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1. Introduction

Feline coronaviruses (FCoVs), members of the Alpha-
coronavirus genus within the Coronaviridae family are
major pathogens of Felidae with worldwide distribution.
Seroprevalence in cat populations can be as high as 90%
(Pedersen, 2009). From the two serotypes of FCoV, type I is
more predominant (80–95%) (Hohdatsu et al., 1992;
Kummrow et al., 2005), while the less prevalent type II
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A B S T R A C T

Feline infectious peritonitis virus (FIPV) is a major pathogen of Felidae. Despite the

extensive efforts taken in the past decades, development of the ‘‘ideal’’ live attenuated

FIPV vaccine was not successful yet.

In the present study, we provide data of immunisation experiments with a recombinant

FCoV pair differing only in the truncation (PBFIPV-DF-2) or completion (PBFIPV-DF-2-R3i)

of their ORF3abc regions. In our previous in vivo studies, these viruses proved to show the

characters of low virulent or avirulent FCoV phenotypes, respectively. Therefore, we

hypothesised the ability of these viruses, as possible vaccine candidates, in conferring

protection in specific pathogen free (SPF) Domestic Shorthair as well as in conventional

purebred British Shorthair cats.

In SPF cats, after two oronasal and two intramuscular vaccinations with two weeks

intervals, both vaccine candidates provided 100% protection against lethal homologous

challenge with the highly virulent FIPV DF-2 strain. In contrast, the conventional purebred

British Shorthair cats did not develop protection when they were immunised with the

same vaccination regimes. In these groups 100% of the PBFIPV-DF-2-R3i immunised

animals developed antibody-dependent enhancement (ADE). Prolonged survival was

observed in 40% of the animals, while 60% showed fulminant disease course.

Genetic and more probably immunological differences between the SPF and non-SPF

purebred kittens can explain the different outcome of the vaccination experiment. Our

data highlight the diverse immune responses between SPF and conventional cats and

suggest a decisive role of previous infection by heterologous causative agents in the

outcome of the vaccination against FIP.
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CoV probably emerged via a double recombination
rocess between type I FCoV and type II canine coronavirus
CoV) (Herrewegh et al., 1998).
Both serotypes occur in two pathotypes: feline enteric

oronavirus (FECV) replicates in the lower portion of the
testinal tract, spreads by faecal-oral route, and its clinical

ppearance is characterised by mild or unapparent
nteritis (Pedersen et al., 1981; Herrewegh et al., 1997).

 contrast, feline infectious peritonitis virus (FIPV)
fficiently replicates in macrophages and monocytes,
ccurs sporadically but causes a highly lethal systemic
ranulomatous disease, feline infectious peritonitis (FIP),
hich can manifest in either wet or dry form (Addie and
rrett, 1992; de Groot-Mijnes et al., 2005).

Although extensive efforts have been taken in the past
ecades, development of the ‘‘ideal’’ live attenuated FIPV
accine replicating in the body without clinical signs, and
ducing protective immunity against FIPV (Pedersen,

989) has not been crowned with complete success yet.
accination with closely related heterologous live CoVs did
ot confer protection at all (Barlough et al., 1984, 1985;
toddart et al., 1988; Woods and Pedersen, 1979).

Similarly to inactivated and recombinant FCoV subunit
accines (reviewed in Haijema et al., 2007), immunisation
ith FECV, low-virulence FIPV, or sublethal amounts of

irulent FIPV elicited only partial protection (Pedersen and
lack, 1983; Pedersen et al., 1984; Pedersen and Floyd,
985) frequently leading to antibody enhancement of the
isease (ADE) and the so-called early death syndrome.

Currently, a temperature-sensitive strain of FIPV is
arketed worldwide with an ability to protect cats against

IPV (Gerber et al., 1990; Gerber, 1995) but its efficacy is
ncertain (McArdle et al., 1995; Scott et al., 1995; Fehr
t al., 1997). The most promising results were obtained
ith recombinant FIPV mutants lacking the ORF3abc or
RF7ab regions that provided 100% and 80% protection
fter a lethal homologous challenge (Haijema et al., 2004),
espectively. However, no follow-up studies using these
accine candidates have been published so far.

