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A number of viral gene products are capable of inducing apoptosis
by interfering with various cellular signalling cascades. We
previously reported the pro-apoptotic property of the SARS-CoV
(severe acute respiratory syndrome coronavirus) M (membrane)-
protein and a down-regulation of the phosphorylation level
of the cell-survival protein PKB (protein kinase B)/Akt in
cells expressing M-protein. We also showed that overexpression
of PDK1 (3-phosphoinositide-dependent protein kinase 1), the
immediate upstream kinase of PKB/Akt, suppressed M-induced
apoptosis. This illustrates that M-protein perturbs the PDK1 and
PKB/Akt cell survival signalling pathway. In the present study,
we demonstrated that the C-terminus of M-protein interacts with
the PH (pleckstrin homology) domain of PDK1. This interaction
disrupted the association between PDK1 and PKB/Akt, and
led to down-regulation of PKB/Akt activity. This subsequently
reduced the level of the phosphorylated forkhead transcription

factor FKHRL1 and ASK (apoptosis signal-regulating kinase),
and led to the activation of caspases 8 and 9. Altogether, our data
demonstrate that the SARS-CoV M-protein induces apoptosis
through disrupting the interaction of PDK1 with PKB/Akt, and
this causes the activation of apoptosis. Our work highlights that
the SARS-CoV M protein is highly pro-apoptotic and is capable
of simultaneously inducing apoptosis via initiating caspases 8 and
9. Preventing the interaction between M-protein and PDK1 is a
plausible therapeutic approach to target the pro-apoptotic property
of SARS-CoV.

Key words: apoptosis, membrane protein (M-protein), 3-phos-
phoinositide-dependent protein kinase-1 (PDK1), protein kinase
B (PKB)/Akt, severe acute respiratory syndrome coronavirus
(SARS-CoV).

INTRODUCTION

The PKB (protein kinase B/Akt) cell survival signalling pathway
has been observed to be a key in being manipulated by different
viruses during the viral life cycle to achieve maximal viral
production [1–5] and apoptosis [6,7]. Viral proteins can trigger
viral cytopathic effect which subsequently leads to apoptosis
in infected cells [6]. PKB is a serine/threonine kinase which
belongs to the cAMP-dependent protein kinase A/protein kinase
G/protein kinase C super family of protein kinases [8]. It is a
central player in a cellular kinase cascade regulating a variety
of functions, including nutrient metabolism, cell growth and
cell survival [9,10]. The activity of PKB/Akt is regulated by
PDK1 (3-phosphoinositide-dependent protein kinase-1), which
is a serine/threonine kinase which possesses a C-terminal PH
(pleckstrin homology) domain [11]. The PDK1 kinase is capable
of phosphorylating a series of protein kinases, including S6K
(p70 ribosomal S6 kinase) at Thr229 and PKB/Akt at Thr308,
for cell survival and/or proliferation [12]. The phosphorylation
of S6K is mediated through protein–protein interaction between
S6K and the PIF-pocket of PDK1 [13]. For PKB/Akt, PDK1
mediates PKB/Akt phosphorylation, which activates its activity,
allowing it to phosphorylate its downstream substrates, including
apoptosis regulatory factors such as forkhead transcription factor
FKHRL1 and ASK (apoptosis signal-regulating kinase) [10].

It has also been demonstrated that PKB/Akt activity correlates
with apoptosis [14]. Suppression of PKB/Akt activity has been
shown to induce apoptosis [15]. The forkhead transcription factor
FKHRL1 is known to regulate the expression of the potent pro-
apoptotic gene FasL (Fas ligand) [16]. Upon phosphorylation,
phospho-FKHRL1 is retained in the cytoplasm, and therefore
cannot mediate the expression of FasL. However, once the
activity of PKB/Akt is compromised, FKHRL1 translocates to the
nucleus and subsequently induces FasL expression [17,18]. Such
induction thus mediates the activation of caspase 8. In addition,
suppression of PKB/Akt activity has also been reported to activate
caspase 9 [19]. ASK is another substrate of PKB/Akt [20]. When
the activity of PKB/Akt is suppressed, ASK is activated. Such
activation subsequently phosphorylates JNK (c-Jun N-terminal
kinase) and eventually leads to the activation of caspase 9 [21]. In
summary, perturbation of PKB/Akt signalling leads to apoptosis
via the activation of caspases.

