
Journal of Pathology
J Pathol 2015; 235: 175–184
Published online in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/path.4458

INVITED REVIEW

Pathogenesis of Middle East respiratory syndrome coronavirus
Judith MA van den Brand, Saskia L Smits and Bart L Haagmans*

Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands

*Correspondence to: BL Haagmans, Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands. E-mail:
b.haagmans@erasmusmc.nl

Abstract
Human coronaviruses (CoVs) mostly cause a common cold that is mild and self-limiting. Zoonotic transmission of
CoVs such as the recently identified Middle East respiratory syndrome (MERS)-CoV and severe acute respiratory
syndrome (SARS)-CoV, on the other hand, may be associated with severe lower respiratory tract infection. This
article reviews the clinical and pathological data available on MERS and compares it to SARS. Most importantly,
chest radiographs and imaging results of patients with MERS show features that resemble the findings of organizing
pneumonia, different from the lesions in SARS patients, which show fibrocellular intra-alveolar organization with
a bronchiolitis obliterans organizing pneumonia-like pattern. These findings are in line with differences in the
induction of cytopathological changes, induction of host gene responses and sensitivity to the antiviral effect
of interferons in vitro when comparing both MERS-CoV and SARS-CoV. The challenge will be to translate these
findings into an integrated picture of MERS pathogenesis in humans and to develop intervention strategies that
will eventually allow the effective control of this newly emerging infectious disease.
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Introduction

Coronaviruses (CoVs) are large, enveloped, positive-
sense RNA viruses that infect birds and a wide range
of mammals, including humans. These viruses are com-
posed of a few structural proteins that hold a rela-
tively long (around 30 kb) positive-stranded genome
(Figure 1). They occur worldwide and can cause dis-
eases of medical and veterinary significance. Generally,
infections are localized to the respiratory, enteric and/or
nervous systems, although systemic disease has been
observed in a number of host species [1,2]. At present,
six CoVs have been identified that infect humans.
Human CoVs HKU1, NL63, 229E and OC43 predom-
inantly cause a mild respiratory tract infection, charac-
terized by upper respiratory tract disease that includes
coryza, cough and sore throat. These viruses only occa-
sionally induce lower respiratory tract disease, includ-
ing bronchitis, bronchiolitis and pneumonia [2–9]. In
contrast, two recently emerged CoVs induce a more
severe lower respiratory infection that may be fatal, Mid-
dle East respiratory syndrome (MERS-CoV) and severe
acute respiratory syndrome (SARS-CoV) [10,11]. The
SARS outbreak started in 2002 in China and, after rapid
global spread through human-to-human transmission,
was halted in 2004. The number of cases reported to the
World Health Organization (WHO) was 8096, includ-
ing 774 deaths [12]. Ten years later, the MERS outbreak

started in the Middle East and is still ongoing. A total
number of 837 laboratory-confirmed cases have been
reported to the WHO, including 291 fatalities [13].

So far, reports describing autopsies of fatal MERS-
CoV cases have not been published. Therefore, at
this stage one can only speculate about the pathology
of MERS-CoV in humans. However, further insight
into the pathogenesis and pathological potential of
MERS-CoV may be obtained by comparing and con-
trasting the epidemiology, clinical manifestations and
host cell response of MERS-CoV to infection with
SARS-CoV, which may also cause a life-threatening
lower respiratory tract disease.

MERS-CoV transmission

All human CoVs are thought to originate from animal
reservoirs, with SARS-CoV and MERS-CoV being the
most recent examples, emerging from bats via masked
palm civet cats on Chinese wet-markets and dromedary
camels in the Middle East, respectively [2,14–17].
Given the fact that MERS-CoV seems to be widely
present in dromedary camels in the Middle East and
some parts of Africa [18,19], zoonotic transmission
is likely to have originated from this animal species
and is expected to continue for a long period of time
in these regions. Through usage of a common entry
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Figure 1. Schematic diagram of a MERS-CoV particle and MERS-CoV genome organization: S, spike protein; M, membrane protein, E,
envelope protein; N, nucleocapsid protein.

receptor, dipeptidyl peptidase 4 (DPP4), the emergence
of MERS-CoV in humans from dromedary camels,
and potentially earlier in time from bats, is facilitated
(Figure 2).

