
1

3

4

5

6

7 Q1

8 Q2

910
11

1 3

14
15
16
17
18

19 Q3
20
21
22
23
24

2 5

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Antiviral Research xxx (2014) xxx–xxx

AVR 3550 No. of Pages 10, Model 5G

2 December 2014
Contents lists available at ScienceDirect

Antiviral Research

journal homepage: www.elsevier .com/locate /ant iv i ra l
A screen of the NIH Clinical Collection small molecule library identifies
potential anti-coronavirus drugs
http://dx.doi.org/10.1016/j.antiviral.2014.11.010
0166-3542/� 2014 Published by Elsevier B.V.

⇑ Corresponding author at: Department of Microbiology and Immunology,
University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 511,
Little Rock, AR 72205, United States. Tel.: +1 (501) 686 7415; fax: +1 (501) 686
5359.

E-mail address: zhangxuming@uams.edu (X. Zhang).

Please cite this article in press as: Cao, J., et al. A screen of the NIH Clinical Collection small molecule library identifies potential anti-coronavirus
Antiviral Res. (2014), http://dx.doi.org/10.1016/j.antiviral.2014.11.010
Jianzhong Cao, J. Craig Forrest, Xuming Zhang ⇑
Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States

a r t i c l e i n f o
26
27
28
29
30
31
32
33
34
35
36
Article history:
Received 1 July 2014
Revised 8 October 2014
Accepted 20 November 2014
Available online xxxx

Keywords:
Coronavirus
Small molecule
NCC library
Screening
37
38
39
40
a b s t r a c t

With the recent emergence of Middle East Respiratory Syndrome coronavirus in humans and the out-
break of devastating porcine epidemic diarrhea coronavirus in swine, therapeutic intervention is urgently
needed. However, anti-coronavirus drugs currently are not available. In an effort to assist rapid develop-
ment of anti-coronavirus drugs, here we screened the NIH Clinical Collection in cell culture using a lucif-
erase reporter-expressing recombinant murine coronavirus. Of the 727 compounds screened, 84 were
found to have a significant anti-coronavirus effect. Further experiments revealed that 51 compounds
blocked virus entry while 19 others inhibited viral replication. Additional validation studies with the
top 3 inhibitors (hexachlorophene, nitazoxanide and homoharringtonine) demonstrated robust anti-
coronavirus activities (a reduction of 6 to 8log10 in virus titer) with an IC50 ranging from 11 nM to
1.2 lM. Furthermore, homoharringtonine and hexachlorophene exhibited broad antiviral activity against
diverse species of human and animal coronaviruses. Since the NIH Clinical Collection consists of com-
pounds that have already been through clinical trials, these small molecule inhibitors have a great poten-
tial for rapid development as anti-coronavirus drugs.

� 2014 Published by Elsevier B.V.
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1. Introduction

Coronavirus is an enveloped RNA virus. It has a single-strand,
positive-sense RNA genome that is associated with nucleocapsid
(N) protein to form the nucleocapsid inside the envelope (Fan
et al., 2005; Jayaram et al., 2006). The spike protein protrudes from
the virion surface to confer viral infectivity and is the major deter-
minant of species- and tissue-tropism. Coronaviruses can infect
humans and diverse species of animals, causing respiratory, diges-
tive, neurological and immune-mediated diseases. Most human
coronaviruses cause mild respiratory illnesses such as common
cold or enteric diseases such as diarrhea (Caul and Egglestone,
1977; Resta et al., 1985; Zhang et al., 1994). But in 2003, a new
coronavirus termed Severe Acute Respiratory Syndrome (SARS)-
coronavirus suddenly emerged in the human population from wild
animals (Drosten et al., 2003; Ksiazek et al., 2003; Marra et al.,
2003; Rota et al., 2003), sickened more than 8000 people, and
caused 774 deaths (CDC, 2004; Sorensen et al., 2006). Due to the
fear caused by its ease of human-to-human transmission, disease
80