The SARS-CoV (severe acute respiratory syndrome
coronavirus) causes the highly lethal infectious disease SARS
in humans [22]. The SARS-CoV genome contains 13–15 genes
encoding replicases, various structural proteins, including spike,
envelope, membrane, nucleocapsid and a number of accessory
proteins [23–25]. Several proteins of SARS-CoV have been found
to be pro-apoptotic, and the overexpression of individual viral
proteins has been shown to be capable of inducing apoptosis by
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membrane protein; PDK1, 3-phosphoinositide-dependent protein kinase 1; PH domain, pleckstrin homology domain; PKB, protein kinase B; S6K, p70
ribosomal S6 kinase; SARS-CoV, severe acute respiratory syndrome coronavirus; TUNEL, terminal deoxynucleotidyltransferase-mediated dUTP nick-end
labelling.
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interfering with various cell signal cascades [26–31]. Membrane
(M) protein is one of the structural proteins of SARS-CoV [32,33].
M-protein mediates the incorporation of the nucleocapsid into
the newly formed virions [34,35], and it recruits all of the other
viral structural components to the endoplasmic reticulum–Golgi
compartment for virus assembly and budding [34]. M-protein is
221 amino acids in length, it possesses a short N-terminal region
(1–14), a triple membrane-spanning region (residues 15–37, 50–
72 and 76–98), and a long cytosolic C-terminal domain (99–221)
[32]. Our group previously reported the pro-apoptotic effect of
M-protein in vivo. We showed that M-protein-induced apoptosis
could be suppressed by both inhibitors of caspase 8 and caspase
9 [4]. In the present paper, we report that M-protein is capable
of physically interacting with PDK1. Such binding disrupts the
interaction between PDK1 and PKB/Akt. This reduces the level
of PKB/Akt phosphorylation. As a consequence, caspase 8 and
caspase 9 activation were triggered. Taken together, we have
dissected the molecular mechanisms of SARS-CoV M-mediated
cell death.

EXPERIMENTAL

Construction of mammalian expression vectors

The full-length Myc-tagged M-protein expression construct
pcDNA3.1( + )-myc-Membrane1–221 has been reported
previously [4]. DNA fragments encoding Myc-tagged truncated
M-protein mutants were generated by PCR using pcDNA3.1( + )-
myc-Membrane1–221 as a template and the following
primer pairs: Membrane1–135 (MembraneF, 5′-CGGG-
ATCCATGGAACTCATCTCTGAAGAGGATCTGATGGCAG-
ACAACGGTACT-3′ and Membrane135R, 5′-CGCTCGAGTT-
AACTTTCCATGAGCGGTCT-3′); Membrane1–180 (Mem-
braneF, 5′-CGGGATCCATGGAACTCATCTCTGAAGAGGA-
TCTGATGGCAGACAACGGTACT-3′ and Membrane180R,
5′-CGCTCGAGTTATAATTTGTAATAAGAAAG-3′); Mem-
brane97–221 (Membrane97F, 5′-CGGGATCCATGGAACTCA-
TCTCTGAAGAGGATCTGCTTCCTTCAGGCTGTTTG-3′ and
Membrane221R, 5′-CGCTCGAGTTACTGTACTAGCAAAGC-
3′); Membrane97–221 (Membrane97F, 5′-CGGGATCCA-
TGGAACTCATCTCTGAAGAGGATCTGCTTCCTTCAGGC-
TGTTTG-3′ and Membrane180R, 5′-CGCTCGAGTTATA-
ATTTGTAATAAGAAAG-3′). The PCR fragments were cloned
into BamHI and XhoI sites of pcDNA3.1( + ) to generate
pcDNA3.1( + )-myc-Membrane1–135, pcDNA3.1( + )-myc-
Membrane1–180, pcDNA3.1( + )-myc-Membrane97–221 and
pcDNA3.1( + )-myc-Membrane97–180. The constitutively active
pEGFP-Akt-DD construct [36] was obtained from Addgene
(plasmid 39536). A DNA fragment encoding FLAG-tagged
full-length PDK1 was generated by PCR using the HKE293FT
cDNA template and the following primer pairs: PDK1F, 5′-
GGAATTCATGGATTACAAGGACGATGACGATAAGATGG-
CCAGGACCACCAGCCAGCTG-3′ and PDK1R, 5′-GGCTC-
TAGATCACTGCACAGCGGCGTCCGGGTG-3′. The fragment
was cloned into the EcoRI and XbaI sites of pcDNA3.1( + )
to generate pcDNA3.1( + )-FLAG-PDK1. DNA fragments
encoding PDK1 delPH and PH domain were generated by
PCR using pcDNA3.1( + )-FLAG-PDK1 as template and the
following primer pairs: PDK1 delPH (PDK1F and PDK1delPHR,
5′-GGCTCTAGATCATGACCTCTGGGGCAGGCCCGTGTC-
3′); PH domain (PHF, 5′-GGAATTCATGGATTACAAGGA-
CGATGACGATAAGATGGACACGGGCCTGCCCCAGAGG-
3′ and PDK1R). The DNA fragments were cloned into EcoRI
and XbaI sites of pcDNA3.1( + ) to generate pcDNA3.1( + )-
FLAG-PDK1delPH and pcDNA3.1( + )-FLAG-PH domain.