Human-to-human spread of MERS-CoV does not
seem to be efficient but is reported in hospital outbreaks
and travellers returning from the Middle East and
their close contacts [20–24]. The hospital outbreaks
are mostly due to person-to-person transmission in
haemodialysis units, intensive care units or in-patient
units, where patients are infected with MERS-CoV
of a single monophyletic clade [23]. An outbreak
among healthcare workers in a hospital was due to
overcrowding and inadequate infection control mea-
sures [25]. It is still unclear whether the transmission
through person-to-person contact occurs via large res-
piratory droplets, due to coughing and sneezing, as in
SARS, or via fomites [23,25,26]. Also, the episodes
of transmission are not clearly defined but are reported
to take place during both the symptomatic and the
incubation phases [20]. Repeated testing of sputum,
nasopharyngeal swabs or bronchoalveolar lavages

(BALs) at different time points will be needed to pro-
vide a better understanding [20]. Some of the larger
clusters of patients observed in Al Hasa and Jeddah may
be primarily related to human-to-human transmission
of MERS-CoV, but super-spreader events, as described
during the SARS outbreak, have not been noted thus
far. This may be due to an overall lower level of virus
shedding from the upper respiratory tract contributing
to lower transmissibility than seen in SARS [26]. As a
result, the outbreak is more restricted when compared
to SARS, although future adaptations of MERS-CoV
in humans may potentially increase human-to-human
transmission or may alter the virulence of the virus,
causing more severe disease.

With respect to controlling MERS, rapid isolation
and rigorous infection control practices may in the end
suffice to limit the outbreak. These include standard
contact and airborne precautions, such as wearing a sur-
gical mask, gloves and a gown on entering the room of
infected or suspect patients, and removing them on leav-
ing [25]. Dromedary camels infected with MERS-CoV
may not show disease but still may excrete MERS-CoV
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Figure 2. Zoonotic transmission of MERS-CoV. The emergence of
MERS-CoV from dromedary camels is facilitated by the presence
of a highly similar viral receptor (DPP4) in humans. Hypothetically,
MERS-CoV present in dromedary camels may have emerged from
CoVs in bats that also use DPP4 as an entry receptor

through nasal fluids, faeces and, potentially, in their
milk and urine [27]. Therefore, the WHO recommends
avoiding contact with camels, not drinking raw camel
milk or camel urine and not eating meat that has not
been thoroughly cooked. Also, people who work, or
come into contact with, dromedary camels, such as peo-
ple working at camel farms, slaughterhouses, markets
and camel-racing facilities, and also veterinarians, are
at risk and should practise good personal hygiene and
wear facial protection and protective clothing where
feasible [28].

Clinical aspects of MERS-CoV infection
in humans

Most MERS patients acquired the infection in the
Middle East, which subsequently led to limited
human-to-human transmission in clusters, in healthcare
workers and in travel-related cases outside the region,
with mild to severe or even fatal respiratory disease. The
median incubation period of a MERS-CoV infection
is 5 days [20]. Current data indicate that, overall, more
men than women have become infected, with a median
age of 47 years (range 9 months–94 years), and most
fatalities are observed in patients over 60 years [20,22].
Clinical symptoms observed include fever, cough, sore
throat, shortness of breath, myalgia, chest pain, malaise
and gastro-intestinal symptoms, such as diarrhoea,
vomiting and abdominal pain. Less common symptoms

include chills, wheezing, palpitations and confusion
[20–22,29]. Respiratory symptoms are mainly related
to lower respiratory tract disease (dyspnoea, cough and
fever), while upper respiratory tract disease is reported
infrequently. A large proportion of the severely ill
patients required mechanical ventilation [30]. Interest-
ingly, many of the reported secondary cases showed
mild respiratory symptoms or were asymptomatic [31].

Radiology of MERS patients revealed mild to severe
pulmonary consolidation. Chest radiographs of a
large percentage of the patients admitted to hospital
showed airspace and interstitial opacities, with subtle
to extensive, unilateral to bilateral, and focal to diffuse
distribution. Air space opacities are variable in their
distribution, described as reticular or reticulonodular,
and demonstrate thickening of bronchovascular areas
[20,21,32]. Computed tomography (CT) examination
of hospitalized patients with MERS revealed bilateral,
mostly subpleural and basilar, airspace involvement,
with ground-glass opacities and limited consolidation.
The fact that most lesions were found in the subpleu-
ral and peribronchovascular region is suggestive of
organizing pneumonia [32].

