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The Middle East respiratory syndrome
coronavirus (MERS-CoV) is associated
with the highest mortality rate among
the 6 known human coronaviruses. As of
26 June 2015, 1356 laboratory-confirmed
cases have been reported to the World
Health Organization, including at least
484 related deaths (ie, average mortality
rate, approximately 36%), which is more
than 3 times the mortality rate associated
with severe acute respiratory syndrome
CoV (SARS-CoV) [1]. Why the mortality
rate due to MERS-CoV infection is so
high is unclear.

In the current issue of The Journal of In-
fectious Diseases, Hin Chu et al provided a
clue to elucidate the high pathogenicity of
MERS-CoV. This is a challenging task be-
cause the pathogenicity of MERS-CoV is
complicated with numerous factors in-
volved. In addition, the lack of human au-
topsy data further complicates the task.
However, there are a number of similarities
between the pathologies caused by MERS-
CoV and those caused by SARS-CoV, as
well as significant differences, as recently re-
viewed elsewhere [2, 3]. In both cases, the

immune system plays a pivotal role, but it
is differentially affected by the two viruses.
The links between human immunity

and MERS-CoV infection and progres-
sion have been well established. Like
SARS-CoV infections, MERS-CoV infec-
tions occur more frequently in immuno-
compromised individuals, and patients
who survive MERS-CoV infection usually
have better immune responses than those
who die [4].MERS-CoV can occasionally
be detected in patients’ blood and urine,
and MERS-CoV–infected patients have
substantial abnormal hematological
findings, including elevated leukocyte
numbers and lymphopenia, thrombocy-
topenia, and coagulopathy [5], suggesting
virus infiltration of circulating blood and
lymphoid cells. Dysregulation of cyto-
kines and chemokines can also be ob-
served in MERS-CoV–infected patients
[3]. These findings suggest that invasion
of the human immune system, followed
by the dysregulation of cytokines, might
aggravate MERS-CoV infection.
A well-orchestrated innate and adap-

tive immune response is a prerequisite for
effective defense against most viral infec-
tions. MERS-CoV uses various methods
to inhibit host antiviral innate immune
responses. First, MERS-CoV papain-like
nsp3, accessory proteins 4a, 4b, 5, and
M protein could antagonize interferon α/
β (IFN-α/β) expression by either binding
to cytosolic pattern-recognition receptors
or interfering with the downstream

transcription factors [6–8]. MERS-
CoV markedly decreases antiviral IFN
levels in primary human lower respirato-
ry tract cell lines and bronchial epitheli-
um [9]. Patients with fatal MERS usually
express fewer type I IFNs than those who
survive [10]. Second, MERS-CoV can di-
rectly infect and replicate productively in
macrophages [11] and dendritic cells
[12], which results in dysregulations in
the cytokine and antigen-presentation
pathways. Finally, MERS-CoV could
persistently induce the expression of
proinflammatory cytokines which are as-
sociated with chemotaxis and activation
of neutrophils associated with peripheral
damage to the surrounding or distant un-
infected tissues [10]. Therefore, MERS-
CoV could antagonize or dysregulate
human innate immunosurveillance on
multiple levels.

For adaptive immunity, the important
roles of T cells in the surveillance and
clearance of MERS-CoV have been well
demonstrated by using Ad5-hDPP4–
transduced mice deficient in T cells [13]
and by using an immunosuppressed rhe-
sus macaques model [14]. Indeed, the
MERS-CoV infection site could recruit
T cells by secretion of monocyte che-
moattractant protein 1, CXCL10, and
interleukin 10 stimulated by type I IFN.
However, the expression of these cyto-
kines is uncontrolled, and their persistent
expression will inhibit the expression of
interleukin 12 and IFN-γ, which are
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required for the activation of T-
helper cells [10]. This, along with the
downregulation of antigen-presentation
pathways (decreased levels of major his-
tocompatibility complex class I and II
costimulatory molecules) as demonstrat-
ed in MERS-CoV-infected Calu-3 cells
[15], would strongly inhibit the activation
of T cells. Therefore, T cells are seques-
tered in the infected tissues but fail to
be activated to target the virus.