Mammalian cell culture and transient transfection

HEK (human embryonic kidney)-293FT cells were maintained
at 37 ◦C in DMEM (Dulbecco’s modified Eagle’s medium;
Invitrogen) supplemented with 10% FBS (Life Technologies),
penicillin (100 units/ml) and streptomycin (100 g/ml). Cells were
seeded on to 6- or 24-well plates 24 h prior to transfection.
Plasmid DNA (2 μg for a 6-well plate or 0.4 μg for a 24-well
plate) was transfected using LipofectamineTM 2000 reagent (Life
Technologies). The DNA to transfection reagent ratio was fixed
at 1 μg:2 μl. Cells were harvested 48 h post-transfection.

Immunostaining

Cells were seeded at a density of 5×104 cells/well on
coverslips. After 24 h, the cells were transfected with 0.5 μg
of pcDNA3.1( + )-myc-Membrane1–221. Cells were fixed with
4% paraformaldehyde for 15 min at room temperature. Cells
were then washed three times with PBS at room temperature
each for 5 min. Cells were then permeabilized using PBS with
0.1% Triton X-100 for 15 min at room temperature. After
permeabilization, cells were blocked with PBS with 5 % goat
serum for 30 min at room temperature. Cells were stained with
anti-PDK1 (1:500 dilution; NB100-2383; Novus) and anti-Myc
(1:500 dilution; 2276, Cell Signaling) antibodies in the presence
of 3% BSA at 4 ◦C overnight. Cells were washed three times
with PBS, each for 5 min. Cells were then stained with FITC-
conjugated anti-rabbit (1:400 dilution; 81-6111; Zymed) and Cy3
(indocarbocyanine)-conjugated anti-mouse (1:400 dilution; 81-
6515; Zymed) antibodies at room temperature for 1 h. Cells were
washed with PBS five times each for 5 min at room temperature. A
control experiment was performed to demonstrate the specificity
of the anti-PDK1 antibody. Before immunostaining, the antibody
was first pre-incubated with a PDK1-blocking peptide (2 μg/ml;
NB100-2383PEP; Novus) at room temperature for 30 min to
deplete the anti-PDK1 antibody. Nuclei were stained with Hoechst
33342 (1:400 dilution; Life Technologies). Cells were then
washed with PBS three times at room temperature. The coverslips
were mounted on to glass slides with 5 μl of mounting medium
(Dako). Images were captured using an Olympus FV-1000IX81-
TIRF confocal microscope.

Co-immunoprecipitation and Western blot analysis

Cells were first washed once with PBS. For 6-well plates,
200 μl of lysis buffer (20 mM Tris/HCl, pH7.4, 150 mM NaCl
and 0.5% Nonidet P40) supplemented with protease inhibitor
cocktail (Sigma) with a 100-fold dilution was applied to each
well. The cells were sonicated using Sonifier 450 (Branson).
The lysates were clarified at 16000 g for 10 min at 4 ◦C. The
supernatant was then collected and 20 μl of the sample was saved
as ‘input’ control. For each sample, 90 μl of the supernatant was
incubated either with or without antibody at 4 ◦C overnight with
shaking. The dilutions of antibodies were as follows: anti-14-
3-3 (1:250 dilution; sc-1019, Santa Cruz Biotechnology), anti-
PDK1 (1:200 dilution; 3062, Cell Signaling Technology), anti-
Myc (1:500 dilution; 2276, Cell Signaling Technology) and
anti-FLAG (1:500 dilution; F3165, Sigma). On the following
day, 20 μl of Protein A–agarose fast-flow beads (Sigma) were
washed twice with 1 ml of binding buffer. Lysates from
the overnight incubation were incubated with washed Protein
A–agarose beads at 4 ◦C for 2 h with shaking. The Protein A–
agarose beads were then washed three times with 1 ml of ice-
cold binding buffer. After the final wash, the beads were
resuspended in 30 μl of 6× SDS sample buffer, boiled for
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Figure 1 M-protein of SARS-CoV induced caspase 8 and 9 activation by down-regulating the PKB/Akt signalling pathway