81

82Q4

83

84
severity and high mortality, the SARS outbreak posed a significant
threat to public health and caused devastating economic loss. For-
tunately, the epidemic subsided, and SARS has not re-emerged.
However, another new coronavirus, termed Middle East Respira-
tory Syndrome (MERS) coronavirus, recently emerged in the Mid-
dle East and has now spread to dozens of countries (Lim et al.,
2013; Mitka, 2013); it has infected more than 635 people and
claimed 193 lives thus far (WHO, 2014). While the origins of SARS
and MERS appear distinct, the respiratory disease similarities and
high mortality rate has raised renewed concern about MERS’
potential threat to public health on a global scale. Furthermore,
although most of the existing animal coronaviruses are wide-
spread, a new coronavirus strain, porcine epidemic diarrhea
(PED) coronavirus, emerged several years ago in Asia and now
has spread to the Americas, including the United States
(Stevenson et al., 2013; Wang et al., 2014), causing significantly
high mortality in affected piglets. This new epizootic disease has
devastated the swine industry in these countries, having wiped
out more than 10% of the U.S. pig population (De La Hamaide,
2014). However, to date, there is no effective drug available for
treatment of any coronavirus infection, although a few drugs have
been tested in vitro (Al-Tawfiq et al., 2014; Barlough and Shacklett,
1994; Falzarano et al., 2013; Morgenstern et al., 2005; Saijo et al.,
2005).
drugs.

http://dx.doi.org/10.1016/j.antiviral.2014.11.010
mailto:zhangxuming@uams.edu
http://dx.doi.org/10.1016/j.antiviral.2014.11.010
http://www.sciencedirect.com/science/journal/01663542
http://www.elsevier.com/locate/antiviral
http://dx.doi.org/10.1016/j.antiviral.2014.11.010
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Table 1
Top anti-coronavirus drug candidates identified in DBT and 17Cl-1 cells.

Plate Well Sample_ID Synonyms Mean SD SSMD

Top candidates in DBT cells
NCP002954 B10 SAM002554903 Hexachlorophene 1.1 0.2 �10.3
NCP002408 C11 SAM001246822 Homoharringtonine 1.2 0.1 �10.3
NCP002408 D06 SAM001246523 Duloxetine hydrochloride 4.6 0.2 �9.9
NCP003132 B04 SAM002699896 Mitoxantrone 4.7 0.5 �9.9
NCP002954 C09 SAM002554895 Chloroxine 5.9 0.5 �9.8
NCP003132 C05 SAM002548956 Fludarabine 6.1 0.2 �9.8
NCP002408 F03 SAM001246877 Benzbromarone 5.2 1.6 �9.7
NCP002362 F02 SAM001246708 Nitazoxanide 11.1 0.5 �9.2
NCP002408 H07 SAM001247094 Rimcazole 6.7 3.4 �9.2
NCP002408 B04 SAM001246876 6-Azauridine 8.3 2.9 �9.1
NCP002295 H08 SAM001246989 Maprotiline hydrochloride 10.7 2.1 �9.1

Top candidates in 17Cl-1 cells
NCP002408 C11 SAM001246822 Homoharringtonine 2.2 0.1 �10.2
NCP003132 C05 SAM002548956 Fludarabine 2.9 0.2 �10.1
NCP002954 B10 SAM002554903 Hexachlorophene 3.6 0.3 �10.0
NCP002353 G07 SAM001246553 Triptolide 3.7 0.3 �10.0
NCP002408 F03 SAM001246877 Benzbromarone 3.8 0.9 �10.0
NCP002408 H07 SAM001247094 Rimcazole 4.2 0.5 �10.0
NCP002353 F08 SAM001246770 Oxaprozin 4.5 0.3 �9.9
NCP003132 B04 SAM002699896 Mitoxantrone 7.6 2.0 �9.4
NCP002353 H06 SAM001246559 Epirubicin hydrochloride 9.0 1.2 �9.4
NCP002438 B02 SAM001246570 Vincristine sulfate 11.1 0.7 �9.2
NCP002322 F07 SAM001246679 Itraconazole 7.9 2.9 �9.2
NCP002362 B04 SAM001246780 VinorelbineÂ tartrate 7.6 3.2 �9.1
NCP002322 A06 SAM001246689 Docetaxel 12.2 1.0 �9.1
NCP002353 G02 SAM001246736 Carvedilol 12.6 0.9 �9.1