These T cells, according to the elegant
study by Hin Chu et al, are highly suscep-
tible to MERS-CoV infection and the sub-
sequent MERS-CoV-induced apoptosis. By
elaborate in vitro, ex vivo, and animal stud-
ies, the authors unambiguously showed
that MERS-CoV but not SARS-CoV could
effectively infect both CD4+ and CD8+

T cells from human peripheral blood
mononuclear cells, human lymphoid or-
gans (tonsil and spleen), and the spleen
of the infected common marmosets. Con-
sequently, the infiltrated T cells undergo
substantial apoptosis involving intrin-
sic and extrinsic apoptotic pathways, al-
though their infection by MERS-CoV
seems to be abortive. Their seminal find-
ings could give a novel perspective for the
immunopathogenesis of MERS-CoV and
could partly explain the lymphopenia ob-
served in MERS-CoV–infected patients.
The inability of the SARS-CoV to infect
T cells may be ascribed to the lower angio-
tensin-converting enzyme 2 expression in
T cells, which may provide a mechanism
that helps explain why MERS-CoV infec-
tion causes more-severe immunological
manifestations, a poorer clinical prog-
nosis, and a higher mortality rate than
SARS-CoV infections.

An interesting observation by Hin Chu
et al is the significant downregulation of
DPP4 by MERS-CoV infection, which
may further impair T-cell functions,
since DPP4 is believed to play important
roles in T cells signaling, transduction,
activation, and costimulation [16]. In ad-
dition, this result may hint that MERS-
CoV infection of T cells probably involves
endocytic pathways via the endosome but
not via direct plasma membrane fusion.

The endocytic pathway will cointernalize
DPP4 with MERS-CoV S protein into the
endosome, which could explain the de-
creased surface associated DPP4 after
infection. This endosome-dependent
pathway for T cells contrasts with other
cell types, such as human lung epithelial
cells, in which MERS-CoV could di-
rectly transport itself across the cell
membrane after binding of the viral
spike glycoprotein to DPP4 [17]. These
different pathways for viral entry may
be associated with different IFN secre-
tion profiles [18].
Another interesting finding is that the

intrinsic and extrinsic apoptotic pathways
are both activated inMERS-CoV–infected
T cells. For Vero E6 cells, which are used
as effective producers of MERS-CoV
progeny, the MERS-CoV–induced apo-
ptosis is gradual and dependent on effec-
tive MERS-CoV replication. In contrast
to the apoptosis of Vero E6 cells, MERS-
CoV–induced T-cell apoptosis seems to
be independent of virus replication. The
apoptosis involves activation of the ex-
trinsic and intrinsic apoptosis pathways,
which might be important in the patho-
genesis of MERS.
The study by Hin Chu et al highlights

several important areas for future re-
search. First, to what extent does apo-
ptosis of T cells contribute to increased
mortality? This question is difficult to an-
swer in the absence of animal models that
closely resemble the pathology seen in
humans, although common marmosets
could be useful in this regard. Second,
the detailed apoptotic pathways could
be further investigated, which would fa-
cilitate the development of antiapoptotic
therapeutic reagents. Third, since T cells
could be a major source of cytokines and
chemokines, the cytokine profiles of T
cells during MERS-CoV infection could
be scrutinized and the results correlated
with the severe cytokine release syndrome
observed in patients with MERS. Finally,
the study showed that CD4+ helper T
cells are more susceptible to MERS-CoV
infection, which could be related to im-
pairment of B-cell function. An interesting

question is whether the number of CD4+

T cells declines. A certain parallel could be
made with acute human immunodefi-
ciency virus type 1 infection, in which
the number of CD4+ T cells in the blood
declines, likely owing to their killing by the
virus and cell redistribution. Clarification
of these questions would allow further
dissection of the complex MERS-CoV
pathogenesis, with important implica-
tions for the development of therapeutics
and vaccines.
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