During the course of the infection, MERS-CoV is
mainly detected in the lower respiratory tract, while
earlier in the infection virus is detected in the upper, as
opposed to the lower, respiratory tract [16,26,33–37].
Although virus is detected in urine and blood of
some MERS patients, this is not a consistent finding
[26,35,36], but indicates that systemic infection can
occur. Potential risk factors for the development of
severe disease are obesity, diabetes mellitus, end-stage
renal disease, cardiac disease, hypertension, lung dis-
ease, including asthma and cystic fibrosis, and any
immunosuppressive condition [20–23,29,30]. Com-
plications described in fatal cases are hyperkalaemia
with associated ventricular tachycardia, disseminated
intravascular coagulation leading to cardiac arrest,
pericarditis and multi-organ failure [21]. One report
demonstrated stillbirth during MERS-CoV infection
[38]. When compared to a case-control group, MERS
patients were more likely to be admitted to the intensive
care unit and had a higher mortality rate [22]. The
survival rate in patients detected via the active surveil-
lance system was higher than in the clinically identified
cases [23]. Co-infections with other pathogens are also
described frequently, but their relevance as a critical
factor for disease progression is uncertain [20,29,32].

Laboratory analyses of blood from MERS patients
have revealed mild to severe abnormalities. Haema-
tological abnormalities included elevated leukocyte
counts and lymphopenia, while a few cases showed
lymphocytosis, thrombocytopenia and coagulopathy
[20,21,32]. Other laboratory findings included elevated
creatinine, lactate dehydrogenase, alanine aminotrans-
ferase and aspartate aminotransferase levels, suggestive
of renal and liver disease or failure [20,21,30,32].

When MERS is compared with SARS, many simi-
larities in the clinical symptoms and respiratory disease
become apparent. There are only small differences in
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the median incubation period, a slightly longer time for
MERS (5.2 days) than for SARS (4 days). In SARS, a
wide spectrum of clinical symptoms is described, similar
to that seen in MERS; fever, chills, diarrhoea and pneu-
monia [39]. In both conditions severely ill patients pre-
sented with acute hypoxic respiratory failure that often
required mechanical ventilation. Although both viruses
are considered respiratory viruses, gastro-intestinal
infections and symptoms have been described in both
SARS and MERS patients. The case-fatality rate may
seem higher for MERS-CoV (around 30%) than for
SARS-CoV (9.6%), but whether this is the result of
a higher virulence of MERS-CoV is not clear, since
many MERS-CoV infections may have gone unnoticed.
Similar co-morbidities have been described for both
MERS and SARS. In MERS when compared to SARS,
predominantly diabetes type 2 and chronic renal disease
are important co-morbidities [40–47]. In SARS, age is
a significant risk factor for the development of severe
disease; similarly, for MERS, most fatalities occur in
patients aged> 60 years [20,22]. The laboratory find-
ings more often showed higher levels of parameters
associated with liver and kidney dysfunction in SARS
than in the described cases of MERS, although acute
renal failure is often seen in MERS. Complications dur-
ing pregnancy, such as maternal mortality and stillbirth,
have been described in SARS and thus far only rarely
seen in MERS cases, but that may be attributable to
decreased maternal tolerance to hypoxia and reduced
fetal oxygen flow due to respiratory disease [38].

Most importantly, chest radiographs and imaging
results of patients with MERS showed opacities and dis-
tribution of lesions that resemble the findings of organiz-
ing pneumonia seen in patients with pandemic influenza
virus A(H1N1)pdm09 [32,48,49]. This is different from
the lesions in SARS patients, which show fibrocellular
intra-alveolar organization with a bronchiolitis obliter-
ans organizing pneumonia (BOOP)-like pattern [50,51].
Thus, although clinical symptoms may be relatively sim-
ilar between SARS and MERS patients, the mechanisms
leading to disease may actually be different.

Pathology of MERS-CoV infection in humans

So far, no reports describing autopsies of fatal MERS-
CoV cases have been published. From the clinical data
and X-rays of the severe cases of MERS that have
been described in humans, a severe and progressive
pneumonia may be suspected, as described for SARS,
with diffuse alveolar damage (DAD) in the acute phase
and more proliferative change in the later phase of
the disease. Pulmonary fibrosis was seen frequently in
SARS, including in patients who survived the infection.
In the absence of accurate follow-up of MERS patients,
there is limited information on the exact course of the
disease in the long term. Comparison of the epidemi-
ology, clinical manifestations and host cell response
in MERS-CoV infection to infection with SARS-CoV

may provide further insight into the pathogenesis and
pathological potential of MERS-CoV.

