endogenous LC3-I and LC3-II in cells following expression of
PLP2-TM, in comparison with cells expressing the control
vector, by Western blotting. Consistent with the eGFP-LC3
fluorescence and TEM data, ectopic expression of PLP2-TM
substantially increased the abundance of LC3-II in HEK293T
(Fig. 2C), HeLa (Fig. 2D) and MCF-7 (Fig. 2E) cells. Col-
lectively, these data confirm that the induction of autophagy
by PLP2-TM is not a cell-type specific phenomenon. It is of
interest to point out that the basal levels of endogenous
LC3-II were higher in HeLa cells than in HEK293T cells, an
observation which was in agreement with the data on eGFP-
LC3 punctation (Fig. 2B).

Induction of autophagy by various coronaviral PLPs
in a protease-independent manner

As with HCoV-NL63 PLP2-TM, the PLpro-TM of SARS-CoV,
MERS-CoV PLpro-TM and PLP2-TM of PEDV also possess
de-ubiquitinating and interferon antagonism activities (Cle-
mentz et al., 2010; Devaraj et al., 2007; Xing et al., 2013;
Yang et al., 2014). The finding that PLP2-TM of HCoV-NL63
induces autophagy prompted us to investigate whether the
PLP2-TM homologues encoded by other coronaviruses also
have a similar function. Western blotting was carried out to
determine the expression of LC3-I and LC3-II in HEK293T
cells ectopically expressing various coronaviral PLPs
(Fig. 3A). While LC3-II was undetectable in cells transfected
with control vector (lane 1, Fig. 3), its expression was
strongly induced in cells expressing SARS-CoV PLpro-TM
(lane 3, Fig. 3A) or PEDV PLP2-TM (lane 5, Fig. 3A), as was
in cells expressing HCoV-NL63 PLP2-TM (lane 2, Fig. 3).
Although its effect was less pronounced, expression of the
MERS-CoV PLpro-TM also caused substantial increase in
LC3-II expression (lane 4, Fig. 3A). Next, to determine if the
protease activity of PLP2 is required for its induction of
autophagy, NL63 PLP2-TM and its catalytic mutants
(C1678A, H1836A and D1849A) (Fig. 1A) were transfected
into HEK293T cells and the conversion from the cytosolic,
soluble form, LC3-I, to the membrane-bound form was
detected. We found that, like as the PLP2-TM, ectopic
expression of all the catalytic mutants substantially
increased the abundance of LC3-II, indicating that the cat-
alytic activity is not required for induction of autophagy by
PLP2-TM. Collectively, these results imply that the ability to
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promote autophagy is a shared attribute of coronavirus
PLP2-TM and its homologs in a protease-independent
manner. In subsequent investigations, we focused our efforts

on using HCoV-NL63 PLP2-TM to delineate the molecular
details underlying interactions of coronaviral PLP with the
autophagy pathway.
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Figure 1. PLP2-TM is a novel autophagy-inducing protein encoded by coronavirus. (A) Schematic diagram illustrating

coronavirus NL63 genome, polyprotein (pp) 1a/b, the predicted processing of replicase polyproteins (pp) to nsp’s. The domains,

including the predicted transmembrane (TM), in nsp3, and the membrane anchored-PLP2 construct (PLP2-TM) that were used in this

study are indicated. (B) PLP2-TM is a novel autophagy-inducing protein encoded by coronavirus. The plasmid of HCoV-NL63 PLP2-

TM-V5 was co-transfected with pcDNA3.1-eGFP-LC3B into HEK2923T cells. As the positive control for induction of autophagy,

HEK293T cells were transfected with eGFP-LC3B for 48 h and then treated with complete medium supplemented with 400 nmol/L

Rapamycin for 6 h. The immunofluoresence of the cells were detected using a confocal microscope after stained with anti-V5-tagged

primary antibody, followed by being stained with Alexa Fluor 594-conjugated goat anti-rabbit secondary antibody. The localization of

eGFP-LC3B positive autophagosome accumulation (green) and the V5-tagged PLPs products (anti-V5, red) was visualized using a

confocal microscope. (C) Quantification of cells displaying eGFP-LC3B puncta in PLP2-TM transfected cells. HEK 293T cells were

transiently co-transfected with eGFP-LC3B and PLP2-TM-expression constructs. Forty-eight hours later, cells with eGFP-LC3B

puncta formation were quantificated under a fluorescence confocal microscope. Three random fields, each containing at least 80

cells, were counted. Results from one representative experiment are shown in Fig. 1B. (D) PLP2-TM induces autophagosome-like

structures detected using a transmission electron microscope. HEK293T cells were transfected with pcDNA3.1 or PLP2-TM-V5 for

48 h and then cells were analyzed for autophagosome formation using a transmission electron microscope. The cells treated by

400 nmol/L Rapamycin were analyzed to serve as a positive control for induction of autophagy. Red arrows indicate representative

autophagosome-like structures. N indicates the cellular nuclear. Scale bar indicates 500 nm.
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Time-dependent induction of autophagy by PLP2-TM