(A) Expression of M-protein reduced PKB/Akt phosphorylation at Thr308. The signal intensity of total PKB/Akt was similar in both untransfected and M-protein-expressing cells. Three independent
experiments were performed. (B) Expression of M-protein led to suppression of PKB/Akt activity. PKB/Akt activity was determined by absorbance at 450 nm. Three independent experiments were
performed. (C) M-protein compromised phosphorylation of forkhead transcription factor FKHRL1. The total level of FKHRL1 was not affected by M-protein expression. Three independent experiments
were performed. (D) Co-immunoprecipitation (IP) of 14-3-3 with FKHRL1. The presence of M-protein disrupted the association between 14-3-3 and FKHRL1. + indicates that antibody was present
in the immunoprecipitation reactions and − indicates that no antibody was included in the reactions. Three independent experiments were performed. (E) Nucleocytoplasmic fractionation of FKHRL1.
The majority of FKHRL1 in untransfected cells was found in cytoplasmic fraction (C). In contrast, the majority of FKHRL1 in M-protein-expressing cells was found in the nuclear fraction (N). Tubulin
was used as cytoplasmic marker, whereas histone was used as nuclear marker. Three independent experiments were performed. (F) Expression of M-protein enhanced the expression level of FasL .
Real-time PCR was employed to determine the expression level of FasL . The fold change of FasL expression level was determined with reference to untransfected cells. Three independent experiments
were performed. (G) Expression of M-protein compromised the phosphorylation of ASK. The expression level of ASK was not affected by expression of M-protein. Three independent experiments
were performed. (H) Expression of constitutively active PKB/Akt (PKB/Akt-DD) suppressed the activation of caspases 8 and 9 in M-protein-expressing cells. Tubulin was used as a loading control.
Only representative blots are shown. (I) Knockdown of caspase 8 and caspase 9 expression blocked SARS-CoV M-protein-mediated caspase 8- and 9-dependent apoptosis. Apoptosis was detected
using the APO-BrdUTM TUNEL Assay kit, with Alexa Fluor® 488 Anti-BrdUTM (Life Technologies). The histograms show means +− S.D. from three independent experiments. At least 100 cells were
counted in each experiment. *P < 0.05, **P < 0.01 and ***P < 0.001. Molecular masses are indicated in kDa.

10 min and followed by Western blot analysis as described
previously [37]. Primary antibodies used were anti-Akt
(1:1000 dilution; 9272, Cell Signaling Technology), anti-pAkt
(1:1000 dilution; 4056; Cell Signaling Technology), anti-
PDK1 (1:500 dilution; 5662; Cell Signaling Techno-
logy), anti-FKHRL1 (1:200 dilution; sc-11351; Santa Cruz
Biotechnology), anti-pFKHRL1 (1:500 dilution; sc-12357,
Santa Cruz Biotechnology), anti-14-3-3 (1:400 dilution;
sc-1019, Santa Cruz Biotechnology), anti-ASK (1:1000
dilution; 3762; Cell Signaling Technology), anti-pASK

(1:1000 dilution; 3761, Cell Signaling Technology), anti-
Myc (1:2000 dilution, 2276 or 2278; Cell Signaling Technology),
anti-FLAG (1:4000 dilution; M2; Sigma or 1:2000 dilution;
8146; Cell Signaling Technology), anti-cleaved caspase 8 (1:100
dilution; 9748; Cell Signaling Technology), anti-cleaved caspase
9 (1:100 dilution; 9501; Cell Signaling Technology); anti-S6K
(1:200 dilution; 2708P; Cell Signaling Technology); anti-pS6K
(1:100 dilution; SAB4503955; Sigma); anti-caspase 8 (1:500
dilution; ab11919; Abcam); anti-caspase 9 (1:1000 dilution;
9502; Cell Signaling Technology); anti-tubulin (1:10000 dilution;
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E7; Developmental Studies Hybridoma Bank) and anti-histone
(1:5000 dilution; ab47915; Abcam). Secondary antibodies used
were HRP (horseradish peroxidase)-conjugated goat anti-mouse
IgG (1:2000 dilution; 7076; Cell Signaling Technology), HRP-
conjugated goat anti-rabbit IgG (1:2000 dilution; 7074; Cell
Signaling Technology) and HRP-conjugated rabbit anti-goat IgG
(1:2000 dilution; R-21459, Life Technologies).