In SARS patients, gross pathology of the respira-
tory tract demonstrates variable consolidation, with
pulmonary oedema, haemorrhage and congestion, and
pleural effusion (as reviewed in [52]). Histopathology of
SARS shows DAD with an exudative phase, a prolifer-
ative phase and a fibrotic phase. The exudative phase is
seen in patients in the initial 10 days of the disease, and
is characterized by necrosis of alveolar, bronchiolar and
bronchial epithelial cells, intraluminal oedema, fibrin
exudation, hyaline membrane formation, haemorrhage
and infiltration of inflammatory cells, such as mono-
cytes or macrophages, lymphocytes and neutrophils,
into the alveolar wall and lumina [50,53–55]. The
proliferative phase, after 10–14 days, shows interstitial
and alveolar fibrosis, bronchiolitis obliterans orga-
nizing pneumonia (BOOP), regeneration with type II
pneumocyte hyperplasia and multinucleated giant cells
[50,51,55–57]. The fibrotic phase, after 14 days, shows
interstitial thickening, with fibrosis and a BOOP-like
pattern and few inflammatory cells (mainly histiocytes
and lymphocytes) [51,57]. So far, the clinical data of
MERS patients demonstrate a similar disease in MERS.
However, there is limited evidence for the development
of fibrosis in the end-stage acute respiratory distress
syndrome (ARDS) induced by MERS-CoV.

Pathology of experimental MERS-CoV infection
in animals

Several animal species, such as rhesus macaques
(Macaca mulatta), cynomolgus macaques (Macaca
fascicularis), marmosets (Callithrix jacchus), ferrets
(Mustela putorius), mice (Mus muris), Syrian hamsters
(Mesocricetus auratus), rabbits (Oryctolagus cunicu-
lus), guinea-pigs (Cavia porcellus) and dromedary
camels (Camelus dromedarius) have been experimen-
tally infected with MERS-CoV to study the pathological
changes as a result of the viral infection [58–64]. How-
ever, in the absence of any descriptive study on the
pathological changes in the lungs of human MERS
patients, it is very difficult to interpret data from exper-
imental MERS-CoV animal infection experiments.
Overall, the outcome of MERS-CoV infection and the
subsequent development of lower respiratory disease
seems variable in different animal species inoculated
with MERS-CoV.

Rhesus macaques can be infected with MERS-CoV
[62] intratracheally or by a combination of inoculation
routes [58]. The rhesus macaques developed increased
body temperatures at 1–2 days post-infection (dpi) and
transient clinical signs, such as increased respiration
rate and cough. Haematology showed an increase in
total white blood cells and neutrophils from 1–2 dpi and
a decrease in lymphocytes from 1–2 dpi [60]. Radio-
graphic imaging revealed localized infiltration and
interstitial markings. By gross pathology on 3 dpi, there
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was congestion and little indication of acute pneumo-
nia. By histopathology on 3 dpi, there was a multifocal
mild-to-moderate interstitial pneumonia characterized
by thickened alveolar septa with oedema, fibrin and
few macrophages and neutrophils, intraluminal alveolar
macrophages, neutrophils and multinucleated giant
cells, fibrin and sloughed epithelial cells; perivascular
inflammatory infiltrates were present in the intersti-
tium [62]. At 6 dpi there was type II pneumocyte
hyperplasia with alveolar oedema, fibrin deposition and
hyaline membranes [60]. In situ hybridization (ISH) and
immunohistochemistry (IHC) demonstrated the pres-
ence of virus RNA and antigen expression in type I and
II pneumocytes and alveolar macrophages. In rhesus
macaques inoculated intratracheally, virus was present
in the lungs at 3 dpi, but not in nasal, oropharyngeal
or rectal swabs or organs (kidney, trachea, brain, heart,
liver, spleen, intestine) by RT–PCR and virus titration
[62]. In rhesus macaques with a combined inoculation
route, virus was present predominantly in nasal swabs
at 1 and 3 dpi, but not in urogenital and rectal swabs.
Virus was also present in the bronchoalveolar lavage
(BAL) and in the respiratory tract, but not in the kidney.
Up-regulation of expression levels of proinflammatory
cytokines and chemokines for chemotaxis and neu-
trophil activation, such as IL-6, CXCL1 and matrix
metalloproteinase (MMP)4, was seen in the serum [60].
Similarly, cynomolgus macaques can be infected with
MERS-CoV and show virus replication in the lower
respiratory tract but, in the lungs, only limited infiltra-
tion was observed at different days after infection (van
den Brand et al, unpublished observations; Figure 3).