Note: Data showing here were obtained from validation study. Drug candidates are ranked from strongest to weakest antiviral efficacy according to SSMD score. Only the
candidates with an SSMD score of less than �9 are listed. Mean, average luciferase activity of triplicate expressed as percentage of the control (DMSO), which is 100%. SD,
standard deviation of the mean. SSMD, strictly standardized mean difference.
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In an effort to identify potential drugs capable of inhibiting
coronavirus infection, in the present study, we performed an
in vitro screen of a small molecule library from the National Insti-
tutes of Health Clinical Collections (NCC). Because both SARS and
MERS coronaviruses belong to the same biologically and geneti-
cally closely related Betacoronavirus subgroup as murine coronavi-
rus, we used a recombinant murine coronavirus expressing a
luciferase reporter gene as a safe surrogate to evaluate the
anti-coronavirus efficacy of the drugs. Because preclinical and/or
clinical data for these small molecules or compounds are already
available, identification of potential antiviral candidates will allow
us to rapidly advance the process for discovery and development of
efficient anti-coronavirus drugs. Our screen identified 84 com-
pounds with anti-coronavirus properties. Importantly, several
compounds exhibited robust anti-coronavirus activity at micromo-
lar or nanomolar concentrations, without overt cytotoxicity to host
cells. Thus, these compounds can be advanced to animal and clin-
ical trials, having the potential to be developed as effective anti-
coronavirus drugs.
116
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Fig. 1. Effect of candidate drugs on MHV infection at different MOIs. DBT cells were
treated with drugs at 10 lM for 1 h and then infected with MHV-2aFLS at MOI of 1
or 0.1 in the presence of the indicated drugs for 8 h. Cells were then lysed for
determining luciferase activity. Cells treated with 1% DMSO were served as control.
The antiviral effectiveness of the drugs is expressed as percent luciferase activity to
the control, which is 100%. Data represent mean of 3 independent treatments and
standard deviation of the means.
2. Materials and methods

2.1. Cells, virus, and reagents

Mouse astrocytoma DBT and fibroblast 17Cl-1 cells were cul-
tured at 37 �C in DMEM containing 10% fetal bovine serum (FBS),
penicillin (100 units/ml), and streptomycin (100 lg/ml). A recom-
binant murine coronavirus mouse hepatitis virus (MHV) strain
A59 expressing firefly luciferase, termed MHV-2aFLS (de Haan
et al., 2003), was used for screening throughout the study. Wild-
type MHV-A59, MHV-A59GFP (Das Sarma et al., 2002), MHV-1,
MHV-2, and MHV-JHM were also used for some experiments. Virus
titer was determined by standard plaque assay. Bovine coronavirus
strain L9 (BCoV-L9) (Zhang et al., 1991), and human enteric corona-
Please cite this article in press as: Cao, J., et al. A screen of the NIH Clinical Co
Antiviral Res. (2014), http://dx.doi.org/10.1016/j.antiviral.2014.11.010
virus strain 4408 (HECoV-4408) (Zhang et al., 1994) were grown in
human rectal tumor (HRT)-18 cells. Monoclonal antibody (mAb)
J.3.3 was used for detecting MHV N protein, and mAb#46 for the
N protein of BCoV-L9 and HECV-4408 (Zhang et al., 1994). Anti-
body to b-actin was purchased from Invitrogen. Goat anti-mouse
llection small molecule library identifies potential anti-coronavirus drugs.

http://dx.doi.org/10.1016/j.antiviral.2014.11.010
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Fig. 2. Correlation of inhibition on luciferase reporter expression and virus titer. DBT cells were treated with various drugs as indicated (10 lM) or DMSO (1%) as a control for
1 h and then infected with MHV-2aFLS at MOI of 1 for 8 h. The medium was harvested for determining viral titer (TCID50) (B) and cells were lysed for determining luciferase
activity (A). Data indicate the mean of 3 replicates (independent treatments) and standard deviation of the mean. Statistical significance of the inhibitory effect of the drugs on
luciferase activity (A) or virus titer (B) as compared to those of DMSO control is indicated by the number of asterisks (⁄p < 0.05; ⁄⁄p < 0.01; ⁄⁄⁄p < 0.001).
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Fig. 3. Inhibitory effect of hexachlorophene on MHV infection. (A) Chemical structure of hexachlorophene. (B) Determination of IC50. DBT cells were treated with
hexachlorophene at various concentrations as indicated or 1% DMSO (vehicle control) for 1 h, and were infected with MHV-2aFLS at MOI of 1 in the presence of the drug for
8 h. Cells were then lysed for luciferase assay. Inhibition of MHV infection was expressed as percent reduction in luciferase activity following drug treatment compared to the
control, and the IC50 was then calculated as indicated by the solid lines. (C) Inhibition of viral titer. DBT cells were treated with hexachlorophene (10 lM) or DMSO (1%) as a
control for 1 h and then infected with MHV-2aFLS at MOI of 1 for 12 h. The medium was harvested for determining viral titer (TCID50). Data indicate the mean of 3 replicates
and standard deviation of the mean. (D) Inhibition of viral N protein expression. The experiments were performed identically to (C), except that different concentrations of the
drugs were used. Following drug treatment and viral infection, cells were lysed to evaluate viral N protein expression levels by Western blotting. Beta-actin serves as a loading
control.
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IgG conjugated with horseradish peroxidase (HRP) or with FITC
was purchased from Sigma–Aldrich.