PKB/Akt activity assay

PKB/Akt activity assay was measured using a K-LISATM Akt
Activity Kit (Calbiochem) according to the manufacturer’s
instructions. EnVision® Multilabel Reader (PerkinElmer) was
used for signal detection. Each experiment was performed in
triplicate and repeated at least three times.

Real-time PCR

Total RNA was extracted from cells using TRIzol® reagent
(Life Technologies) and 0.5 μg of total RNA was reverse
transcribed using the ImPromII® Reverse Transcription System
(Promega). Taqman gene expression assays were performed
on an ABI 7500 Real-time PCR system using following
probes: FasL (Hs00181225_m1; Life Technologies) and actin
(Hs99999903_m1; Life Technologies). Each experiment was
performed in triplicate and was repeated at least three times.
Quantification of gene expression was calculated according to the
2−��CT method [38].

Nucleocytoplasmic fractionation

Cytoplasmic and nuclear protein fractions were prepared as
described previously [39]. In brief, cells were homogenized in
fractionation buffer (10 mM Tris/HCl, pH 7.4, 10 mM NaCl,
3 mM MgCl2 and 0.5% Nonidet P40). The cell lysates were
centrifuged at 16000 g. The supernatant was collected as the
cytoplasmic fraction. The pellet was extracted using resuspension
buffer (10 mM Tris/HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2,
0.5% Nonidet P40 and 2% SDS) and then collected as the nuclear
fraction.

TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP
nick-end labelling) assay

The TUNEL assay was performed according to [40]. In brief,
cells were seeded at 7×105 on to 6-cm-diameter dishes. After
24 h, cells were transfected with 35 nM caspase 8 siRNA or
10 nM caspase 9 siRNA for 48 h, followed by transfection
with pcDNA3.1( + )-myc-Membrane 1-221 construct for 48 h.
Apoptosis was measured using the APO-BrdUTM TUNEL assay
kit with Alexa Fluor® 488 anti-BruU (Life Technologies)
according to the manufacturer’s instructions.

Statistical analyses

Statistical analyses were performed using two-tailed unpaired
Student’s t test. All experiments were performed at least three
times. Results are presented as means +− S.D. A P value of less
than 0.05 was considered to be statistically significant.

RESULTS

SARS-CoV M-protein activated caspase cascades by modulating
the activities of Forkhead transcription factor FKHRL1 and ASK

We previously reported that expression of SARS-CoV M-protein
caused a down-regulation of PKB/Akt phosphorylation in a
Drosophila model [4]. Consistent with our previous result, we
detected a reduced phosphorylated PKB/Akt level (Figure 1A)
and diminished PKB/Akt activity (Figure 1B) in mammalian cells
expressing M-protein. One of the functions of PKB/Akt is to
regulate forkhead transcription factor FKHRL1 for cell survival
[18]. Phosphorylation of FKHRL1 is essential for interacting with
14-3-3 protein [18]. When such protein–protein interaction is
abolished, FKHRL1 translocates to the nucleus where it mediates
pro-apoptotic gene expression [18]. Since we observed a down-
regulation of PKB/Akt activity in M-protein-expressing cells, we
decided to investigate the phosphorylation status of FKHRL1 and
found that the level of phosphorylated FKHRL1 was reduced
(Figure 1C). By means of co-immunoprecipitation, we also found
that the interaction between FKHRL1 and 14-3-3 was diminished
in M-protein-expressing cells (Figure 1D). We next investigated
the subcellular localization of FKHRL1 in the presence of M-
protein. In untransfected cells, majority of FKHRL1 was detected
in the cytoplasmic fraction (Figure 1E). In contrast, FKHRL1 was
enriched in the nuclear fraction when M-protein was expressed
(Figure 1E). FasL is a pro-apoptotic gene whose expression is
regulated by FKHRL1 [41]. By means of real-time PCR, we
showed that the expression level of FasL was elevated significantly
in M-protein-expressing cells (Figure 1F). Consistent with the
well-established role of FasL in caspase 8 activation [41], we
also observed caspase 8 cleavage in M-protein-expressing cells
(Figure 1H). Therefore our results reveal that the expression of
M-protein causes activation of caspase 8.