In the present study, we provide data of immunisation
xperiments with a recombinant FCoV pair differing only in
e truncation (PBFIPV-DF-2) and intactness (PBFIPV-DF-2-

3i) of their ORF3abc regions (Bálint et al., 2012). In previous
 vivo studies using specific pathogen free (SPF) cats,

BFIPV-DF-2 proved to be low virulent, shed only at limited
tres in faeces, and was completely cleared by the immune
ystem but elicited medium level immune response, while
BFIPV-DF-2-R3i showed active intestinal replication and
ecal shedding, and it possessed completely avirulent

henotype (Bálint et al., 2013). Considering these advanta-
eous characteristics of the two recombinant FCoVs, we
valuated their innocuity and efficacy as vaccine candidates

 conferring protection in SPF as well as in conventional
urebred British Shorthair cats.

. Materials and methods

.1. Cells and viruses

Felis catus whole foetus 4 (FCWF-4) cells were used for
irus propagation, titration and virus neutralisation tests.

The cell line was maintained as monolayer culture in
Dulbecco’s Modified Eagle Medium (Sigma–Aldrich, Saint
Louis, MO, USA) supplemented with 10% foetal bovine
serum (FBS), 0.3 mg/ml glutamine, 100 U/ml penicillin,
0.1 mg/ml streptomycin, 0.25 mg/ml amphotericin B,
1 mM sodium pyruvate and 1% non-essential amino acids
(Sigma–Aldrich). The FIPV DF-2 strain was kindly provided
by Berndt Klingeborn (SVA, Uppsala, Sweden). The whole
genome of FIPV DF-2 was cloned into the pBeloBAC 11 low-
copy vector that allows efficient intracellular production of
the viral RNA from the cDNA by the cytomegalovirus
(CMV) immediate-early promoter in order to gain the
recombinant FCoV PBFIV-DF-2 (GenBank accession num-
ber: JQ408981.1). The originally truncated ORF3abc of this
virus was replaced with the intact ORF3abc of a type I
‘‘FCoV-like’’ canine coronavirus (CCoV) reference strain
Elmo/02 to construct PBFIPV-DF-2-R3i (GenBank accession
number: JQ408980.1) (Bálint et al., 2012).

2.2. Animal experiments

SPF Domestic Shorthair IQHsdCpb kittens (Isoquimen
SL, Barcelona, Spain) and conventional British Shorthair
cats from a FCoV negative Hungarian cattery (regularly
monitored for two generations) were used in the challenge
experiments. The non-SPF cats were originated from three
non-related queens and two toms. Kittens arrived at the
facility at the age of 8–12 weeks. They were acclimated and
used in the studies at the age of 14–18 weeks. The animals
were kept in separate groups in a closed facility. Their FCoV
negative status was checked with PCR and virus neutra-
lisation tests. The absence of feline parvovirus (FPV), feline
herpesvirus (FHV), feline calicivirus (FCV), feline immu-
nodeficiency virus (FIV) and feline leukaemia virus (FELV)
in the conventional cats was confirmed by PCR and/or
ELISA tests. For study purposes, the same group structure
was established both for SPF and conventional kittens such
as two study groups (Group 1 and Group 2, each n = 5) and
a control group (C-Group, n = 2) were formed. Kittens were
inoculated oronasally (D0 and D14) and intramuscularly
(D28 and D42) with 103 50% tissue culture infective doses
(TCID50) of the recombinant viruses PFIPV-DF-2 (Group 1)
and PFIPV-FD-2-R3i (Group 2), respectively. The vacci-
nated animals and unvaccinated controls were oronasally
challenged (D56) with 103 TCID50 of the parent virus FIPV
DF-2. The whole clinical observation period of time was
altogether 8 months long. During this time kittens were
clinically examined on a daily basis. Cats were scored for
several clinical signs as described earlier (Haijema et al.,
2004). Briefly, scoring was based on depression (inactivity
for three consecutive days, 1 point), anorexia (not eating
for three consecutive days, 1 point), and neurological
disorders (swaggering, 1 point) on a daily basis, while fever
(40.1 8C, 1 point), jaundice (yellow plasma, 1 point), weight
loss (loss of 2.5% of body weight per week, 1 point), and
lymphopenia (lymphocyte count of <0.5 � 109/l) was
scored on weekly basis. Kittens showing signs of terminal
FIP were euthanized in order to avoid unnecessary
suffering, while healthy animals were exterminated at
day 90 post-challenge (p.c.), followed by full post-mortem
examination. All animal experiments were approved and
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pervised by the Ethical and Animal Welfare Committee
 the National Food Chain Safety Office.