2.2. Screening of small molecule drug library

The NCC library contains a total of 727 small molecule drugs
(compounds) supplied in 96-well plates that are prepared in DMSO
at 1 mM (http://www.nihclinicalcollection.com). For screening,
10 ll of each drug was first transferred to a new 96-well plate
and diluted to 100 ll with Opti-MEM I serum-free medium to
Please cite this article in press as: Cao, J., et al. A screen of the NIH Clinical Co
Antiviral Res. (2014), http://dx.doi.org/10.1016/j.antiviral.2014.11.010
make stock plates. Then, 10 ll of the stock was transferred to a
well in another 96-well plate and mixed with 90 ll of MHV-2aFLS
in DMEM/TPB10 to give a final concentration of 10 lM for each
drug. The drug/virus mixture (45 ll) was delivered to each well
and the infection was carried out for 8 h. The vehicle control con-
tained 1% DMSO. For primary screening, duplicate plates were
used. For validation screening, experiments were conducted in
triplicate plates. At the end of the infection, culture medium was
removed and cells were stored at �80 �C overnight. The plates
were then allowed to thaw at room temperature and 50 ll of
llection small molecule library identifies potential anti-coronavirus drugs.

http://www.nihclinicalcollection.com
http://dx.doi.org/10.1016/j.antiviral.2014.11.010
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luciferase reagent was added to each well followed by gentle shak-
ing for 10 min. The luciferase activity was determined using a Syn-
ergy 2 microplate reader with Gen 5 software (Biotek). Data were
exported into Excel files for statistical analysis.

2.3. Cell viability assay

Cells grown in 96-well plates were incubated for 16 h with each
drug at 10 lM and then cell viability was determined using the XTT
assay kit TOX2-1KT according to the manufacturer’s instruction
(Sigma–Aldrich). DMSO at 1% served as vehicle control.

2.4. Western blot analysis and immunofluorescence assay (IFA)

For detecting proteins, either Western blot analysis or IFA was
performed as previously described (Cao and Zhang, 2012).

2.5. Determination of virus titer (TCID50)

Virus titer was determined by the standard 50% tissue culture
infectious dose (TCID50) in DBT cells in a 96-well plate.

2.6. Statistics analysis

Luciferase data from each library screening plate were com-
bined and used for statistical analysis. Mean luciferase activity
for replicates and standard deviation (SD) of the mean were calcu-
lated by standard statistics methods and were expressed as a per-
centage of the negative control (DMSO), which was set as 100%.
Student’s t-test was used to calculate p-values for statistical signif-
icance. Strictly standardized mean difference (SSMD) (Zhang,
2007) was used to select the candidates with a score of �2 or less
for inhibitors.
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Fig. 4. Inhibitory effect of nitazoxanide on MHV infection. (A) Chemical structure of ni
various concentrations or 1% DMSO (vehicle control) for 1 h, and were infected with M
luciferase assay. Inhibition of drug on MHV infection was expressed as percent reduction
the solid lines. (C) Inhibition of viral titer. DBT cells were treated with nitazoxanide (10 l
for 12 h. The medium was harvested for determining viral titer (TCID50). Data indicate th
protein expression. The experiments were performed identically to (C), except that dif
infection, cells were lysed to evaluate viral N protein expression levels by Western blot
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3. Results

3.1. Screening of the NCC drug library for anti-coronavirus activity

Primary screening of the entire NCC library was performed in
DBT cells infected with MHV-2aFLS. Duplicate plates were used
for the screening and SSMD was used for hit selection and ranking.
Recently, SSMD has been widely used for hit selection in high-
throughput screening assay (HTS) such as siRNA and small mole-
cule screenings as well as antiviral drug selection (Andruska
et al., 2012; Aulner et al., 2013; Gough et al., 2014; Rachidi et al.,
2014; Zhang, 2007). A negative value of SSMD suggests inhibitory
effect while a positive value indicates enhanced effect of the com-
pound. An SSMD score of <�2 suggests strong inhibitory effect
(Zhang, 2007). Thus, we used this score as a cut-off threshold for
hit selection. Results showed that 84 drugs had an SSMD score of
less than �2, indicating that these drugs likely have anti-MHV
activities. Of the 84 drug candidates, 37 exhibited very strong inhi-
bition of MHV infection with an SSMD score of <�5 (Supplemental
Table 1). All candidate anti-coronavirus drugs were subjected to
further validation (see below).
3.2. Validation of the candidate drugs