Our previous study demonstrated that treatment of either
the caspase 8 inhibitor Z-IETD-FMK (benzyloxycarbonyl-
Ile-Glu-Thr-DL-Asp-fluoromethylketone) or the caspase 9
inhibitor Z-LEHD-FMK (benzyloxycarbonyl-Leu-Glu-His-DL-
Asp-fluoromethylketone), only partially suppressed M-protein-
induced apoptosis [4]. This suggests that both caspases 8 and 9
are involved in M-protein-induced apoptosis. ASK is a substrate
of PKB/Akt [20] and a down-regulation of ASK phosphorylation
leads to caspase 9 activation [42]. Therefore, we investigated
the phosphorylation status of ASK in M-protein-expressing
cells. We observed a reduction in the level of phosphorylated
ASK (Figure 1G). Furthermore, we detected caspase 9 cleavage
(Figure 1H) in these cells. When we co-expressed M-protein
with a constitutively active form of PKB/Akt [36], cleavage of
caspases 8 and 9 was suppressed (Figure 1H). Taken together,
our results demonstrated that expression of M-protein causes
activation of both caspases 8 and 9 via the PKB/Akt signalling
cascades. To confirm further our findings, we knocked down
the expression of caspase 8 and caspase 9 individually and
together (Supplementary Figure S1) to determine the effect of
these knockdowns on M-induced apoptosis using the TUNEL
assay. We found that both caspases 8 and 9 are involved in M-
protein-induced cell death, and the simultaneous knockdown of
caspases 8 and 9 caused a more significant cell death blockade
(Figure 1I).

The C-terminus of M-protein interacts with the PH domain of PDK1

The expression of SARS-CoV M-protein has previously been
reported to trigger cell death [43]. Given that we observed
a down-regulation of PKB/Akt-pThr308 phosphorylation level
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Figure 2 M-protein competes with PKB/Akt for PDK1

(A) Co-localization of M-protein and PDK1. M-protein (red) was stained with anti-Myc antibody and endogenous PDK1 (green) was stained with anti-PDK1 antibody. Untransfected and transfected
represent cells without and with M-protein expression respectively; + , anti-PDK1 antibody was depleted by PDK1 peptide; − , no PDK1 peptide was added to deplete anti-PDK1. Cell nuclei (in
blue) were stained with Hoechst 33342. Scale bar, 10 μm. At least three independent experiments were performed. (B) Co-immunoprecipitation of PDK1 with PKB/Akt. In untransfected cells, PKB/Akt
was able to associate with PDK1. However, in M-protein-expressing cells, M-protein was found to bind to PDK1, and the association between PKB/Akt and PDK1 was disrupted. Three independent
experiments were performed. (C) The C-terminus of M-protein was responsible for interacting with PDK1. Co-immunoprecipitation was performed. Only full-length (1–221) M-protein was able to
interact with PDK1, but not the other two truncated M-proteins (1–180 and 1–135). Three independent experiments were performed. (D) The N-terminus of M-protein was dispensable for PDK1
interaction. Truncated M-protein (97–221) was able to interact with PDK1, but not another truncated M-protein (97–180). Three independent experiments were performed. (E) The PH domain of
PDK1 was responsible for interacting with M-protein. Co-immunoprecipitation was performed. Full-length PDK1 was able to interact with M-protein, but the deletion mutant PDK1 delPH was not
able to interact with M-protein. The PH domain of PDK1 alone was sufficient to interact with M-protein. + , antibody was present in the immunoprecipitation reactions; − , no antibody was included
in the reactions. Three independent experiments were performed. Only representative blots are shown. Molecular masses in kDa are indicated. IP, immunoprecipitation.

in M-protein expressing cells [4] (Figure 1A), and that we
identified PDK1, an immediate upstream kinase of PKB/Akt, as a
genetic suppressor of M-protein-induced apoptosis in vivo [4], we
investigated the underlying mechanism through which caspases 8
and 9 are activated in M-protein-expressing cells (Figure 1). PKB
is a substrate of PDK1 [11], and down-regulation of PDK1 reduces
the level of phosphorylated PKB/Akt and caspase activation
[44]. We hypothesized that M-protein disrupts the interaction
between PDK1 and PKB/Akt, which then leads to reduction of
PKB/Akt phosphorylation. By means of confocal microscopy, we
detected co-localization of M-protein and PDK1 in the cytosol
(Figure 2A). We next determined whether M-protein interacted
biochemically with PDK1. To do this, we first showed that
PKB/Akt interacted with PDK1 in untransfected cells in serum-
containing culture medium (Figure 2B and Supplementary Figure
S2); and such interaction was diminished in cells expressing M-
protein. Concomitantly, PDK1 was found to associate with M-

protein (Figure 2B). The results thus indicate that the PDK1–M-
protein and PDK1–PKB/Akt interactions are mutually exclusive.