. Pathology and histopathology

All animals that died or were euthanized during the
periment were subjected to pathological examination.
rcasses were dissected within two hours of the death.
mples taken from spleen, kidney, liver, lung, brain and
testine were fixed in 8% formaldehyde and embedded in
raffin wax. The blocks were sectioned at 4–6 mm and the
ctions were stained with haematoxylin-eosin and
amined under light microscope.

. Detection of virus shedding

To determine virus shedding, faecal and oropharyngeal
abs were taken at D3, D7, D10, D14, D21, D28, D35, D42,
9, D56, D62, D70 an D77 and placed in 500 ml of
osphate buffered saline (PBS 1�). After vortexing and

 min incubation, the swabs were removed, and the
tract was centrifuged at 1000 � g for 10 min to remove
ll debris. The supernatant was collected and used for
bsequent PCR.
Viral RNA was purified using the QIAamp Viral RNA

ini Kit (Qiagen, Hilden Germany). To measure the copy
mbers of the genome of the recombinant FCoV, a
qMan assay targeting the 50 end of the FIPV DF-2 genome
as applied (Bálint et al., 2012).

. Virus neutralisation assay

Serum samples were taken using Vacuette1 tube
reiner Bio-One, Germany) at the same days as faecal
mples. For virus neutralisation (VN) assay, two-fold
lutions of heat-inactivated serum from kittens (50 ml)
ere incubated for 1 h at 37 8C with equal aliquots of FIPV
-2 (50 ml of 103.5 TCID50/ml). The viruses were
en added to FCWF-4 cells showing 70% confluency in

a 96-well plate, and incubated for 48 h, until the
development of cytopathic effect. Neutralising activity
was determined by end-point dilution (Shiba et al., 2007).

3. Results

3.1. Immunisation of SPF cats with the recombinant FCoVs as

vaccine candidates

To study whether PBFIPV-DF-2 and PBFIPV-DF-2-R3i
inoculation would protect cats against a homologous FIPV
challenge, vaccination and challenge experiments were
performed. Group 1 and Group 2 cats were vaccinated
oronasally twice with PFIPV-DF-2 and PBFIPV-DF-2-R3i
(103 TCID50 at D0 and D14), respectively.

The in vivo characteristics of the recombinant viruses
were similar to those of earlier experiments (Bálint et al.,
2013). Cats in Group 1 showed only early mild clinical
signs including transient fever from D3 to D8, anorexia and
slight lymphopenia (Table 1), while cats in Group 2 showed
neither any clinical signs typical of FIP nor diarrhoea
(Table 1).

No oropharyngeal shedding of either PBFIPV-DF-2 or
PBFIPV-DF-2-R3i was detected during the whole period of
the immunisation experiments (data not shown). Shed-
ding of PBFIPV-DF-2 in faeces of Group 1 was detected in
four animals from D3 to D42 with very variable amounts
close to the detection limit of the genomic quantitative RT-
PCR (4.5 � 100–4 � 101 FCoV RNA copies per ml faecal
extract) (Fig. 1). Group 2 cats began to shed PBFIPV-DF-2-
R3i from D3, virus shedding peaked at D7 with 7.8 � 105

FCoV RNA copies per ml faecal extract, remained high until
D14, then began to decrease until reaching 3.2 � 102 FCoV
RNA copies per ml faecal extract at D49, and remained at
this level until the end of the experiment (Fig. 1).