To verify the antiviral effect of the candidate drugs, secondary
screening was carried out in both DBT and 17Cl-1 cells. We found
that 70 and 69 of the 84 drugs, respectively, inhibited MHV infec-
tion in DBT and 17Cl-1 cells (Supplemental Table 1). Specifically, in
DBT cells, 11 drugs strongly inhibited viral infection with an SSMD
score of less than �9 (Table 1). In 17Cl-1 cells, viral infection was
strongly inhibited by 14 drugs, which exhibited SSMD scores of
less than �9 (Table 1). Cell viability assays revealed that all the
candidate drugs did not significantly decrease cell viability at the
C  
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HV-2aFLS at MOI of 1 in the presence of the drug for 8 h. Cells were then lysed for
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llection small molecule library identifies potential anti-coronavirus drugs.
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Fig. 5. Inhibitory effect of homoharringtonine on MHV infection. (A) Chemical structure of homoharringtonine. (B) Determination of IC50. DBT cells were treated with
homoharringtonine at various concentrations or 1% DMSO (vehicle control) for 1 h, and were infected with MHV-2aFLS at MOI of 1 in the presence of the drug for 8 h. Cells
were then lysed for luciferase assay. Inhibition of drug on MHV infection was expressed as percent reduction on luciferase activity to the control and the IC50 was then
calculated as indicated by the solid lines. (C–E) Cells were pretreated with homoharringtonine at various concentrations as indicated or 1% DMSO for 1 h. Cells were then
infected with MHV-A59 for 12 h (C and D in DBT cells) or MHV-A59GFP for 16 h (E in 17Cl-1 cells) at MOI of 1 in the presence of the drug. (C) Virus titer in the medium was
determined by TCID50. Data represent the mean of 3 replicates and standard deviation of the mean. (D) Viral N protein expression in cell lysates was detected by Western
blotting using mAb J.3.3. Beta-actin serves as a loading control. (E) Expression of GFP was directly observed using a fluorescence microscope (Olympus IX-70), and images
were captured using a digital camera (Zeiss).
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concentrations tested (Supplemental Table 2). Comparative
analysis revealed that 10 candidate drugs exhibited antiviral
effects only in DBT cells, indicating that some differential cellular
targets may play a role in viral infection (Supplemental Table 1).
Importantly, 61 of the candidate drugs were commonly effective
in inhibiting viral infection of both DBT and 17Cl-1 cells (Supple-
mental Table 1), suggesting that the cellular targets for these drugs
are conserved between the two cell types. Interestingly, many of
the anti-coronavirus candidate drugs could be grouped by clinical
application. The 3 most abundant groups of anti-coronavirus can-
didate drugs are those used for cancer treatment or as antidepres-
sant and antipsychotic (Supplemental Table 3).

To evaluate whether different MOIs would impact the outcome
of our screen, DBT cells were treated with one of the 5 drugs (ben-
zbromarone, chloroxine, hexachlorophene, mitoxantrone, and
nitazoxanide) or DMSO for 1 h and then infected with MHV-2aFLS
at MOIs of 1 or 0.1 for 8 h in the presence of the respective drugs.
As shown in Fig. 1, when compared with vehicle (DMSO) control,
the reduction in luciferase activity was similar at both MOIs, indi-
cating that the inhibitory effect of these candidate drugs on MHV
infection was independent of MOI.
Please cite this article in press as: Cao, J., et al. A screen of the NIH Clinical Co
Antiviral Res. (2014), http://dx.doi.org/10.1016/j.antiviral.2014.11.010
To validate the statistical approach employed for identifying
candidate drugs, we selected two representative drugs from each
of the three groups based on their SSMD score (low, median, and
high), and determined their inhibitory effects on virus infection.
Indeed, two drugs (homoharringtonine and hexachlorophene) with
the lowest SSMD score (��10) almost completely inhibited coro-
navirus infection (a reduction of >95% in luciferase activity and
P8log10 in virus titer) while ribavirin and Minoxidil with the high-
est SSMD score (>�2) had the least inhibitory effect on virus infec-
tion (a reduction of �30% in luciferase activity and �1log10 in virus
titer); the other two drugs (Paroxetine and Sertraline) with a med-
ian SSMD score (��5) reduced luciferase activity by about 50% and
virus titer about 2log10 (Fig. 2). Thus, the inhibitory effect of the
drugs correlated inversely and proportionally with the SSMD score.
These data demonstrate a general applicability of the SSMD scoring
system for selecting candidate drugs (Zhang, 2007).