To identify the region of M-protein responsible for interacting
with PDK1, four M-protein deletion mutants (1–180, 1–135, 97–
180 and 97–221) were generated. Co-immunoprecipitation results
showed that all M-protein deletion mutants (including 1–180),
except for 97–221, failed to interact with PDK1 (Figures 2C and
2D). Taken together, our data indicate that M-protein employs
its C-terminal domain (181–221) to interact with PDK1. We
showed further that the expression of an M-protein fragment (97–
221) was capable of disrupting the interaction between PDK1
and PKB/Akt (Figure 2B and Supplementary Figure S3). This
highlights the functional significance of the C-terminal domain
of M-protein in perturbing cell survival signalling. Since PDK1
interacts with PKB/Akt via its PH domain, we investigated
whether M-protein would bind to the PH domain of PDK1. To
test this, we generated a PDK1 deletion mutant construct (PDK1
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Figure 3 Expression of PDK1 PH domain restored the PDK1–PKB/Akt-mediated signalling cascade

(A) Expression of PDK1 PH domain restored the interaction between PDK1 and PKB/Akt in M-protein-expressing cells. Three independent experiments were performed. Co-expression of PDK1 PH
domain restored the phosphorylation of PKB/Akt at Thr308 (B), activity of PKB/Akt (C), and the phosphorylation of FKHRL1 and ASK (D) in M-protein-expressing cells. Three independent experiments
were performed. Expression of PDK1 PH domain suppressed the cleavage of caspase 8 (E) and caspase 9 (F) induced by M-protein. Tubulin was used as a loading control. Results in (C) are
means +− S.D. **P < 0.01. Only representative blots are shown, with molecular masses in kDa. Ab, antibody; IP, immunoprecipitation.

delPH) which lacks the PH domain, and another construct,
PDK1 PH domain, which only carries the PH domain of PDK1.
We found that PDK1 delPH did not interact with M-protein
(Figure 2E). This indicates that the PH domain is essential for
mediating the PDK1–M-protein interaction. Consistent with this
view, we found that the PDK1 PH domain itself was capable
of interacting with M-protein (Figure 2E). We also showed
that M-protein did not alter S6K (another PDK1 substrate)
phosphorylation (Supplementary Figure S4). The interaction
between S6K and PDK1 is mediated through the PIF-pocket of
PDK1 [45], and our finding suggests M-protein preferentially
perturbs the activity of any PDK1 downstream substrate whose
phosphorylation is mediated through its PH domain. In summary,
our findings provide an explanation of how M-protein competes
with PKB/Akt for interacting with PDK1.

To investigate further whether the diminished PKB/Akt activity
we observed in M-protein-expressing cells (Figure 1B) was
solely caused by the binding of M-protein to endogenous PDK1,
we examined whether interfering with the M-protein–
PDK1 interaction would restore endogenous PDK1–PKB/Akt
interaction. To test this, we co-expressed M-protein with either
the PDK1 delPH or PDK PH domain, and determined endogenous

PDK1–PKB/Akt interaction. We found that the co-expression
of PDK1 PH domain largely restored endogenous PDK1–
PKB/Akt association (Figure 3A and Supplementary Figure S5),
whereas PDK1 delPH failed to do so. This is consistent with our
above result that PDK1 delPH was unable to bind to M-protein
(Figure 2E). We showed further that co-expression of the PDK1
PH domain restored PKB/Akt phosphorylation (Figure 3B),
PKB/Akt activity (Figure 3C), phosphorylation of FKHRL1 and
ASK (Figure 3D), and subsequently suppressed the activation
and cleavage of caspase 8 (Figure 3E) and caspase 9 (Figure 3F)
in M-protein-expressing cells. Our results thus indicate that the
down-regulation of PDK1–PKB/Akt activity is a key event in
M-protein-induced apoptosis.