No neutralising activity was detected at D0 in any cat
sera. In contrast, by D28, all the Group 1 cats had
seroconverted and showed medium titres (1:160–1:640)
of neutralising antibodies (Fig. 2). Group 2 cats showed

ble 1

tal clinical scores of SPF cats after oronasal (D0 and D14) and parenteral (days 28 and 42) vaccination with PBFIPV (Group 1, n = 5) and PBFIPV-DF-2-R3i

roup 2, n = 5). The unvaccinated controls (C-Group, n = 2) were vaccinated with PBS.

irus and

nimal no.

Clinical score Total clinical

score

Day of death

post-vaccination

Fever Depression Anorexia Jaundice Neurological

disorder

Weight

loss

Lymphopenia

roup 1

1 0 0 1 0 0 1 1 3 –

2 1 1 1 0 0 0 1 4 –

3 1 1 0 0 0 0 0 2 –

4 1 1 1 0 0 0 1 4 –

5 1 1 1 0 0 1 1 5 –

roup 2

6 0 0 0 0 0 0 0 0 –

7 0 0 0 0 0 0 0 0 –

7 0 0 0 0 0 0 0 0 –

8 0 0 0 0 0 0 0 0 –

9 0 0 0 0 0 0 0 0 -

0 0 0 0 0 0 0 0 0

-Group

9 0 0 0 0 0 0 0 0 –
0 0 0 0 0 0 0 0 0 –
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ariable results. Only three animals seroconverted by D28,
nd their VN titres remained at low levels (1:80–1:160)
ompared with those of the Group 1 cats (Fig. 2).

Since level of the humoral immune response after
ronasal vaccination with the recombinant viruses was
elatively low, two intramuscular vaccinations (103 TCID50

t D28 and D42) were applied. A control group (C-Group)
as mock vaccinated with PBS. Similarly to the oronasal

accinations, the intramuscularly inoculated kittens did
ot develop any signs FIP (Table 1). No faecal virus
hedding of PBFIPV-DF-2 of Group 1 cats was detected,
hile faecal shedding of PBFIPV-DF-2-R3i from Group 2

ittens continued at low level (Fig. 1). Oropharyngeal
hedding was not observed from any animal of the two
accinated groups (data not shown). Neutralising antibody
tres raised in all Group 1 animals after intramuscular
accinations (from 1:160–1:640 to 1:640–1:2560,
 = 0.067). Interestingly, one Group 2 animal did not
eroconvert (the other’s titres significantly raised from
:80–1:160 to 1:320–1:1280, p = 0.023), and somewhat

lower antibody values were obtained in four Group 2
animals compared to Group 1 (p = 0.51) (Fig. 2).

3.2. Challenge experiment on SPF cats

At D56, all kittens were challenged oronasally with 103

TCID50 of the virulent FIPV DF-2 strain, and were
monitored for 6 months. The C-Group cats showed severe
clinical signs of FIP starting on the second week (Table 2).
The two kittens died at days 22 and 24 post-challenge
(p.c.). The pathological and histopathological examinations
revealed lesions characteristic of systemic, non-effusive
FIP.

On the contrary, vaccination with both PBFIPV-DF-2
and PBFIPV-DF-2-R3i proved to be highly efficacious
against lethal FIPV challenge. Group 1 and Group 2 cats
remained healthy (Table 2) and survived for at least 6
months. The VN titres did not boost significantly after the

ig. 1. Faecal shedding of FCoV after oronasal (D0 and D14) and parenteral

28 and D42) vaccination of SPF and conventional cats with PBFIPV-DF-2

roup 1, n = 5), PBFIPV-DF-2-R3i (Group 2, n = 5) and PBS (C-Group, n = 5)

llowed by oronasal challenge (D56) with FIPV DF-2 (n = 20). The means

f groups are given. Error bars represent standard deviations.

