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We detected ferret coronaviruses in 44 (55.7%) of 79 
pet ferrets tested in Japan and classified the viruses into 
2 genotypes on the basis of genotype-specific PCR. Our 
results show that 2 ferret coronaviruses that cause feline 
infectious peritonitis–like disease and epizootic catarrhal 
enteritis are enzootic among ferrets in Japan.

An epizootic catarrhal enteritis (ECE) was first rec-
ognized in domestic ferrets (Mustelo putorius furo) 

in the United States in 2000 (1). The causative agent of 
ECE was demonstrated to be a novel ferret coronavirus 
(FRCoV) belonging to the genus Alphacoronavirus (1,2). 
Ferrets with ECE showed general clinical signs of leth-
argy, anorexia, and vomiting and had foul-smelling, green 
mucous–laden diarrhea. A systemic infection of ferrets 
closely resembling feline infectious peritonitis (FIP) was 
subsequently reported among ferrets in the United States 
and Europe. The causative agent was also shown to be 
an Alphacoronavirus, which was named ferret systemic 
coronavirus (FRSCV) (3,4); this virus was found to be 
genetically distinct from those associated with ECE and 
from 2 viruses assigned to different genotypes (5). Other 
cases of ECE and ferret infectious peritonitis have since 
been described in the United States and in Europe (2–
4,6,7). One case of pathology-confirmed FIP-like disease 
has been described among domestic ferrets in Japan (8). 
The goal of this study was to determine the prevalence of 
coronavirus among domestic ferrets seen by veterinarians 
in various parts of Japan.

The Study
Fecal samples were collected during August 2012–July 

2013 from 79 ferrets from 10 animal hospitals scattered  

across 5 prefectures in Japan. Most of the ferrets were 
brought to veterinarians for clinical signs such as diar-
rhea, abdominal masses, and hypergammaglobulinemia; 
some had signs unrelated to coronavirus infection or were 
asymptomatic (Table 1). The diarrhea tended to be mild, 
unlike with ECE, and was found in coronavirus-negative 
and -positive animals. 

RNA was extracted from fecal samples by using the 
QIAamp Viral RNA Mini Kit (QIAGEN, Hilden, Ger-
many), and reverse transcription PCR (RT-PCR) was per-
formed by using the QIAGEN OneStep RT-PCR Kit (QIA-
GEN) using coronavirus consensus primers IN-6 and IN-7, 
which amplify the open reading frame (ORF) 1b region, 
encoding RNA-dependent RNA polymerase (RdRp). This 
primer pair can amplify nucleic acids from many coronavi-
ruses in the subfamily Coronavirinae (9). Of 79 samples, 
33 (41.8%) were positive for coronaviruses by RT-PCR 
(Table 2). Nucleotide sequences were determined for the 
amplified fragments and used to construct a phylogenetic 
tree (Figure 1). The coronaviruses detected in this study 
belonged to the genus Alphacoronavirus but formed a 
separate species from those of other species. The identi-
ties with feline coronavirus, transmissible gastroenteritis 
virus, porcine respiratory coronavirus, and mink coronavi-
rus were 73.5%–75.9%, 73.5%–76.1%, 73.8%–76.1%, and 
80.2%–84.0%, respectively.

On the basis of additional sequence data, a new prim-
er pair was designed: forward FRCoV RdRp-F1 (5′-GTT 
GGT TGC TGC ACA CAT AG-3′) and reverse FRCoV 
RdRp-R1 (5′-GGA GAA GTG CTT ACG CAA ATA-3′). 
Results for RT-PCR using this new primer set showed 
that 44 (55.7%) of 79 samples were positive for coro-
navirus, which was a higher number than that obtained 
by using the published coronavirus consensus primers 
(55.7% vs. 41.8%) (Table 2). Two samples that had posi-
tive results by consensus primers had negative results by 
the new primers: sample 22 had many mutations in the 
primer binding site (Figure 1), whereas sample 40 had 
few mutations.

On the basis of the partial sequences of the spike gene, 
Wise et al. (5) reported that the known ferret coronavirus-
es could be divided into 2 genotypes: genotype 1, which 
included the agent of FIP-like disease, and genotype 2, 
which included the causative agent of ECE. To differenti-
ate between these genotypes in the positive samples from 
our testing, RT-PCR was carried out by using 2 pairs of 
genotype-specific primers: forward primer 5′-CTG GTG 
TTT GTG CAA CAT CTA C-3′ and reverse primer 5′-TCT 
ATT TGC ACA AAA TCA GAC A-3′ for genotype 1, and 
forward primer 5′-GGC ATT TGT TTT GAT AAC GTT 
G-3′ and reverse primer 5′-CTA TTA ATT CGC ACG 
AAA TCT GC-3′ for genotype 2 (5). Among these ferrets, 
30 (38.0%) were infected with genotype 1 and 17 (21.5%) 
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with genotype 2; 8 (10.1%) ferrets were infected with both 
genotypes of coronaviruses (Figure 2). Samples 27 and 28 
were from ferrets that lived in the same house and harbored 
the same ferret coronavirus but that were born on differ-
ent farms, indicating that horizontal transmission had oc-
curred. The nucleotide sequences of the amplified genes 
confirmed that these coronaviruses also fell into genotypes 
1 and 2 (Figure 2). 