To understand the temporal regulation of autophagy by
PLP2-TM, we monitored time-course eGFP-LC3B puncta
formation in HEK293T cells co-transfected with HCoV-NL63
PLP2-TM and eGFP-LC3B. Significant eGFP-LC3B puncta
formation was observed in cytoplasm of PLP2-TM-transfec-
ted cells as early as 24 h post transfection (Fig. 4A), when
PLP2-TM protein was first detected (Fig. 4C). In addition,
eGFP-LC3B puncta steadily increased at 48 h post trans-
fection (Fig. 4A and 4B), concomitant with an increase in
PLP2-TM expression levels (Fig. 4C). Approximately 40% of
cells displayed cytoplasmic eGFP-LC3B puncta at 24 h
postransfection, and that number climbed to >70% at 48 h
(Fig. 4B). In contrast, cells co-transfected with control vector
exhibited largely diffuse eGFP-LC3B fluorescence, with less
than 7% of cells having background levels of eGFP-LC3B
puncta, regardless of the time points monitored (at either 24
or 48 h post transfection, Fig. 4A and 4B). In line with these
data, the abundance of endogenous LC3-II protein was
reproducibly upregulated in a time-dependent manner in
cells transfected with PLP2-TM (Fig. 4C and Fig. 4D), a
phenomenon which was not observed with cells transfected
with the control vector (data not shown). The increase in

LC3-II protein levels by PLP2-TM, however, was substan-
tially reduced in cells treated with 3-MA (Fig. 4E and 4F), an
autophagy inhibitor (Mizushima et al., 2010), providing
additional support for the notion that PLP2-TM increases
cellular autophagic activity. In aggregate, the time-depen-
dent increase in eGFP-LC3B puncta formation and upregu-
lation of LC3-II abundance in PLP2-TM-transfected cells but
not in control vector-expressing cells confirms that the
heightened autophagic activity results specifically from
PLP2-TM expression.

PLP2-TM impairs the fusion of autophagosomes
with lysosomes

The terminal step in autophagy is the fusion of autophago-
somes with lysosomes to form autolysosomes and sub-
sequent degradation of the content. We wondered whether
the PLP2-TM-induced accumulation of autophagosomes
resulted in enhanced autophagic degradation. To answer
this question, we measured the protein levels of a well-
characterized autophagic substrate, p62/SQSTM1, which
binds to LC3 and is specifically degraded as a result of
complete autophagic flux (Bjorkoy et al., 2005; Pankiv et al.,

EC D293T

LC3-I
LC3-II

1    2    3 
β-Actin

WB: LC3B
WB: V5

WB: β-Actin
PLP2-TM

Vector

Rapamycin
PLP2-TM

+ +
+

+

-
-
- -

-

Hela
Vector

Rapamycin
PLP2-TM

+ +
+

+

-
-
- -

-

1    2    3 

WB: LC3B
WB: V5

WB: β-Actin

LC3-I
LC3-II

β-Actin
PLP2-TM

WB: LC3B
WB: V5

WB: β-Actin

MCF-7

1    2    3 

LC3-I
LC3-II

β-Actin
PLP2-TM

Vector

Rapamycin
PLP2-TM

+ +
+

+

-
-
- -

-

A B
293T Hela MCF-7

eGFP-LC3B
+

Vector

eGFP-LC3B
+

Rapamycin

eGFP-LC3B
+

PLP2-TM

P
un

ct
at

e 
ce

lls
 (%

)

10
20
30
40
50
60
70

0

80
90

100

293T Hela MCF-7

Vector

Rapamycin
PLP2-TM

Figure 2. Autophagosome induced by CoV NL63 PLP2-TM in various cell lines. (A) PLP2-TM-V5 and pcDNA3.1-eGFP-LC3B

were co-transfected respectively into HEK2923T, HeLa and MCF-7 cells. The cells were fixed at 48 h post-transfection and were

analyzed for eGFP-LC3B positive autophagosome accumulation (green) using a confocal microscope as described in Fig. 1B.

(B) Quantification of cells displaying eGFP-LC3B puncta from one representative experiment that shown in Fig. 2A as described in

Fig. 1C. (C–E) HEK293T, HeLa and MCF-7 cells were transfectd with PLP2-TM-V5 or empty vector as a negative control for 48 h.

These cells were also treated by 400 nmol/L Rapamycin to serve as a positive control for induction of autophagy. The cells were then

lysed for Western blotting analysis using a rabbit anti-LC3 antibody to detect the endogenous LC3 expression (top panel in each

Fig. 2C–E). The whole cell lysate (WCL) was blotted using anti-V5 antibodies to evaluate expression of PLP2-TM (middle panel in

each Fig. 2C–E), and β-Actin was detected from whole cell lysate (WCL) as a loading control (bottom panel in each Fig. 2C to 2E).
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2007), in PLP2-TM-expressing HEK293T cells by immuno-
blotting. Although the abundance of LC3-II was upregulated
by PLP2-TM, which is indicative of increased autophagic
activity (Fig. 5A, compare lane 2 vs. lane 1 in LC3-I/II panel),
the level of the p62 was not reduced but rather slightly
increased (compare lane 2 vs. lane 1 in top panel). In con-
trast, Rapamycin, which induced complete autophagy, not
only increased LC3-II levels but also caused a significant
decline in p62 expression (compare lane 3 vs. lane 1).
Furthermore, the decreased p62 expression that induced by
Rapamycin was recovered by PLP2-TM (compare lane 4 vs.
lane 3, Fig. 5A). These data reveal that PLP2-TM induces
incomplete autophagy, with a disconnection between auto-
phagosome accumulation and autophagic cargo hydrolysis,
implying that PLP2-TM may interfere with the fusion of
autophagosomes with lysosomes or impair the autolysoso-
mal degradation.