Thus, macaque animal models do not fully depict the
severe and sometimes fatal pneumonia seen in human
patients.

Marmosets infected with a high dose of MERS-CoV
[5.2× 106 median tissue culture infective dose (TCID50)
via the intratracheal, intranasal, oral and ocular route]
develop a more severe disease than rhesus macaques
[61]. From 1 dpi the respiration rate increases with loss
of appetite, developing into open-mouth breathing and
laboured breathing at 3–6 dpi. A few animals had to be
euthanized before the end of the experiment. No signif-
icant alterations in the blood were demonstrated, except
for hypoproteinaemia in the severely ill animals. Radiol-
ogy by X-rays showed progressive mild to severe inter-
stitial infiltration starting at 1 dpi that was resolved at 13
dpi. Gross pathology showed multifocal consolidation
with increased relative lung weights. By histopathology,
there was multifocal to coalescing, moderate to marked
broncho-interstitial pneumonia centred around the ter-
minal bronchioles and adjacent alveoli.

In other animal species, including dromedary camels
that act as the reservoir species, the virus is sug-
gested to induce only limited clinical symptoms. In
most cases reported so far, overt clinical disease is
absent in dromedary camels positive for MERS-CoV.
Dromedary camels from the Middle East, Africa and
Spain have been found to harbour MERS-CoV-specific
antibodies [16–18,65]. In dromedary camels inoculated
intratracheally, intranasally and intraconjunctivally
with MERS-CoV, nasal discharge was seen at 2–14
dpi with excretion of virus in the nose, while no virus
was found in fecal samples or urine. One dromedary

A B

Figure 3. Histopathology and in situ detection of MERS-CoV in the lungs of a cynomolgus macaque after intratracheal inoculation with
MERS-CoV. (A) The alveolar septa are mildly thickened, with infiltration of a few neutrophils and monocytes. There are also increased
numbers of intraluminal alveolar macrophages and a few neutrophils; H&E, magnification=×10. (B). MERS-CoV specific RNA by in situ
hybridization (ISH), targeting the MERS-CoV nucleocapsid, is present in lung tissue of of a cynomolgus macaque after intratracheal
inoculation with MERS-CoV. RNA is present predominantly in type II alveolar epithelial cells, with less in type I epithelial cells; ISH,
magnification=×10.
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camel at 5 dpi had mild to moderate inflammation and
necrosis in the nose, trachea, bronchi and bronchioles,
but not in the alveoli. Virus antigen was present, with
subsequent presence of infectious virus, in nasal, laryn-
geal, trachea, bronchial and bronchiolar epithelium,
the tonsils and draining lymph nodes, but not in the
alveoli [66]. Similar observations have been made in
rabbits experimentally infected with MERS-CoV (van
den Brand et al, unpublished). Virus was excreted from
the upper respiratory tract and detected in the lungs,
although no clinical signs were observed and there were
limited histopathological changes. Ferrets, guinea-pigs
and Syrian hamsters cannot be infected; there is no
virus replication and no seroconversion [59,62,64].

Since wild-type and innately immune-deficient
mice cannot become infected with MERS-CoV [63], an
infectable mouse model has been generated by transduc-
ing mice with a recombinant non-replicating adenovirus
expressing the human host cell receptor DPP4. These
mice show widespread hDDP4 expression in airway and
alveolar epithelial cells. After MERS-CoV infection,
there is no mortality but aged mice lose weight and have
abundant virus in the lungs that is cleared by 6–8 dpi. In
the lungs there is antigen expression with perivascular
and peribronchiolar lymphocytic infiltrates, progressing
to interstitial pneumonia. The disease is more severe
when there is no type-I IFN signalling, and the T cell
response is necessary for virus clearance [67].

