1 2	
3	Receptor usage and cell entry of porcine epidemic diarrhea coronavirus
4	
5	Chang Liu ^{1,#} , Jian Tang ^{2,#} , Yuanmei Ma ^{3,#} , Xueya Liang ³ , Yang Yang ¹ ,
6	Guiqing Peng ⁴ , Qianqian Qi ^{2,5} , Shibo Jiang ^{2,5} , Jianrong Li ³ , Lanying Du ^{2,*} ,
7	Fang Li ^{1,*}
8 9	¹ Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
10	² Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065
11	USA
12	³ Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State
13	University, Columbus, OH 43210, USA
14	⁴ State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine,
15	Huazhong Agricultural University, Wuhan, Hubei, China
16	⁵ Key Laboratory of Medical Molecular Virology of Ministries of Education and Health,
17	Shanghai Medical College and Institute of Medical Microbiology, Fudan University,
18	Shanghai, China
19 20 21	#These authors contributed equally to this work.
22 23 24 25 26	* Correspondence: Fang Li (<u>lifang@umn.edu</u>); Lanying Du (<u>ldu@nybloodcenter.org</u>)
27	Key words: PEDV; spike protein; APN receptor; sugar co-receptor; virus infection; host
28	range; tropism
29	Running title: Host range and tropism of PEDV
30	Number of words in text: 1303
31	

32 Abstract

33 Porcine epidemic diarrhea coronavirus (PEDV) has significantly damaged 34 America's pork industry. Here we investigated the receptor usage and cell entry of 35 PEDV. PEDV recognizes protein receptor aminopeptidase N from pig and human, and 36 sugar co-receptor N-acetylneuraminic acid. Moreover, PEDV infects cells from pig, 37 human, monkey, and bat. These results support bats as an evolutionary origin for PEDV, 38 implicate PEDV as a potential threat to other species, and suggest antiviral strategies to 39 control its spread.

40 Text

41 Porcine epidemic diarrhea coronavirus (PEDV) causes large-scale outbreaks of 42 diarrhea in pigs, and 80-100% fatality rate in suckling piglets (1-3). Since 2013, PEDV 43 has swept throughout the US, wiped out more than 10% of America's pig population in 44 less than a year, and significantly damaged the US pork industry (4-6). No vaccine or 45 antiviral drug is currently available to keep the spread of PEDV in check. PEDV belongs 46 to the α genus of the coronavirus family (7, 8), which also includes porcine transmissible 47 gastroenteritis coronavirus (TGEV), bat coronavirus 512/2005 (BtCoV/512/2005), and human NL63 coronavirus (HCoV-NL63). Although PEDV and TGEV both infect pigs, 48 49 PEDV is genetically more closely related to BtCoV/512/2005 than to TGEV, leading to 50 the hypothesis that PEDV originated from bats (9).

51 Receptor binding and cell entry are essential steps in viral infection cycles, critical 52 determinants of viral host range and tropism, and important targets for antiviral 53

54	The spike ectodomain consists of a receptor-binding subunit S1 and a membrane-fusion
55	subunit S2. S1 contains two domains, N-terminal domain (S1-NTD) and C-terminal
56	domain (S1-CTD), both of which can potentially function as receptor-binding domains
57	(RBDs) (Fig. 1A) (10, 11). The capability of coronavirus RBDs to recognize receptor
58	orthologs from different species is one of the most important determinants of coronavirus
59	host range and tropism (8, 12-14). HCoV-NL63 S1-CTD recognizes human angiotensin-
60	converting enzyme 2 (ACE2), whereas TGEV S1-CTD recognizes porcine
61	aminopeptidase N (APN) and its S1-NTD recognizes two sugar co-receptors, N-
62	acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) (15-18).
63	Usage of sugar co-receptors is linked to the enteric tropism of coronaviruses (18, 19). It
64	has been shown that PEDV uses porcine APN as its receptor (20). However, it is not
65	known whether PEDV recognizes APN from other species or whether it uses sugar co-
66	receptors. Addressing these questions will be critical for understanding the host range,
67	tropism and evolutionary origin of PEDV, for evaluating its potential risk to other species
68	particularly human, and for developing effective vaccines and antiviral drugs to curb the
69	spread of PEDV in pigs and to other species.
70	To characterize the receptor usage of PEDV, here we identified the two S1

71 domains of PEDV based on the sequence similarity between PEDV and TGEV S1

72 subunits (Fig. 1B). The S1-NTD and S1-CTD of PEDV cover residues 19 to 252 and

residues 509 to 638, respectively. However, expression of the two domains individually

- 74 gave low yields. Instead, we expressed and purified a longer fragment (residues 19 to
- 638) using a previously described procedure (21, 22). This fragment contains both of the
- 76 S1 domains and is termed S1-NTD-CTD (Fig. 2A). For comparison studies, we prepared

TGEV S1-NTD-CTD (residues 17 to 675) using the same procedure. We also expressed
and purified human and porcine APN as previously described (23, 24). These purified
recombinant proteins were subsequently used in biochemical studies.