To further clarify the mechanism by which PLP2-TM
induces incomplete autophagy, we took advantage of a
tandem-tagged fluorescent reporter, mRFP-GFP-LC3 (Ke
and Chen, 2011; Kimura et al., 2007; Klionsky et al., 2012;
Mizushima et al., 2010) (Fig. 5B). This reporter construct
encodes a fusion protein composed of three open reading
frames (ORFs), i.e., mRFP, GFP and LC3 (Amino- to Car-
boxyl-terminal order). In transfected cells, when auto-
phagosomes fuse with lysosomes, the GFP-green
fluorescence of the mRFP-GFP-LC3 fusion protein is
quenched in the acidic autolysosomal environment, while
red fluorescence emitted from mRFP (which is relatively
acid-resistant) remains. By contrast, when fusion of mRFP-
GFP-LC3-autophagosomes with lysosomes is interrupted,
the mRFP-GFP-LC3-autophagosomes emit both green
GFP- and red mRFP-fluorescences which colocalize as
yellow puncta in merged fluorescent images (Tang et al.,

2013) (Fig. 5B). Validating this reporter system in our hands,
we first showed that Rapamycin treated, mRFP-GFP-LC3-
expressing cells which underwent complete autophagic
flux indeed exhibited predominant red fluorescence with only
dim green fluorescence (Fig. 5C). In contrast, cells co-
expressing PLP2-TM and mRFP-GFP-LC3 displayed strong
accumulation of mRFP-GFP-LC3-puncta which emitted
colocalized red and green fluorescence (shown as yellow
puncta in merged images, Fig. 5C). The fluorescence pattern
of mRFP-GFP-LC3 in PLP2-TM-expressing cells closely resem-
bled that of cells treated with cholorquine (Fig. 5C), a potent
inhibitor of autophagosome-lysosome fusion. These findings
indicate that PLP2-TM may impair the autophagosome
maturation process by interfering with its fusion with
lysosomes.

PLP2-TM colocalizes and interacts with LC3

The lipidation of LC3 plays a crucial role in the formation of
autophagosomes (Glick et al., 2010; Kabeya et al., 2000;
Weidberg et al., 2011). In our efforts to further delineate the
mechanisms underlying the induction of autophagy by PLP2-
TM, we explored the possibility that PLP2-TM may physically
associate with LC3, thereby regulating LC3-mediated
phagophore elongation/closure. Confocal fluorescence
microscopy revealed PLP2-TM substantially co-localized
with eGFP-LC3 as cytoplasmic puncta in cotransfected
HEK293Tcells (Fig. 6A, left panels), indicating that PLP2-TM
is in close proximity with LC3 on autophagosome mem-
branes. This was not a cell-type specific phenomenon, as it
was also observed in MCF-7 cells (Fig. 6A, right panels). Co-
immunoprecipation analyses showed that V5-tagged PLP2-
TM formed a complex with endogenously expressed LC3
(Fig. 6B). Interestingly, significantly more LC3-II than LC3-I
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of HCoV-NL63 PLP2-TM, SARS-CoV PLpro-TM, MERS-CoV PLpro-TM and PEDV PLP2-TM were transfected into HEK293T cells.

As the positive control for induction of autophagy, HEK293Tcells were treated with complete medium supplemented with 400 nmol/L

Rapamycin for 6 h. The cells were then lysed for Western blotting analysis using a rabbit anti-LC3 antibody to detect endogenous LC3

expression (top panel in Fig. 3A). The whole cell lysate (WCL) was blotted using anti-V5 antibodies to evaluate expression of PLP2

(PLpro)-TM (middle panel in Fig. 3A), and β-Actin was detected in whole cell lysate (WCL) as a loading control (bottom panel in

Fig. 3A). (B) PLP2-TM-V5 and the catalytic mutants (C1678A, H1836A and D1849A) as showed in Fig. 1A were transfected

respectively into HEK2923T, and induction of autophagy was detected as described in Fig. 3A.
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was present in PLP2-TM immunoprecipitates, suggesting a
higher affinity of LC3-II for PLP2-TM than that of LC3-I.

PLP2-TM interacts with Beclin1 and promotes Beclin1-
STING association

As a critical regulator of the autophagic process, Beclin1
functions as a scaffold for assembly of the PI3K complexes

catalyzing early autophagy. In addition, it orchestrates the
late stages of autophagy through interacting with UVRAG,
Rubicon to modulate the maturation of autophagosomes to
autolysosomes (Jung et al., 2009; Matsunaga et al., 2009;
Pattingre et al., 2008; Zhong et al., 2009a; Zhong et al.,
2009b). Our data that PLP2-TM not only promoted auto-
phagosome formation but also impacted on fusion of auto-
phagosomes with lysosomes prompted us to determine
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Figure 4. PLP2-TM induces autophagy formation in a time-dependent manner. (A) Immunofluorescence microscopy was used

to detect the eGFP-LC3B-autophagosome in PLP2-TM transfected cells at different time point post-transfection. The plasmid of