Fig. 2. Induction of FCoV-neutralising antibodies after oronasal (D0 and

D14) and parenteral (D28 and D42) vaccination of SPF and conventional

cats with PBFIPV (Group 1, n = 5), PBFIPV-DF-2-R3i (Group 2, n = 5) and

PBS (C-Group) followed by oronasal challenge (D56) with FIPV DF-2

(n = 20). The means of groups are given. Error bars represent standard

deviations.

able 2

otal clinical scores of PBFIPV (n = 5) and PBFIPV-DF-2-R3i (n = 5) vaccinated SPF cats after challenge with FIPV DF-2 (n = 10) at D56.

Virus and

animal no.

Clinical score Total clinical

score

Day of death

post-challenge

Fever Depression Anorexia Jaundice Neurological

disorder

Weight

loss

Lymphopenia

Group 1

1 0 0 0 0 0 0 0 0 –

2 0 0 0 0 0 0 0 0 –

3 0 0 0 0 0 0 0 0 –

4 0 0 0 0 0 0 0 0 –

5 0 0 0 0 0 0 0 0 –

Group 2

6 0 0 0 0 0 0 0 0 –

7 0 0 0 0 0 1 0 1 –

8 0 0 0 0 0 0 0 0 –

9 0 0 0 0 0 0 0 0 –

10 0 0 0 0 0 0 0 0 –

C-Group

11 2 2 2 2 1 2 2 13 22
12 1 2 2 2 0 2 2 11 24



ch
th
ch

3.3

co

co
w
va
Th
cli
ly
in
Gr
w

Ta

To

DF

V

a

G

G

1

C

1

Ta

To

FIP

V

a

G

G

1

C

1

1
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allenge (Fig. 2). Pathological examinations confirmed
at none of the vaccinated cats showed any lesion
aracteristic of FIP.

. Immunisation and challenge experiments on

nventional cats

To study the efficacy of the vaccine candidates in field
nditions, the above experiment with the same protocols
as repeated using conventional cats. Neither of the
ccinated kittens showed any signs of fatal FIP (Table 3).
e Group 1 inoculated animals showed slightly stronger
nical signs than their SPF counterparts including
mphopenia, which is a characteristic sign of early FIPV
fection, while only anorexia was observed in two of the
oup 2 kittens (Table 3). Oropharyngeal virus shedding

as not detected in any vaccinated cat (data not shown).

Faecal virus shedding of conventional cats was approxi-
mately 0.5 log10 higher, more intense and of longer
duration (14 days extended in PBFIPV inoculated animals)
compared with that of the SPF animals (Fig. 1). Neutralising
antibodies were induced in all animals showing approxi-
mately one log2 higher titres than was observed in the SPF
animals (Fig. 2).

After challenge, all the control cats showed clinical
signs of FIP followed by death at day 19 and 21 p.c.
similarly to the SPF animals with a slightly faster
development of the disease and earlier death (Table 4).
The pathological findings were characteristic of systemic,
non-effusive FIP.

Vaccination with PBFIPV-DF-2 showed variable results
against lethal FIPV challenge. Two Group 1 cats (cat 1and
cat 2) had slightly higher VN antibody titres (Fig. 3) and
developed FIP later, from day 50–70 p.c, and died at days

ble 3

tal clinical scores of conventional cats after oronasal (D0 and D14) and parenteral (days 28 and 42) vaccination with PBFIPV (Group 1, n = 5) and PBFIPV-

-2-R3i (Group 2, n = 5). The unvaccinated controls (C-Group, n = 2) were vaccinated with PBS.

irus and

nimal no.