80 We investigated the receptor binding capabilities of PEDV S1-NTD-CTD. First, 81 using a dot blot hybridization assay as previously described (24), we showed that PEDV 82 S1-NTD-CTD binds both porcine and human APN efficiently (Fig. 2B). Thus, both 83 porcine and human APN serve as efficient receptors for PEDV. In contrast, TGEV S1-84 NTD-CTD binds porcine APN much more tightly than it binds human APN (Fig. 2B). 85 Second, using the dot blot hybridization assay as previously described (25, 26), we 86 demonstrated that PEDV S1-NTD-CTD binds bovine and porcine mucins both of which 87 contain a mixture of different types of sugar (Fig. 2C). Treatment of mucins with 88 neuraminidase removed part of the coated sugars, reducing the binding by PEDV S1-89 NTD-CTD. Hence, sugar serves as a co-receptor for PEDV. As a comparison, TGEV S1-90 NTD-CTD also binds these mucins. Third, using glycan screen array as previously 91 described (26), we identified Neu5Ac as the type of sugar most favored by PEDV (Fig. 92 2D, Table S1). Taken together, PEDV uses both porcine and human APN as its protein 93 receptors and Neu5Ac as a sugar co-receptor, whereas TGEV uses porcine APN and 94 sugar, but not human APN, as its receptors.

To further understand the receptor usage and also to investigate the cell entry of PEDV, we performed a PEDV-spike-mediated pseudovirus entry (27). Retroviruses pseudotyped with PEDV spike (i.e. PEDV pseudoviruses) efficiently entered MDCK (canine kidney) cells exogenously expressing human or porcine APN, and these entries

	>
	ğ
-	9
	2
1	5
2	
	0
F	0
	č

99	could be blocked by anti-APN antibody (Fig. 3A). As a control, PEDV pseudoviruses
100	could not enter MDCK cells not expressing human or porcine APN, consistent with a
101	previous report that MDCK is non-permissive to PEDV infection (20). In contrast, TGEV
102	pseudoviruses efficiently entered MDCK cells exogenously expressing porcine APN, but
103	not those expressing human APN. Additionally, PEDV pseudoviruses efficiently entered
104	both PK-15 (pig kidney) and Huh-7 (human lung) cells that endogenously express
105	porcine and human APN, respectively (28, 29), and these entries could be blocked by
106	anti-APN antibody and mucins (Fig. 3B, 3C). In contrast, TGEV pseudoviruses
107	efficiently entered PK-15 cells, but not Huh-7 cells. These data collectively confirmed
108	that human and porcine APN and sugar serve as receptors for PEDV and play important
109	roles in PEDV-spike-mediated cell entry, whereas porcine APN and sugar, but not human
110	APN, are receptors for TGEV.
111	To further examine PEDV entry into host cells, we carried out live PEDV

112 infection in the following cell lines: PK-15 (pig kidney), ST (pig testis), Huh-7 (human 113 liver), MRC-5 (human lung), Vero CCL-81 (monkey kidney), and Tb1-Lu (bat lung) 114 cells. To this end, PEDV strain Ohio VBS2 was isolated from a piglet in Ohio, USA, and 115 propagated in Vero CCL-81 cells using a procedure as previously described (30). Vero 116 CCL-81-adapted PEDV was used to infect each of the above cell lines at a multiplicity of 117 infection (MOI) of 1.0. The results showed that PEDV efficiently infects cells from pig, 118 human, monkey, and bat (Fig. 4). It is worth noting that whereas pseudovirus entry is 119 determined by receptor recognition and cell entry, the infection efficiency of live PEDV 120 in cell culture is determined not only by receptor recognition and cell entry, but also by 121 post-entry factors such as viral replication and release (31).

123	how PEDV recognizes host receptors from different species and how it infects cells from
124	different species. First, we verified that PEDV recognizes porcine APN and infects pig
125	cells. Second, for the first time to our knowledge, we showed that PEDV recognizes a
126	sugar co-receptor Neu5Ac, which explains the enteric tropism of PEDV. Because TGEV
127	also recognizes porcine APN and Neu5Ac, PEDV and TGEV are evolutionarily closely
128	related despite the relative low sequence similarity in their spikes (Fig. 1B). Third, we
129	demonstrated that PEDV infects bat cells, providing evidence that PEDV originated from
130	bats. Finally, different from TGEV that does not use human APN as its receptor, PEDV
131	recognizes human APN and infects human cells. Thus, neither receptor recognition nor
132	other host cellular factors (e.g. cellular restrictions of viral replication) pose a hurdle for
133	PEDV to infect humans. It remains to be seen whether systemic factors (e.g. host immune
134	system) can prevent or timely clear PEDV infections in humans. Nevertheless, these
135	results suggest that PEDV may be a potential threat to other species including humans.
136	Overall, our study provides insight into the host range, tropism, and evolution of PEDV.
137	Our study also has implications for the development of antiviral strategies against
138	PEDV. The S1-NTD-CTD fragment as identified in this study may serve as a subunit
139	vaccine candidate. Monoclonal antibodies against S1-NTD-CTD may serve as
140	immunotherapeutic agents to block PEDV attachment to both APN receptor and sugar
141	co-receptor. In addition, sugar or sugar analogues may serve as antiviral drugs to block
142	PEDV attachment to its sugar co-receptor. Development of these antiviral strategies are
143	urgent because of the damaging impact that PEDV exerts on the US pork industry as well
144	as the potential threat that PEDV poses to other species.