PLP2-TM-V5 was co-transfected with pcDNA3.1-eGFP-LC3B into HEK2923T cells. The cells were fixed at 0 h, 24 h and 48 h post-

transfection, respectively and then analyzed for eGFP-LC3B positive autophagosome accumulation using a confocal microscope as

described in Fig. 1B. (B) Quantification of cells displaying eGFP-LC3B puncta from one representative experiment that shown in

Fig. 4A as described in Fig. 1B. (C and D) HEK293T was transfected with PLP2-TM-V5 or empty vector as a negative control. At 0 h,

24 h and 48 h post-transfection, the cells were then lysed for Western blotting analysis using a rabbit anti-LC3 antibody to detect the

endogenous LC3 expression (top panel in Fig. 4C). The whole cell lysate (WCL) was blotted using anti-V5 antibodies to evaluate

expression of PLP2-TM (middle panel in Fig. 4C), and β-Actin was detected in whole cell lysate (WCL) as a loading control (bottom

panel in Fig. 4C). The band intensity was semi-quantitated by densitometric analysis using ImageJ software. (E and F) HEK293Tcells

were pretreated by 250 µmol/L 3-MA, an autophagy inhibitor, for 1.5 h and then transfected with PLP2-TM or empty vector for 48 h.

The LC3, PLP2-TM and β-Actin were detected and semi-quantitated as described above.
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whether Beclin1 is a target for PLP2-TM. In co-IP experi-
ments, V5-tagged PLP2-TM was found to associate with
Myc-tagged Beclin1 reciprocally in co-transfected HEK293T
cells (Fig. 7A). Furthermore, PLP2-TM physically interacted
with endogenous Beclin1 (Fig. 7B, lane 2 in top panel),

suggesting that Beclin1 expressed at physiologic levels also
forms a complex with PLP2-TM.

Previously, we have shown that PLP2-TM associated with
STING, a key regulator of antiviral IFN signaling (Sun et al.,
2012a). In light of the emerging roles for autophagy and its
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Figure 5. PLP2-TM activates autophagosome formation but prevents its fusion with lysosomes. (A) HEK293T cells were

transfected with pcDNA3.1 or PLP2-TM. As the positive control for induction of autophagy, HEK293Tcells were treated with complete

medium supplemented with 400 nmol/L Rapamycin for 6 h. At 48 h post-transfection, the levels of endogenous autophagic substrate

p62, LC3 protein and PLP2-TM were determined using Western blot analysis. Beta-actin expression was examined as a protein

loading control. (B) Diagram of mRFP-GFP-LC3 structure and the principle for probing autophagy flux with mRFP-GFP-LC3

construct. The GFP signal was easily quenched in autolysosome as the acidic pH lysosomal background because of lysosomal

hydrolysis, while mRFP fluorescence existed in the acidic pH background. The merged yellow signal GFP+ mRFP+ was visualized

using a confocal microscope in the autophagosomes and GFP- mRFP+ signal was visualized using a confocal microscope in the

autolysosomes as described previously (Tang et al., 2013). (C) PLP2-TM activates autophagosome formation but blocks its fusion

with lysosomes. HEK293T cells were co-transfected with mRFP-GFP-LC3 and PLP2-TM. As the positive control for induction of

autophagy, HEK293T cells were transfected with mRFP-GFP-LC3 and then treated with complete medium supplemented with

400 nmol/L Rapamycin for 6 h. For the inhibition of autolysosome maturation, HEK293T cells were transfected with the plasmids of

mRFP-GFP-LC3 and then treated with complete medium supplemented with 50 µmol/L CQ for 6 h. At 48 h post-transfection, the cells

were fixed and assessed for GFP and mRFP fluorescence. Based on differential pH sensitivity of mRFP and GFP, the mRFP-GFP-

LC3 probe differentiates between early, nonacidified autophagosomes (red+green+, yellow in merged images) from acidified,

degradative autolysosomes (red+green−, red in merged images).
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components in regulating innate immunity (Levine et al.,
2011), we determined whether Beclin1 is involved in the
regulation of STING by PLP2-TM. While HA-tagged STING
did not co-immunoprecipiate with Myc-tagged Beclin1, these
two proteins formed a complex when PLP2-TM was co-
expressed (Fig. 7C). These data support the notion that the
ability to interact with Beclin1 and regulate autophagy may
be linked to the PLP2-TM control of innate immune signaling.

Knockdown of Beclin1 partially reverses PLP2-TM’s
inhibitory effect on innate immunity and is detrimental
to PEDV replication