Our results indicate that both genotypes of corona-
virus have been spreading within the ferret population in 
Japan for some time, and some ferrets have been coinci-
dentally infected with both genotypes. Of note, most ferrets 
that were positive for genotype 1 ferret coronavirus in this 
study did not show FIP-like disease (Table 1), indicating 
that infection with genotype 1 ferret coronavirus does not 
always cause FIP-like disease. Genotype 1 ferret coronavi-
rus has also been detected from asymptomatic ferrets in the  
Netherlands (11).

To further investigate virus transmission routes, oral 
swab specimens were collected from 14 of the 79 ferrets 
and examined by RT-PCR using primers FRCoV RdRp-F1 
and FRCoV RdRp-R1. Five (35.7%) specimens were posi-
tive (data not shown), providing a route leading to infection 
of susceptible animals. Coronaviruses are known to cause 
both respiratory and intestinal diseases in various animal 
species; therefore, ferret coronaviruses should be investi-
gated in respiratory disease.

Conclusions
We established a sensitive RT-PCR method using 

a new primer pair to detect coronavirus sequences and 
demonstrated that ferret coronaviruses are widespread 
among ferrets in Japan. We determined the partial nucle-
otide sequences of the spike gene of 23 strains and found 
they were clearly divided into 2 genotypes, 1 and 2 (Fig-
ure 2). The reported ferret coronaviruses associated with 

FIP-like disease, designated as genotype 1 by Wise et al. 
(5), all fell within genotype 1 phylogenetically, whereas 
all published ECE-causing strains fell within genotype 
2. This finding leads to a possible conclusion that FIP-
like disease–causing strains (i.e., FRSCVs) are variants 
of what has been designated genotype 1 ferret coronavi-
ruses. Because we found no relationship between the 2 
genotypes of ferret coronavirus and the type of disease 
(Table 1), we cannot determine whether FIP-like and 
ECE-like ferret coronaviruses circulate independently as 
distinct entities or evolve, like feline coronaviruses, from 
more ubiquitous and less pathogenic enzootic strains. 
Nonetheless, the addition of these 23 new isolates to the 
phylogenetic tree of ferret coronaviruses tends to sup-
port the latter conclusion. Without extensive animal pas-
sage studies, virus isolation, and coronavirus-free fer-
rets, this theory may be difficult to confirm. However, 
additional evidence tends to link virulent pathotypes 
of ferret coronaviruses to specific mutational events. 
Nucleotide sequences of the 3c-like protein genes of 
FRSCV, MSU-1 (DDBJ/EMBL-Bank/GenBank acces-
sion no. GU338456), MSU-S (GU459059), and WADL 
(GU459058), showed that 2, MSU-1 and WADL, pos-
sessed a truncated 3c-like protein gene (5), similar to 
that described for FIP viruses of cats (12–14). FIP-caus-
ing viruses of cats also contain a second mutation in the 
spike gene (15), which was not investigated in our study. 
The existence of 2 major genotypes of Japanese ferret 
coronaviruses is also reminiscent of the serotype I and II 
feline coronaviruses. Without ferret coronaviruses that 
can be grown in cell culture, however, such serologic 
differentiation will be difficult.
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Table	1.	Detection	of	FRCoV	from	ferrets	with	clinical	signs,	Japan 

Sample	type 

No.	(%)	samples 

Diarrhea,	n	=	34 
Hypergammaglobulinemia,	 

n	=	6 
Abdominal	mass,	

n	=	14 
Nonrelated	signs/	

asymptomatic,	n	=	33 
All	FRCoV-positive samples† 25	(73.5) 5	(83.3) 7	(50.0) 17	(51.5) 
Genoype I samples‡ 17	(50.0) 2	(33.3) 4	(28.6) 10	(30.3) 
Genoype	II	samples§ 7	(20.6) 1	(16.7) 4	(28.6) 7	(21.2) 
*FRCoV,	ferret	coronavirus;	RT-PCR,	reverse	transcription	PCR. 
†RT-PCR	was	carried	out	by	using	FRCoV-specific	primers. 
‡RT-PCR	was	carried	out	by	using	type	1	FRCoV-specific	primers	(5). 
§RT-PCR	was	carried	out	by	using	type	2	FRCoV-specific	primers	(5). 
 

Table	2.	Comparison	of	results	for	detection	of	FRCoV	in	ferret	fecal	samples	by	RT-PCR	using	coronavirus	consensus	and	FRCoV-
specific	primers,	Japan 

Coronavirus	consensus	primers 
FRCoV-specific	primers 

Total	no.	(%)	 No.	positive	samples No.	negative	samples 
No.	positive	samples 31 2 33	(41.8) 
No.	negative	samples 13 33 46	(58.2) 
Total no.	(%) 44	(55.7) 35	(44.3) 79 
*FRCov,	ferret	coronavirus;	RT-PCR,	reverse	transcription	PCR. 
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