Clinical score Total clinical

score

Day of death

post-vaccination

Fever Depression Anorexia Jaundice Neurological

disorder

Weight

loss

Lymphopenia

roup 1

1 1 1 1 0 0 1 1 5 –

2 1 1 1 0 0 1 1 5 –

3 0 1 1 0 0 1 1 4 –

4 1 1 1 0 0 0 1 4 –

5 1 1 1 0 0 1 1 5 –

roup 2

6 0 0 0 0 0 0 0 0 –

7 0 0 1 0 0 0 0 1 –

7 0 0 0 0 0 0 0 0 –

8 0 0 0 0 0 0 0 0 –

9 0 0 1 0 0 0 0 1 –

0 0 0 0 0 0 0 0 0

-Group

9 0 0 0 0 0 0 0 0 –

0 0 0 0 0 0 0 0 0 –

ble 4

tal clinical scores of PBFIPV (Group 1, n = 5), PBFIPV-DF-2-R3i (Group 2, n = 5) and PBS (C-Group, n = 2) vaccinated conventional cats after challenge with

V DF-2 (n = 10) at D56.

irus and

nimal no.

Clinical score Total clinical

score

Day of death

post-challenge

Fever Depression Anorexia Jaundice Neurological

disorder

Weight

loss

Lymphopenia

roup 1

1 1 2 1 0 1 1 2 8 65

2 1 2 1 0 1 1 1 7 86

3 2 2 3 3 1 3 2 16 16

4 1 2 3 3 1 3 2 15 19

5 1 3 3 3 1 3 2 16 20

roup 2

6 2 3 3 3 1 3 2 17 14

7 1 3 2 1 1 3 2 13 18

8 2 3 3 3 1 3 2 17 15

9 2 3 3 3 1 3 2 17 17

0 1 2 3 1 1 3 2 13 19

-Group

1 2 2 2 3 1 3 2 15 19
2 2 2 2 3 1 2 2 14 21
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5 and 86 p.c., respectively. Post-mortem examinations
evealed characteristic FIP lesions similar to those
bserved in the fulminant course of the disease. Three
ats of Group 1 developed FIP within a week (Table 4)
llowed by death between days 16–20 p.c. The fulminant

ourse of the disease in the majority of the vaccinated
nimals suggested at least partial adverse effect of
accination instead of protection.

In Group 2 all animals developed FIP within a week
able 4) followed by death between days 14–19 p.c. The

xclusive fulminant course of the disease also indicated
lear adverse characteristics of this vaccine candidate. In
ll perished animals showing fulminant FIP, the VN titres
levated rapidly before death (Fig. 2).

. Discussion

A number of scientific data indicate that FIP is a
onsequence of a recent interspecies jump of coronavirus,
onsidering the fact that this disease has not been seen
efore 1950 (reviewed in Pedersen, 2009). The immuno-
gical aspects of FIP are complex and have not been fully

lucidated yet. FIPV could negatively influence immune
ystem intervening at several points. This virus variant is a
ighly virulent monocyte/macrophage pathogen causing
ystemic immune complex mediated infection (Vennema
t al., 1998; Takano et al., 2008; Chang et al., 2010). These
cts may explain why the acquired natural immunity in

ats is rather limited against FIPV and also why no
fficacious vaccine is available against FIPV despite the
tensive efforts of academic and commercial researchers.

In our study the same vaccination regime was applied
n SPF and conventional purebred British Shorthair cats
sing a recombinant FCoV pair differing only in the
uncation (PBFIPV-DF-2) and intactness (PBFIPV-DF-2-
3i) of their ORF3abc region. The in vivo evaluation of this
irus pair showed that these viruses possess low virulent
nd avirulent phenotype, respectively (Bálint et al., 2013).

The low and inconsistent level of faecal shedding
bserved in the present experiments following vaccination
ith the recombinant PFIPV-DF-2 is similar to that which

was observed after the infection of ORF3abc truncated
FCoVs (Chang et al., 2010; Pedersen et al., 2012).
Seroconversion reached medium level after the two
oronasal vaccinations, and it gradually elevated after the
two intramuscular injections with the absence of antibody
enhancement (ADE) leading to FIP. Strong antibody
response was induced in each group after completion of
the vaccination regime, however, high booster effect was
not observed between the four individual inoculations. To
reach higher antibody titres or to elicit more significant
booster effect, modification of the vaccination protocol and
further experiments might be required.