To understand the biological significance of the PLP2-TM
regulation of autophagy, we studied the effects of Beclin1
knockdown on innate immune signaling and on coronavirus
replication. In control siRNA transfected cells, activation of

the IFN-β promoter by the constitutively active RIG-I CARD
(RIG-IN) was ablated by PLP2-TM. This was in line with our
previous publications (Clementz et al., 2010; Devaraj et al.,
2007; Sun et al., 2012a). We found that knock-down of Be-
clin1 slightly and not significantly increased the IFNbeta-Luc
reporter activity when cotransfected with vector. Remarkably,
knockdown of Beclin1 partially, but significantly reversed
PLP2-TM blocking RIG-IN-activated IFN expression
(Fig. 8A). Immunoblotting demonstrated that Beclin1 siRNA
efficiently depleted the target without affecting PLP2-TM
expression (Fig. 8B). Similarly, activation of the IFN-β pro-
moter by STING was inhibited by PLP2-TM in control siRNA
transfected cells. However, knockdown of Beclin1 partially,
but significantly reversed the inhibition that induced by
PLP2-TM (Fig. 8C). The data was also showed that Beclin1
siRNA efficiently knocked down the target of Beclin1 without
affecting PLP2-TM expression (Fig. 8D). Next, we tested
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were transfectd with pcDNA3.1 empty vector, PLP2-TM-V5. After 48 h post-transfection, the cells were fixed and incubated with anti-
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Colocalization of PLP2-TM-V5 (red) and eGFP-LC3B (green) were observed using a confocal microscope as described in Fig. 1B.

(B) HEK293T cells were transfected with pcDNA3.1 empty vector or PLP2-TM-V5 for 48 h, and the cell lysate was

immunoprecipitated (IP) with an anti-V5 antibody and immunoblotted (IB) with an anti-LC3 and anti-V5-tagged antibody to detect

expression of LC3 (top panel) and V5-tagged PLP2-TM (second panel), respectively. The whole cell lysate (WCL) was blotted with

indicated antibodies to evaluate expression of endogenous LC3 and V5-tagged PLP2-TM. Beta-actin was analyzed to serve as a

protein loading control.
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how silencing of Beclin1 affected coronavirus replication. To
achieve this goal, we took advantage of a Vero cell culture
model for PEDV, the PLP2-TM of which also promotes
autophagy (Fig. 3A). While transfection of a control siRNA
had no impact on M protein expression in PEDV infected
cells, siRNA-mediated knockdown of Beclin1 significantly
diminished M protein production (Fig. 8E and 8F). Taken
together, these data suggest that coronaviral PLP2-TM
exploits Beclin1 and the autophagy pathway to attenuate
innate antiviral responses and concomitantly facilitate viral
replication.

DISCUSSION

Many viruses have evolved to exploit the autophagic
machinery to their own benefit (Kudchodkar and Levine,
2009; Orvedahl and Levine, 2008; Shoji-Kawata and Levine,
2009), and coronaviruses are no exception. A number of

studies have shown that autophagy is induced during
infections by various coronaviruses, although controversial
results have been reported concerning whether autophagy is
required for coronavirus replication (de Haan and Reggiori,
2008; Prentice et al., 2004; Reggiori et al., 2010; Zhao et al.,
2007). At present, the underlying mechanisms by which
coronaviruses promote autophagy are poorly understood.
The nsp6 encoded by infectious bronchitis virus, an avian
coronavirus, was recently reported to induce autophago-
some formation, as were the nsp6 homologues encoded by
MHV, SARS-CoV and the closely related arterivirus PRRSV
(Cottam et al., 2011). We present evidence in this study that
expression of the membrane-anchored coronavirus papain-
like protease PLP2 domain (and its homologues) alone is
capable of activating autophagy in nutrient-rich conditions,
assigning a novel function to this multifunctional viral protein
which is known to act as a viral protease, a DUB enzyme,
and an IFN antagonist (Barretto et al., 2005; Chen et al.,
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activity) with a standard deviation from repeated experiments carried out in triplicate. For statistical analysis, the data of Vector or
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2007; Clementz et al., 2010; Devaraj et al., 2007; Sun et al.,
2012a). Importantly, we have demonstrated this in multiple
cell types (HEK293T, HeLa and MCF-7), and shown it to be
an attribute shared by PLP2-TM/PLpro-TM of different cor-
onaviruses, including HCoV-NL63, SARS-CoV, MERS-CoV
and PEDV. This finding uncovers a previously unappreciated
role for PLP2-TM/PLpro-TM in regulation of autophagy by
coronaviruses and may provide novel insights into the
mechanisms of coronavirus pathogenesis.

Our data show that the PLP2 domain and the downstream
hydrophobic TM motif are both needed to promote autoph-
agy. Neither PLP2 nor TM alone is sufficient, as evidenced
by the inabilities of soluble PLP2 and PLP1-TM to induce
autophagosome (LC3 puncta) formation (Data not shown).
Mechanistically, we found that PLP2-TM physically inter-
acted with Beclin1 and LC3, both of which are involved in the
early steps of autophagosome formation (Kraft and Martens,
2012; Mehrpour et al., 2010). Interestingly, our data also
reveal that PLP2-TM induces incomplete autophagy that
does not culminate in autophagosome maturation to auto-
lysosomes. Evidence supporting this notion came from the
experiments showing that degradation of the autophagic
substrate p62/SQSTM1 was retarded and that the auto-
lysosome-liable GFP fluorescence of the mRFP-GFP-LC3
reporter protein was not lost in spite of enhanced LC3 lipi-
dation. Beclin1, again, is likely the target responsible for the
deficient autophagosome maturation in PLP2-TM express-
ing cells, given its involvement in the UVRAG-containing
PI3K complex that controls fusion between autophagosmes
and lysosomes (Kang et al., 2011; Liang et al., 2008). Of
note, accumulating evidence suggests that Beclin1 is a
prime target for viruses that manipulate the autophagy
pathway (Munz, 2011). For example, Influenza A virus M2
and HIV Nef bind to Beclin1 to hamper the fusion of auto-
phagosomes with lysosomes (Gannage et al., 2009; Kyei
et al., 2009). We propose that the coronavirus PLP2-TM
adopts a similar strategy to impede the maturation of auto-
phagic vacuoles. However, the precise mechanism will need
to be further studied. Regardless, the induction of incomplete
as opposed to complete autophagy by PLP2-TM may rep-
resent an evolutionary advantage of the virus, in that it pre-
vents autophagic degradation of viral products generated in
infected cells, promoting maximal viral survival.