To further confirm the anti-coronavirus activity of the candidate
drugs, we selected 3 top-ranked drugs for additional studies. First,
we determined the IC50. DBT cells were infected with MHV-2aFLS
at MOI of 1, and then treated with hexachlorophene, nitazoxanide,
and homoharringtonine (panel A in Figs. 3–5) at various
llection small molecule library identifies potential anti-coronavirus drugs.

http://dx.doi.org/10.1016/j.antiviral.2014.11.010
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concentrations. Results showed that while the IC50 varied widely
from about 11 nM for homoharringtonine to about 1 lM for hexa-
chlorophene and nitazoxanide, the antiviral effect for each drug
was clearly dose-dependent (panel B in Figs. 3–5).

As complementary alternative approaches to luciferase reporter
assays, we also performed TCID50 and Western blot. DBT cells were
treated with the 3 drugs at indicated concentrations for 1 h and
then infected with MHV-2aFLS at MOI of 1. At 12 h p.i., viral titer
in the medium was determined by TCID50 and viral N protein in
the cells was assessed by Western blot. As expected from the lucif-
erase reporter screen, all 3 drugs had a robust inhibitory effect on
virus titer (a reduction of P8log10 for hexachlorophene and homo-
harringtonine (Figs. 2B, 3C and 5C) and >6log10 for nitazoxanide
(Fig. 4C)). Consistent with the inhibition of virus production, viral
N protein expression was undetectable following treatment with
hexachlorophene at 2.5 lM, nitazoxanide at 5 lM and homohar-
ringtonine at 31 nM (panel D in Figs. 3–5). A dose-dependent inhi-
bition of viral N protein and EGFP reporter gene expression was
also evident (panel D in Figs. 3–5 and Fig. 5E). Although there were
slight variations in viral inhibition measured by the 3 methods
(compare data in Supplemental Table 1 with those in Figs. 3–5),
the overall inhibitory effect of the selected drugs on MHV infection
can be firmly established.

3.3. Identification of candidate drugs that exert anti-coronavirus effect
at different stages of the virus life cycle

To gain insight into steps in the virus life cycle targeted by can-
didate drugs, we sought to define whether candidate drugs were
inhibitory when administered before or after infection of host cells.
Since the original screen involved simultaneously treating and
infecting target cells, we evaluated post-entry effects by treating
cells with the 70 candidate drugs identified from the previous
A
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Fig. 6. Identification of candidate drugs that inhibit MHV infection during viral replicatio
1 h before or 3 h after infection with MHV-2afls at MOI of 1. The cells were lysed at 8 h
control. Data represent the mean of triplicate experiments and standard deviation from
DMSO (1%) At 1 h before or 3 h after infection with MHV-A59GFP at MOI of 1. At 16 h p.
and images were captured using a digital camera (Zeiss). Representative images for 3 h
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screenings at 3 h p.i. for 5 h, and determined luciferase activity at
8 h p.i. Results showed that 19 of the drugs significantly reduced
luciferase activity (SSMD < �2), 9 of which (homoharringtonine,
duloxetine, chloroxine, hexachlorophene, ebselen, nitazoxanide,
mitoxantrone, disulfiram, and 6-azauridine) had an SSMD score
of less than �9 (Supplemental Table 4). It is important to note that
even the well-known anti-RNA virus inhibitor ribavirin in the
library had only a relatively weak inhibitory effect on MHV replica-
tion with an SSMD score of �1.7 and a reduction of virus titer of
�1log10 (see Supplemental Table 1 and Fig. 2), which suggests that
several of the drugs identified here may be more potent than riba-
virin. To further corroborate these findings, in a second set of
experiments, cells were treated with 11 selected drugs at 1 h prior
to, or 3 h after, virus infection. It was found that all 11 drugs
strongly inhibited luciferase activity at either time point
(Fig. 6A). In agreement with results obtained using the luciferase
reporter virus, EGFP expression from MHV-A59GFP also was dras-
tically inhibited when the drugs were added at 3 h p.i. (Fig. 6B; fur-
ther data not shown). These data indicate that these drugs
inhibited virus infection at post entry stages (most likely at the
step of viral replication), because most, if not all, infectious viral
particles have entered into cells during the first 3 h of infection,
with MHV biosynthesis commencing by 1 h p.i. in DBT cells (Zhu
et al., 2009). In contrast, 51 other drugs did not inhibit luciferase
activity (SSMD > �2) when the drugs were added 3 h p.i. (Supple-
mental Table 5). This indicates that these drugs most likely blocked
viral entry only, because their antiviral activity was established
during primary and secondary screenings when drug treatment
and virus infection were carried out at the same time. To further
support this conclusion, cells were treated with selected candidate
drugs at either 1 h before, or 3 h after, virus infection and luciferase
activity was determined at 8 h p.i. As expected, all 7 candidate
drugs inhibited luciferase activity by more than 50% when the
Nitazoxanideuloxetine