Vaccination with PFIPV-DF-2 caused low level lympho-
penia that proved to be transient and was not followed by a
second wave of significant lymphoid cell decrease
characteristic to the course of fatal FIP. These, together
with the lack of other adverse clinical signs are advanta-
geous for the development of a safe vaccine.

After the vaccinations with PBFIPV-DF-2-R3i, no clinical
signs were observed, which confirmed the avirulent
phenotype and the FECV characteristics of this recombi-
nant FCoV. Faecal virus shedding was higher and detected
for a prolonged period compared with that of the PFIPV-
DF-2. This phenomenon is in accordance with previous
findings that the intact ORF3abc region is indispensable for
enteric replication of FCoV (Chang et al., 2010; Pedersen
et al., 2012; Bálint et al., 2013). High mutation frequency
and recombination are common features of coronaviruses,
which can lead to increased virulence of the attenuated
strains used for vaccination. For this reason, the longer
persistence and shedding of PBFIPV-DF-2-R3i after inocu-
lation makes it a less favourable vaccine candidate than
PFIPV-DF-2.

Low and inconsistent antibody response was observed
subsequently after the two oronasal vaccinations with
PBFIPV-DF-2-R3i, while the antibody level significantly
increased after intramuscular inoculation to a level
comparable to but clearly lower than that of the PBFIP-
DF-2 vaccinated animals. The low and inconsistent initial
antibody response may be the consequence of the intact
ORF3abc, which directs FCoV replication to enterocytes
and restricts it in macrophages (Bálint et al., 2012).

In the case of SPF cats, both recombinant FCoVs with
truncated or complemented ORF3abc protected 100% of
the vaccinated animals against a homologous challenge
with the highly lethal FIPV DF-2 strain. The antibody titres
in these animals did not increase significantly after the
challenge, showing the absence of uncontrolled FIPV DF-2
replication.

Non-SPF and SPF cats reacted physiologically very
similarly to the identical vaccination regime, although
some of the clinical parameters (fever, depression,
anorexia) of the non-SPF animals were somewhat different
of those observed in SPF cats. Virus shedding and
serological response levels were also slightly higher
indicating more intensive virus replication and immune
reaction.

However, the most striking difference between the two
experiments was that the vaccine candidates provided far
less or no protection in purebred cats against the challenge
of the FIPV DF-2 strain. In most of the cases the challenge

ig. 3. Induction of FCoV-neutralising antibodies after oronasal (D0 and

14) and parenteral (D28 and D42) vaccination of conventional cats with

BFIPV (Group 1, n = 5) followed by oronasal challenge (D56) with FIPV

F-2 (n = 5).
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 to ADE and in all case to the development of severe
mptoms of FIP in non-SPF animals, independently of the
netic characteristics of the applied vaccine candidates.
E pathomechanism is not an exclusive feature of FIPV

fection; it resembles to the ADE-based Dengue haemor-
agic shock syndrome, first described by Peiris and
rterfield (1979). The same phenomenon was also
served in the case of flaviviruses, alphaviruses, lenti-

ruses, influenzaviruses, enteroviruses and measles virus
eiris and Porterfield, 1979; Porterfield, 1986; Takeda et al.,
88; Tamura et al., 1991; Chen et al., 2013; Iankov et al.,
13). It is suspected that ADE might be more severe by
rly FIPV challenge after vaccination. However, the lack of
velopment of fatal FIP and ADE among SPF cats and the
olonged survival of two non-SPF animals after 14 days
allenge suggest that other biological factors could have as
ong effect on the development of FIP as early challenge.
Two PBFIPV-DF-2 vaccinated animals (originated from

fferent litters but have common father) remained
mptomless for weeks and their survival time was
olonged from the usual 3–4 weeks to 65–86 days after
V DF-2 challenge, which is rather unusual after

fection. The course of their disease clearly differs from
E and it resembles to that of latent or sequestered

fection by FIPV, which can be reactivated by immuno-
ppressive agents, such as FeLV (Pedersen, 1987).
In our previous pilot vaccine trials we used different
A and immune stimulating complex (ISCOM) vaccine