The findings that nsp6 (Cottam et al., 2011) and PLP2-
TM/PLpro-TM of coronaviruses promote autophagy argue
that the autophagy pathway and/or autophagy-related pro-
tein(s) actively participate in coronavirus-host interactions. A
tempting hypothesis is that autophagy may facilitate viral
propagation, as demonstrated for other positive-strand RNA
viruses such as dengue virus, and Poliovirus (Richards and
Jackson, 2013). However, experimental evidence concern-
ing whether autophagy is required for replication of coro-
naviruses has been contradictory. While earlier studies
suggested autophagy to play a role (Cottam et al., 2011;
Prentice et al., 2004), several latest reports argued against it
(Maier and Britton, 2012; Maier et al., 2013; Reggiori et al.,

2010). These recent studies support a model in which MHV
and arterivirus EAV hijack the LC3-I-positive EDEMsomes,
rather than autophagosome membranes, to form the DMVs
in which viral replication takes place (Monastyrska et al.,
2013; Reggiori et al., 2010). However, the possibility that
different coronaviruses may have a disparate requirement
for autophagy for optimal viral replication cannot be ruled
out. Supporting this notion, several studies have shown that
autophagy is induced by infection with a closely related ar-
terivirus, PRRSV, whose replication is crippled by inhibition
of autophagy (Chen et al., 2012; Liu et al., 2012; Sun et al.,
2012b). We show here that knockdown of the master regu-
lator of autophagy, Beclin1, impairs PEDV M protein pro-
duction. Clearly, more studies with a greater number of
different coronaviruses are warranted (Maier and Britton,
2012).

Another intriguing finding of this study is that autophagy
is subverted by coronaviral PLP for immune evasion. We
have previously shown that coronavirus PLpro-TM/PLP2-
TM negatively regulates antiviral defenses by inhibiting the
activation of IRF3 (Clementz et al., 2010; Devaraj et al.,
2007), and that the PLPs disrupt STING-mediated IFN
induction (Sun et al., 2012a), but the mechanism(s) by
which coronavirus PLPs target STING (and possibly other
signaling molecules) to inhibit IRF3-dependent antiviral
response is unknown. In this work, we have demonstrated
that PLP2-TM promotes the interaction of STING with Be-
clin1, but not with LC3 (data not shown), suggesting that
PLP2-TM may sequester STING to autophagosomes
through Beclin1, thereby inhibiting downstream innate
immune signaling. Although not tested in this study, PLP2-
TM-induced autophagy may also segregate other innate
immune signaling components and perhaps even viral
dsRNAs from ligation to cytoplasmic viral sensors. Sup-
porting the exploit of Beclin1 and autophagy for viral
immune escape, we found that knockdown of Beclin1 (and
thus autophagosome formation) partially but significantly
reversed the blockade of PLP2-TM on activation of the IFN
response. The reason the relief was only partial was likely
due to incomplete depletion of Beclin1 and existence of
autophagy-independent immune evasion mechanisms, as
exemplified by the deubiquitination of RIG-I, TRAF3, etc. by
PLPs (Sun et al., 2012a).

In summary, results of this study demonstrate that the
coronavirus papain-like proteases along with their trans-
membrane anchors activate incomplete autophagy by
interacting with Beclin1. Autophagosomes induced by CoV
PLP2-TM/PLpro-TMs may provide a platform for viral tar-
geting Beclin1 to sequester STING and possibly other
critical innate signaling components to impede downstream
antiviral responses, thereby promoting viral replication.
Further studies will be needed to elucidate the precise
mechanisms of autophagosome induction by CoV PLPs
and the exact roles that autophagy plays in coronavirus
replication, antiviral innate immune responses and disease
pathogenesis.
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MATERIALS AND METHODS

Cells, plasmids, siRNAs, antibodies and other reagents

HEK293T, HeLa and MCF-7 cells were cultured in Dulbecco’s

modified Eagle’s medium (DMEM) (Gibco, Cat. No.12800-017)

supplemented with 10% (v/v) fetal calf serum (Gibco, Cat. No.

1036489), 100 U/mL of penicillin and 100 µg/mL of streptomycin.

DNA constructs encoding HCoV-NL63 PLP2-TM, SARS-CoV PLpro-

TM, PEDV PLP2-TM, MERS-CoV PLpro-TM and plasmid of HA-

STING have been described (Clementz et al., 2010; Devaraj et al.,

2007; Sun et al., 2012a; Yang et al., 2014). To construct a Myc-

tagged Beclin1 expression vector, cDNA encoding the full-length

(1353-bp long) human Beclin1 (GenBank ID: NM_003766.3) was

amplified by reverse transcription-PCR (RT-PCR) from human

mesenchymal stem cells (MSCs) and cloned into the pCMV-Myc

vector (Clontech). The following PCR primers were used: 5′-

CCCGAATTCGGATGGAAGGGTCTAAGACGTCC-3′ (forward pri-

mer) and, 5′-CGCGGTACCTCATTTGTTATAAAATTGTGAGGA-3′

(reverse primer). The plasmid encoding eGFP-LC3B was kindly

provided by Dr. Songshu Meng (Yangzhou University, Jiangsu,

China) (Kimura et al., 2007; Mizushima et al., 2010). A vector

encoding tandem mRFP-GFP-LC3 was kindly provided by Dr.