DISCUSSION

Viral proteins have long been associated with apoptosis. For
example, apoptin of the chicken anaemia virus, gp120 and gp41
of HIV-1, HPV (human papillomavirus)-18 of papillomaviruses
and NS1 of the influenza virus have been reported to induce
apoptosis [46]. In the present study, we elucidated the molecular
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Figure 4 Proposed model for SARS-CoV signalling

M-protein mediates caspase 8- and 9-dependent apoptosis. PDK1 mediates the phosphorylation of PKB/Akt which in turn regulates the phosphorylation status of FKHRL1 and ASK. Phosphorylation
of FKHRL1 and ASK inhibits the activation of caspase 8 and caspase 9. SARS-CoV M-protein binds to PDK1, and this interaction compromises the phosphorylation of PKB/Akt. Subsequently, the
level of phosphorylated FKHRL1 and ASK is down-regulated. Caspase 8 and caspase 9 activities are no longer inhibited and apoptosis is triggered.

mechanism that the SARS-CoV M-protein exploits to induce
cell death. The M-protein compromises PKB/Akt activity by
interfering with its upstream activator PDK1. This in turn
upsets the balance of phosphorylation status of downstream
PKB/Akt targets. Such an alteration of phosphorylation balance
of cellular proteins causes downstream cellular physiological
consequences, including apoptosis [9,10]. In the present study,
we showed that M-protein expression caused a down-regulation
of FKHRL1 phosphorylation (Figure 1C). This subsequently
led to an enrichment of FKHRL1 in the nuclear compartment
(Figure 1E). FKHRL1 is a transcription factor that governs the
expression level of FasL [16]. Once the level of FasL is increased,
this eventually leads to the activation of caspase 8 [41]. Our
previous findings indicate that the blockade of caspase 8 or
caspase 9 activity only partially inhibits cell death [4]. This
indicates that caspase 8 is probably not the only mediator of cell
death induced by M-protein. ASK is a substrate of PKB/Akt [47],
and it has been reported that PKB/Akt regulates ASK activity
[20]. When PKB/Akt activity is down-regulated, ASK activity is
derepressed, which causes JNK activation [20]. Subsequently,
phosphorylated JNK leads to cell death through the activation of
caspase 9 [21]. As PKB/Akt activity was compromised by M-
protein, down-regulation of ASK phosphorylation was observed
in M-expressing cells (Figure 1G) followed by caspase 9 cleavage
(Figure 1H). Our finding is consistent with previous investigations
that down-regulation of PKB/Akt activity was observed in SARS-
CoV-infected cells [2,3]. The present study shows that M-protein
is one of the culprits leading to PKB/Akt down-regulation in
SARS-CoV infection, and this in turn compromises cell survival
signalling which eventually triggers apoptosis (Figure 4).

We have demonstrated that M-protein induces caspase 8 and
caspase 9 activation by down-regulating the PKB/Akt survival
signalling cascade. We found that the C-terminus of M-protein
(residues 97–221) is responsible for interacting with the PH
domain of PDK1 (Figure 2). Such an interaction compromised the

interaction between PKB/Akt and PDK1. Since PDK1 mediates
PKB/Akt phosphorylation, blocking the access of PKB/Akt to
PDK1 prevents PKB/Akt activation. Subsequently, the PKB/Akt
signalling cascade is compromised. To confirm further that this
interaction is essential for M-protein to induce cell death, we
investigated whether the co-expression of the PH domain of
PDK1 could counteract M-mediated apoptosis. The rationale
behind this was to introduce a binding partner of M-protein;
therefore the exogenous PH domain could bind to M-protein,
allowing the endogenous PDK1 to interact with PKB/Akt. Our
results demonstrated that the co-expression of PH domain and M-
protein could restore the interaction between PDK1 and PKB/
Akt (Figure 3A). Our results also showed that expression of
the PDK1 PH domain itself showed no modulatory effect on
PKB/Akt activity (Figure 3). We thus anticipate that the rescuing
effect of the PDK1 PH domain is probably mediated through
its interaction with the M-protein, which indicates specificity
towards the M-protein. In summary, our investigations show that
the SARS-CoV M-protein is capable of interacting with PDK1,
through which it compromises cellular pro-survival signalling
and subsequently activates caspase cascades. The present study
provides new evidence for the participation of two parallel
pro-apoptotic pathways in SARS-CoV M-protein-induced cell
death. The results shown in the present paper will broaden our
understanding of the pro-apoptotic role of M-protein. Identifying
inhibitors that have high affinity towards the C-terminal domain
of the M-protein may be an attractive therapeutic direction to
counteract SARS-CoV M-protein-mediated cell death.
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