3 h p.i.

n. (A) DBT cells were either treated with drugs (10 lm) as indicated or DMSO (1%) at
p.i. and luciferase activity was measured and expressed as a percentage of DMSO
the mean. (B) 17Cl-1 cells were either treated with drugs (10 lm) as indicated or

i. EGFP expression was observed using a fluorescence microscope (Olympus IX-70),
post infection are shown.

llection small molecule library identifies potential anti-coronavirus drugs.
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drugs were added 1 h before infection but had no inhibitory effect
when added at 3 h p.i. (Fig. 7A). Interestingly, some of the drugs
(clomid, oxaprozin, and azathioprine) instead enhanced luciferase
activity when added at 3 h p.i. The reason for this enhancement
is not currently clear. Consistent with the results from luciferase
assay, viral gene expression as measured by EGFP reporter expres-
sion was strongly inhibited only when the drugs were added 1 h
prior to infection (Fig. 7B).
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3.4. Potential broad-spectrum anti-coronavirus activity of candidate
drugs

To extend our findings from MHV strain A59, we utilized several
different MHV strains, which possess various pathogenic pheno-
types in cell culture and animals. For example, JHM strain causes
more extensive cell fusion in DBT cell and more severe encephalitis
and demyelination in mice than does A59 strain, while MHV-2
does not induce cell fusion or cause encephalitis/demyelination
in mice (Das Sarma et al., 2000; Hirano et al., 1974; Phillips
et al., 1999). Thus, DBT cells were treated with homoharringtonine
at 60 nM for 1 h, and then infected with MHV-1, MHV-2, and MHV-
JHM at MOI of 1 for 12 h. Viral N protein was then detected by
Western blot. As shown in Fig. 8A, the N protein for all 3 MHV
strains was undetectable in the presence of the drugs, while in
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Fig. 7. Identification of candidate drugs that inhibit MHV infection during cell entry. (A)
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Data represent the mean of triplicate experiments and standard deviation from the mean
at 1 h before or 3 h after infection with MHV-A59GFP at MOI of 1. At 16 h p.i. EGFP expr
were captured using a digital camera (Zeiss).
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control untreated samples, expression of the N protein was robust.
These data suggest that homoharringtonine is capable of inhibiting
infection by various MHV strains. Furthermore, treatment of
human HRT-18 cells with homoharringtonine or hexachlorophene
prior to infection with bovine coronavirus (BCoV-L9) or human
enteric coronavirus (HECoV-4408) also resulted in potent inhibi-
tion of viral N protein expression as judged by immunofluores-
cence analysis (Fig. 8B and C). Thus, by extrapolating from these
results, we postulate that a great number of candidate anti-corona-
virus drugs identified through our screen of the NCC library likely
have broad antiviral activity against both human and animal
coronaviruses.
4. Discussion

In this study we have identified a substantial number of candi-
date drugs that exhibited anti-coronavirus activity. It is worth not-
ing that some of the same candidate drugs identified in this study
have been previously shown to inhibit infections by other viruses.
For example, nitazoxanide was initially discovered to have anti-
protozoal activity (White, 2003), but it also inhibits infection by
Influenza A virus (Rossignol et al., 2009), hepatitis B virus (HBV)
(Korba et al., 2008), hepatitis C virus (Keeffe and Rossignol,
2009), Japanese encephalitis virus (Shi et al., 2014), and Norovirus
Clomidroxetine