Shaobo Xiao (Huazhong Agricultural University, Wuhan, China)

(Kimura et al., 2007; Mizushima et al., 2010). Beclin1 siRNA

sequence and control siRNA sequence were described as previ-

ously (Hoyer-Hansen et al., 2005). The following primary antibodies

were used for various protein analyses: anti-LC3 (Sigma-Aldrich,

Cat. No. L7543); anti-p62 (MBL, Cat. No. PM045), anti-Beclin1(MBL,

Cat. No. PD017), anti-V5 (MBL, Cat. No. PM003), anti-HA (MBL,

Cat. No. 561) and anti-Myc (MBL, Cat. No. M047-3); anti-actin

(Beyotime, Cat. No. AA128); chicken anti-V5 (Abcam, Cat. No.

ab9113). Donkey anti-chicken Cy3 (Millipore, Cat. No. AP194C) and

Alexa Fluor 594-conjugated goat anti-rabbit secondary antibodies

(ZSGB-BIO, Cat. No. ZF-0516) were obtained from Millipore and

ZSGB-BIO, respectively. Rapamycin (Sigma-Aldrich, Cat. No.

R8781), Chloroquine (CQ) (Sigma-Aldrich, Cat. No. C6628) and

3-Methyladenine (3-MA) (Sigma-Aldrich, Cat. No. M9281) were

obtained from Sigma-Aldrich.

Confocal microscopy

HEK293T, HeLa or MCF-7 cells were grown on glass coverslips in

6-well plates. For the detection of autophagosomes, plasmid DNA

expressing eGFP-LC3B or mRFP-GFP-LC3 (1 μg per well) was

transfected in thepresenceorabsenceof 1μgof variousPLP-encoding

vectors using Lipofectamine 2000 (Invitrogen, Cat. No. 11668-027)

according to the manufacturer’s protocol. As a positive control to visu-

alize the induction of autophagy, HEK293Tcells were transfected with

eGFP-LC3B for 48 h and then treatedwith 400 nmol/L of Rapamycin in

complete culture medium for 6 h. The fluorescence of GFP-LC3 was

observed under a Zeiss LSM-510 confocal fluorescence microscope.

Cells containing three or more GFP-LC3 dots were defined as

autophagy-positive cells. The percentage of cells with characteristic

punctate GFP-LC3 fluorescence relative to all GFP-positive cells was

calculated as described previously (Li et al., 2011; Wong et al., 2008).

Three random fields, each containing at least 80 GFP-positive cells,

were counted, and three independent experiments were performed.

Immunofluorescence

To evaluate the subcellular localization of eGFP-LC3B, mRFP-GFP-

LC3 and NL63 PLPs, plasmid DNA expressing eGFP-LC3B or

mRFP-GFP-LC3 (1 μg per well) was transfected in the presence or

absence of 1 μg of various PLP-encoding vectors using Lipofect-

amine 2000 (Invitrogen, Cat. No. 11668-027) according to the

manufacturer’s protocol. As a positive control to visualize the

induction of autophagy, HEK293T cells were transfected with eGFP-

LC3B for 48 h and then treated with 400 nmol/L of Rapamycin in

complete culture medium for 6 h. In some experiments, HEK293T

cells co-transfected with the plasmids of mRFP-GFP-LC3 and PLP2-

TM for 48 h were treated with 50 μmol/L of CQ in complete medium

for 6 h to inhibit autolysosome maturation. At indicated time points

post transfection, cells were fixed with 4% formaldehyde in PBS for

10 min at room temperature. Cells were then incubated with 1:200

dilution of rabbit anti-V5 (MBL, Cat. No. PM003) or chicken anti-V5

(abcam, Cat. No. ab9113) in ADPS (PBS + 0.1% Triton-X100 + 5%

fetal calf serum) for 1 h at room temperature. Following three PBS

washes, cells were incubated with 1:200 dilution of Alexa Fluor

594-conjugated goat anti-rabbit (ZSGB-BIO, Cat. No. ZF0136) or

donkey anti-chicken Cy3 (Millipore, Cat. No. AP194C) secondary

antibody in ADPS for 1 h in dark. Following the incubation, cells were

washed three times with PBS, mounted, and examined under a

Zeiss LSM-510 confocal microscope.

Western blotting analysis

HEK293T, HeLa and MCF-7 cells were seeded into 24-well plates

and incubated at 37°C for 18 h. Cells were subsequently transfected

with PLP2-TM construct or empty vector using Lipofectamine 2000

reagent according to manufacturer’s instructions. At 48 h post-

transfection, cells were lysed in a buffer containing 0.5% Triton

X-100, 150 mmol/L NaCl, 12.5 mmol/L β-glycerolphosphate,

1.5 mmol/L MgCl2, 2 mmol/L EDTA, 10 mmol/L NaF, 1 mmol/L

Na3VO4, 2 mmol/L DTT and protease inhibitor cocktail (Sigma,Cat.