Pathogenesis of MERS-CoV

Although MERS and SARS resemble each other clin-
ically, in vitro studies have highlighted remarkable
differences between these viruses with respect to
their growth characteristics, receptor usage and host
responses, suggesting that their pathogenesis may be
quite different. One way to predict the changes in the
lungs after MERS-CoV infection is to use human tissue
that has been infected ex vivo [68]. Hocke et al [69]
demonstrated widespread MERS-CoV antigen expres-
sion in type I and II alveolar cells, ciliated bronchial
epithelium and unciliated cuboid cells of terminal
bronchioles, using spectral confocal microscopy. Virus
antigen was also found in endothelial cells of pulmonary
vessels and rarely in alveolar macrophages. Electron
microscopy revealed alveolar epithelial damage, con-
sisting of detachment of type II alveolar epithelial cells
and associated disruption of tight junctions, chromatin
condensation, nuclear fragmentation and membrane
blebbing, the latter suggesting apoptosis [69]. Although
this ex vivo model does not fully mimic the situation
in vivo, these changes are in line with observations
in cell lines infected with MERS-CoV. Severe cyto-
pathic effects were observed in human hepatoma cells
infected with MERS-CoV; these were more severe
than those due to SARS-CoV infection [70], although
the in vivo relevance of this observation remains
unclear.

DPP4 (also named CD26) has been identified as the
receptor for MERS-CoV [71]. All HCoV receptors iden-
tified to date are exopeptidases, although their prote-
olytic activity is not necessary for the virus to bind
to the receptors, nor for them to enter the host cell
[69,72,73]. A comparative analysis of HCoV recep-
tor expression across the respiratory tract of humans
may provide clues regarding differences in pathobiology
between HCoVs. In cell lines and ex vivo lung cultures,
DPP4 is expressed in type I and II alveolar cells, cil-
iated and non-ciliated bronchial epithelium, bronchial
submucosal glands, endothelium, alveolar macrophages
and leukocytes [68,71]. This largely corresponds with
viral tropism in ex vivo human lung cultures, which show
infection of non-ciliated cells in bronchi, bronchioles,
endothelial cells and type I and II pneumocytes, but
rarely in alveolar macrophages [68,71,75–78]. Remark-
ably, the binding site of DPP4 is different in different
species, explaining why not all animals can be infected
with MERS-CoV [64].

SARS-CoV and NL63 use a different receptor for
entry into cells, angiotensin-converting enzyme 2
(ACE2) [72,79], which shows in part a similar cell-type
tropism as is seen for DPP4. In humans, ACE2 is
expressed in ciliated bronchial epithelial cells, type I
and II pneumocytes and arterial and venous endothe-
lial cells, but not in tissues of the upper respiratory
tract, suggesting that these tissues are not the primary
site of entrance for SARS-CoV or NL63 [80,81].
SARS-CoV infects some ACE2-positive cells – ciliated
bronchial epithelial cells, bronchioles and type I and II
pneumocytes, but not endothelial cells [82].

Comparative genomics provides a way to study the
molecular basis for the host response against different
but related viral pathogens, as was demonstrated pre-
viously in SARS-CoV infection of different primate
host species [83–86]. At present, only one comparative
in vitro study using MERS-CoV has been performed
[87]. Calu3 cells, differentiated into polarized cili-
ated cells, permit replication of both SARS-CoV and
MERS-CoV at similar levels. However, MERS-CoV
induces a substantial cytopathic effect, starting 18–24 h
after infection, whereas SARS-CoV maintains steady
replication and cell viability until 72 h after infection
[70,77,87]. On the other hand, MERS-CoV seems more
sensitive to prophylactic and therapeutic treatment
of infection in vitro than SARS-CoV [70]. In addi-
tion, MERS-CoV induces much greater dysregulation
of the host response to infection than SARS-CoV.
MERS-CoV specifically down-regulates genes involved
in the antigen-presentation pathway, which could
have substantial implications for the development of
adaptive immune responses [87]. With respect to the
analysis of the immune response in humans infected
with MERS-CoV, limited data from two patients with
different disease outcomes are available to date. In
BAL and serum from the patient with a poor outcome,
there was a decrease in interferon (IFN)α as well as
decreased expression of retinoic inducible-acid gene
(RIG)-1, melanoma differentiation-associated protein 5
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(MDA5) and interferon regulatory factors (IRF)3 and
IRF7, which are involved in the recognition of viruses
by the innate immune system. In the patient with poor
outcome there were also high levels of CXC-motif
chemokines ligand (CXCL)10 and interleukin (IL)-10,
which may have resulted in lower IFNγ expression
and higher levels of IL-17A and IL-23 [88]. In the
patient who survived, rapid clearance of the virus with
increased levels of IL-12 and IFNγ was noted [88].