1 h before
infection

3 h post
infection

DBT cells were either treated with drugs (10 lM) as indicated or DMSO (1%) at 1 h
nd luciferase activity was measured and expressed as a percentage of DMSO control.
. (B) 17Cl-1 cells were either treated with drugs (10 lM) as indicated or DMSO (1%)
ession was observed using a fluorescence microscope (Olympus IX-70), and images

llection small molecule library identifies potential anti-coronavirus drugs.
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(Siddiq et al., 2011). Hexachlorophene was widely used as a
disinfectant, and it is very useful as a topical anti-infective and
anti-bacterial agent. At 0.75%, hexachlorophene is effective in inac-
tivation of rotavirus (Sattar et al., 1983), and at 10 lM, it inhibited
SARS-CoV replication in Vero cells (Hsu et al., 2004). A recent
report demonstrated that hexachlorophene inhibited both BK poly-
omavirus and Simian Virus 40 infection by inhibiting the ATPase
activity of large T antigen (Seguin et al., 2012). Benzbromarone is
a non-competitive inhibitor of xanthine oxidase (Sinclair and Fox,
1975), a very potent inhibitor of CYP2C9 (Hummel et al., 2005),
and was used for treatment of gout (Reinders et al., 2009). Benzb-
romarone also inhibits influenza virus infection by binding to PA
protein and decreasing viral RNA polymerase activity (Fukuoka
et al., 2012). 6-azauridine is a pyrimidine analog that can inhibit
diverse viruses by inhibiting viral RNA synthesis. Viruses inhibited
by 6-azauridine include another human coronavirus HCoV-NL63
(Pyrc et al., 2006), avian coronavirus infectious bronchitis virus
(Barlough and Shacklett, 1994), foot-and-mouth disease virus
(Kim et al., 2012), tick-borne flaviviruses such as Kyasanur Forest
disease virus, Alkhurma hemorrhagic fever virus and Omsk hemor-
rhagic fever virus (Crance et al., 2003; Flint et al., 2014), and West
Nile virus (Morrey et al., 2002). Homoharringtonine, an inhibitor of
translation elongation, also inhibits HBV infection in vitro (Romero
et al., 2007). Of particular note is the finding from this study that
homoharringtonine is the strongest inhibitor against various coro-
naviruses with the lowest IC50. Other inhibitors such as itraconaz-
ole, albendazole, nelfinavir mesylate, and artesunate inhibit HIV-1
infection (de Gans et al., 1992; Efferth et al., 2008; Tebas and
Please cite this article in press as: Cao, J., et al. A screen of the NIH Clinical Co
Antiviral Res. (2014), http://dx.doi.org/10.1016/j.antiviral.2014.11.010
Powderly, 2000; Walson et al., 2008) and tetraethylthiuram disul-
fide can inhibit respiratory syncytia virus, Semliki Forest virus, and
vesicular stomatitis virus (Boukhvalova et al., 2010). These data
suggest that some of the candidate drugs exhibit broad-spectrum
antiviral activity.

The overall hit rate for the library screen is approximately 10%.
This rate is indeed very high compared to previous screens of raw
chemical libraries. However, the high hit rate is not particularly
surprising, considering that the NCC library is a collection of drugs
that have undergone multiple selections (screens) from numerous
different libraries. Collected in the library are only those that have
exhibited potent biologic activities against various diseases and
that have advanced from pre-clinical to clinical trials. Thus, the
NCC library consists primarily of screen ‘‘winners’’. Another possi-
ble explanation for the high hit rate is that clusters of the drugs
that are selected may target the same cellular pathways (see Sup-
plemental Table 3) that are critical for coronavirus infection. On
the other hand, the SSMD scoring system is more stringent than
the traditional method of using 2 SD (standard deviation) cut-off.
As a result, those drugs that have a weak antiviral activity are
not selected in the current screen, as in the case of ribavirin, a
well-known anti-RNA virus drug (SSMD = �1.7; a reduction of
�1log10 in virus titer) (Supplemental Table 1 and Fig. 2). Thus,
the high hit rate is not likely due to utilization of the more strin-
gent SSMD scoring system.

In summary, identification of candidate anti-coronavirus drugs
from the NCC library in the current study will advance the discov-
ery and development process, thereby allowing us to focus on a
llection small molecule library identifies potential anti-coronavirus drugs.
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few potent inhibitors to rapidly prioritize for preclinical and clini-
cal trials. This is particularly urgent as the newly emergent MERS-
CoV continues to spread from the Middle East to the rest of the
world.
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5. Conclusion

Of the 727 small molecules in the NCC drug library screened, 84
were found to have a significant anti-coronavirus effect, of which
51 blocked virus entry while 19 others inhibited viral replication.
Several candidate drugs exhibited robust antiviral activity against
human and diverse animal coronaviruses at micromolar or nano-
molar concentrations without any cytotoxicity.
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