No. P8340). Cell extracts were clarified by centrifugation at

5000 ×g at 4°C for 10 min, and protein concentration of lysate

determined using BCA Protein Assay kit (Bio-med, Cat. No.

pp0101). Protein samples were mixed with 30 µL of 2× SDS-PAGE

sample buffer, boiled for 10 min, separated on SDS-PAGE gel, and

transferred onto a PVDF membrane. Blots were incubated with

indicated primary antibodies, washed three times in 1× TBS-T buffer,

and subsequently incubated with HRP-conjugated secondary anti-

bodies (ZSGB-BIO, Cat. No. ZF0136, Cat. No. ZF0312). Antibody-

antigen reactions were detected using Western Lighting Plus-ECL

chemiluminescence reagents (Applygen, Cat. No. P1010).

Co-immunoprecipitation (Co-IP) analysis

HEK293T cells were seeded in 100-mm dishes at a density of

1 × 106 cells/dish. Twelve hours later, cells were transiently trans-

fected with a total of 10 µg of empty vector or indicated expression

plasmids using Lipofectamine 2000 (Invitrogen, Cat. No. 11668-027).

At 48 h post transfection, whole cell lysates were prepared and their

protein concentrations determined using the procedures described

above (for Western blotting analysis). The protein concentrations in

cell lysates were adjusted to 1 µg/µL, and 500 µL of each lysate was
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used for co-IP. Lysates were pre-cleared by adding 20 µL of protein

A + G Agarose (Beyotime, Cat. No. P2021) and 1 µg of normal IgG

and incubating for 2 h at 4°C, followed by spinning down the agarose

beads. The pre-cleared supernatant was then incubated with the

indicated primary antibody [anti-V5 (MBL, Cat. No. PM003) or anti-

HA (MBL, Cat. No. 561)/anti-Myc (MBL, Cat. No. M047-3)] with

rocking overnight at 4°C. Thereafter, the beads-antibody-antigen

complex was pelleted and washed 3 times with 1 mL of lysis buffer.

The protein complexes were then eluted from the beads in 30 µL of

2× SDS-PAGE sample buffer by boiling for 10 min. Samples were

separated on SDS-PAGE and transferred to PVDF membranes for

Western blotting.

IFN-β reporter assay

12–18 h prior to transfection, HEK 293T were seeded in 24 well

plates. At a confluence of 80%, the cells were transfected with the

Beclin1 siRNA or control siRNA at the concentration of 100 nmol/L

using JetPRIME (PolyPlus, Cat. No. 114-15). After 24 h, the cells

were transfected using JetPRIME with 200 ng of IFNβ-Luc reporter

plasmid encoding firefly luciferase and 20 ng of pRL-TK plasmid

encoding Renilla luciferase for normalization along with 300 ng of

empty DNA vector or RIG-I/STING-expressing construct and 300 ng

of vector or PLP2-TM constructs. 24 h after DNA transfection, the

cell extracts were prepared and Luciferase activity and Renilla

luciferase activity were assayed using the Dual Luciferase Reporter

System (Promega, Cat. No. E1910) in a Luminometer according to

the supplier’s instructions. Data were shown as mean relative lucif-

erase (firefly luciferase activity divided by Renilla luciferase activity)

with standard deviation from repeated experiments that were carried

out in triplicate. For statistical analysis, the data between Vector and

PLP2-TM were subjected to unpaired, two-tailed Student’s t test

using Microsoft SPSS 12.0 software, and P-values of <0.05 were

considered to indicate statistical significance.

Transmission electron microscopy (TEM)

HEK293T cells were seeded in 100-mm dishes at a density of

1 × 106 cells/dish. Twelve hours later, cells were transiently trans-

fected with a total of 10 µg of empty vector or the indicated expression

plasmid using Lipofectamine 2000 (Invitrogen, Cat. No. 11668-027).

As a positive control for induction of autophagy, HEK293Tcells were

treated with 400 nmol/L of Rapamycin in complete medium for 6 h.

Cells were washed three times with PBS, trypsinized, and collected

by centrifugation at 1000 ×g for 10 min. The cell pellets were fixed

with 3% glutaraldehyde in 0.075 mol/L phosphate buffer (pH 7.4) for

2 h at 4°C. The cells were washed in the solution containing 0.075mol/L

phosphate and 0.19 mol/L sucrose three times for 10 min each and

post-fixed in 1%OsO4 in 0.24 mol/L phosphate buffer (pH 7.4) for 2 h.

After being washed for 15 min in 0.075 mol/L phosphate buffer and

0.19 mol/L sucrose buffer at 4°C, the cells were dehydrated with a

graded series of ethanol and gradually infiltrated with epoxy resin.

Samples were sequentially polymerized at 35°C for 12 h, 45°C for

12 h, and 60°C for 24 h. Ultrathin sections (about 70 nm) were cut

using an LEICA microtome and mounted on copper slot grids. Sec-

tions were doubly stained with uranyl acetate for 10 min and lead

citrate for another 10 min and observed under a Hitachi H-7650

transmission electron microscope.
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