ndidates harbouring N, S and OFF7b genes/proteins in
th SPF (n = 15) and conventional cats (n = 15). Applying
V DF-2 as a challenge strain, all the control and

ccinated animals perished within four weeks, with or
ithout the signs of ADE (Farsang et al., unpublished
sult). Studies conducted by others are congruent with
rs and indicate that virtually all cats develop FIP within

ur weeks after FIPV DF-2 challenge (reviewed in
dersen, 2009). This is the first case when we observed
ng-term survival in our vaccination trials. It may be the
nsequence either of the slightly higher neutralising
tibody titre of the two animals or it can be the result of
e altered specificity of their immune response. The
olonged survival of 40% of the PBFIPV-DF-2 vaccinated
ts makes PBFIPV-DF-2 a more promising candidate than
FIPV-DF-2-R3i for further vaccine development.
Genetic and immunological differences between the

F and non-SPF purebred kittens can explain the different
tcome of the vaccination experiment. Although more
quent occurrence of FIP was reported from Australia in

rtain breeds including British Shorthair than in Domestic
orthair cats (Norris et al., 2005) yet the significant
fluence of the genetic background of the animals is less
ely because we were not able to find any survival neither
ong Domestic Shorthair cat controls in the present

periment nor among vaccinated Domestic Shorthair cats
m our earlier ISCOM or DNA vaccination trials after FIPV
-2 challenge.
Vaccination trials revealed that sub-neutralising level

 spike protein-specific antibodies can lead to ADE by
cilitating Fc receptor-mediated uptake of FCoV by
acrophages/monocytes contributing to the development

 early death syndrome (Weiss and Scott, 1981; Vennema

et al., 1990; Corapi et al., 1992; Hohdatsu et al., 1998; Olsen
et al., 1992). Vaccination of the British Shorthair cats with
PBFIPV-DF-2 resulted in heterologous immunological
response and survival times despite the common genetic
background. These facts also suggest that immunity status
has a more substantial role in the development of the
disease course after vaccination than genetic background.

SPF kittens are bred in isolated circumstances, and they
neither meet a range of pathogenic and non-pathogenic
parasites, bacteria, fungi and viruses nor take up maternal
antibodies in the colostrum against them, while non-SPF
animals kept even under the best circumstances do
encounter with such microorganisms. The conventional
purebred British Shorthair cats developed higher VN
antibody titres but these antibodies or their particular
fraction might have led to the observed ADE.

Although no direct connection between the feline
bacterial flora and virus neutralising titre was published
so far, abundant scientific data confirm the direct and
indirect influence of the microbiota composition on the
outcome of pathogenic infections (Slifka et al., 2003;
Teixeira et al., 2008; Wilks and Golovkina, 2012).

The presence of intestinal microbes directly facilitates
the infection of reoviruses and polioviruses, both in vitro

and in vivo (Kuss et al., 2011). The bacterial flora promotes
maturation of secondary lymphoid organs in the intestine
(Lee and Mazmanian, 2010) and can influence both gene
expression in antigen-presenting cells and the way T cells
respond to vaccines (Klaasen et al., 1993; Lamousé-Smith
et al., 2011). Furthermore, interactions of macrophages
with probiotic bacteria lead to increased antiviral response
against vesicular stomatitis virus in vitro (Ivec et al., 2007).
Since FIP is the result of type III or IV hypersensitivity
reaction (Pedersen and Boyle, 1980; Paltrinieri et al., 1989),
it is tempting to speculate that the mature immune system
of non-SPF cats predisposes these animals to development
of the disease.

5. Conclusion

In summary, vaccination experiments showed that
hyperimmunisation of SPF cats with low virulent recombi-
nant FCoVs conferred complete protection against lethal
homologous challenge. However, partial or no protection
was observed using the same vaccination protocol in non-
SPF cats. These data highlight the diverse immune responses
between SPF and conventional cats and suggest a decisive
role of previous infection by heterologous causative agents
in the outcome of the vaccination against FIP.
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