In SARS, the development of severe lower respiratory
tract disease correlates partly with aberrant immune
responses, with unbalanced cytokine and chemokine
profiles [39,50,89,90]. The levels of both cytokines
and chemokines in the blood are elevated: IL-1, IL-6,
IL-8, IL-12, IFNγ, monocyte chemotactic protein
(MCP)-1 (or CC-motif ligand 2, CCL2), monokine
induced by IFNγ (MIG), IFN-inducible protein (IP-10,
or CXCL10), and transforming growth factor (TGF)β
[89–94]. Some of these chemokines are important for
chemotaxis and activation of neutrophils and mono-
cytes [95–97], which corresponds with the infiltration
of these cells in the respiratory tract of human SARS
cases [83,91,92,98]. It remains to be determined which
host responses dominate MERS-CoV infection in vivo
but, based on the results obtained thus far, MERS-CoV
and SARS-CoV may induce different pathways.

Conclusion

At this time it is difficult to describe or predict the pathol-
ogy of severe respiratory disease from MERS-CoV
infection. First, there are no reports on autopsies of
human fatal MERS cases. This is partly related to the
religious backgrounds of the patients, which exclude
autopsy. Although limited numbers of human fatal
SARS patients have been described, these studies
indicate an immunopathological component that may
dominate the pathogenesis of SARS. Second, to gain
more knowledge of fatal MERS in humans, further
studies are needed in animal models that could pro-
vide information on replication dynamics, clinical
disease, histological lesions and cellular tropism. Third,
the patients with severe MERS have very diverse
pre-existing conditions, and therefore it may be dif-
ficult to obtain definite answers from these studies.
Virus-induced histological changes may be obscured
by clinical treatments or pre-existing disease. Thus,
it may be very difficult to know the full scope of this
disease, including the histological lesions, viral cellular
tropism and pathogenesis of MERS-CoV. On the other
hand, although there are better descriptive studies of
SARS regarding the pathology induced in the lower
respiratory tract, these provided limited benefit for the
development of intervention strategies. Therapeuti-
cally, corticosteroids were used for the treatment of
SARS, producing variable improvement with less fever,
reduced inflammatory infiltrates and better oxygenation
[99]. More promising results were obtained with the
administration of IFNs in SARS patients. In fact, in

vitro studies have demonstrated that MERS-CoV is
more sensitive to type I IFN than SARS-CoV. Overall,
the current available data on MERS-CoV suggest that
patients at risk for severe exacerbations after infection
are elderly patients or patients who have underlying
co-morbid conditions. These patients may not be able
to combat the viral infection with type I IFN host
responses as efficiently as other patient groups, as aging
and co-morbid conditions have been described to have a
negative effect on the ability to mount strong type I IFN
responses [84,100]. The sensitivity of MERS-CoV in
vitro to type I IFN may indicate that type I IFN can be
used as a prophylactic/therapeutic intervention strategy
in vivo.

In general, human CoV infections cause a relatively
mild respiratory disease in children and many healthy
adults. Severe exacerbations of CoV disease, with lower
respiratory tract involvement, seem to occur in the
elderly and/or patients with underlying co-morbidities.
Possibly, the lack of pre-existing immunity against
SARS-CoV and MERS-CoV in the human popula-
tion resulted in a higher infection rate in adults and
the elderly during the SARS outbreak than normally
observed for the other non-SARS human CoVs, leading
to a higher morbidity and mortality. Alternatively, viral
factors, including those encoded by different accessory
viral genes, may play a decisive role in determining
pathogenesis.

Overall, there are a number of potential key in vivo
and in vitro differences between MERS-CoV and
SARS-CoV infections. These include radiographic
differences suggesting a different type of pneumonia,
a large difference in cytopathic effect, differences in
host response to infection, and differences in sensi-
tivity to type I IFN in vitro. These observations point
to different disease-causing mechanisms and warrant
further studies into the effect of these two viruses on
different cell populations in vitro, ex vivo and in vivo,
the outcome of which may have significant implications
for the development of intervention strategies.
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