PEDV is a highly pathogenic and lethal pig coronavirus. This study investigated

122

 $\overline{\leq}$

145

146 Acknowledgements

147 This work was supported by NIH grant R01AI089728. We thank the Conso
--

- 148 for Functional Glycomics for help in glycan screen arrays.
- 149
- 150
- 151

153 **References:**

154 155 156	1.	Song D, Park B. 2012. Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes 44: 167-175.
157 158 159	2.	Sun RQ, Cai RJ, Chen YQ, Liang PS, Chen DK, Song CX. 2012. Outbreak of porcine epidemic diarrhea in suckling piglets, China. Emerg Infect Dis 18: 161-163.
160 161	3.	Pensaert MB, de Bouck P. 1978. A new coronavirus-like particle associated with diarrhea in swine. Arch Virol 58: 243-247.
162	4.	Mole B. 2013. Deadly pig virus slips through US borders. Nature 499:388.
163 164 165 166 167	5.	Stevenson GW, Hoang H, Schwartz KJ, Burrough ER, Sun D, Madson D, Cooper VL, Pillatzki A, Gauger P, Schmitt BJ, Koster LG, Killian ML, Yoon KJ. 2013. Emergence of Porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences. J Vet Diagn Invest 25:649- 654.
168 169 170 171 172	6.	Chen Q, Li G, Stasko J, Thomas JT, Stensland WR, Pillatzki AE, Gauger PC, Schwartz KJ, Madson D, Yoon KJ, Stevenson GW, Burrough ER, Harmon KM, Main RG, Zhang J. 2014. Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States. J Clin Microbiol 52 :234-243.
173 174	7.	Perlman S, Netland J. 2009. Coronaviruses post-SARS: update on replication and pathogenesis. Nature Reviews Microbiology 7: 439-450.
175 176 177	8.	Li WH, Wong SK, Li F, Kuhn JH, Huang IC, Choe H, Farzan M. 2006. Animal origins of the severe acute respiratory syndrome coronavirus: Insight from ACE2-S-protein interactions. Journal of Virology 80:4211-4219.
178 179 180	9.	Huang YW, Dickerman AW, Pineyro P, Li L, Fang L, Kiehne R, Opriessnig T, Meng XJ. 2013. Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. Mbio 4:e00737-00713.
181 182	10.	Li F. 2015. Receptor Recognition Mechanisms of Coronaviruses: a Decade of Structural Studies. J Virol 89:1954-1964.

183 184	11.	Li F. 2012. Evidence for a Common Evolutionary Origin of Coronavirus Spike Protein Receptor-Binding Subunits. Journal of Virology 86: 2856-2858.
185 186	12.	Li F. 2013. Receptor recognition and cross-species infections of SARS coronavirus. Antiviral Res 100:246-254.
187 188	13.	Li F, Li WH, Farzan M, Harrison SC. 2005. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309 :1864-1868.
189 190 191 192	14.	Li WH, Zhang CS, Sui JH, Kuhn JH, Moore MJ, Luo SW, Wong SK, Huang IC, Xu KM, Vasilieva N, Murakami A, He YQ, Marasco WA, Guan Y, Choe HY, Farzan M. 2005. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. Embo Journal 24:1634-1643.
193 194 195	15.	Delmas B, Gelfi J, Lharidon R, Vogel LK, Sjostrom H, Noren O, Laude H. 1992. AMINOPEPTIDASE-N IS A MAJOR RECEPTOR FOR THE ENTEROPATHOGENIC CORONAVIRUS TGEV. Nature 357: 417-420.
196 197	16.	Schwegmann-Wessels C, Herrler G. 2006. Sialic acids as receptor determinants for coronaviruses. Glycoconjugate Journal 23: 51-58.
198 199 200	17.	Krempl C, Schultze B, Laude H, Herrler G. 1997. Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus. Journal of Virology 71: 3285-3287.
201 202 203 204	18.	Schultze B, Krempl C, Ballesteros ML, Shaw L, Schauer R, Enjuanes L, Herrler G. 1996. Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity. Journal of Virology 70: 5634-5637.
205 206 207	19.	Krempl C, Laude H, Herrler G. 1998. Is the sialic acid binding activity of the S protein involved in the enteropathogenicity of transmissible gastroenteritis virus? Adv Exp Med Biol 440 :557-561.
208 209	20.	Li BX, Ge JW, Li YJ. 2007. Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus. Virology 365 :166-172.
210 211	21.	Du L, Zhao G, Yang Y, Qiu H, Wang L, Kou Z, Tao X, Yu H, Sun S, Tseng CT, Jiang S, Li F, Zhou Y. 2014. A Conformation-Dependent Neutralizing

212 213 214		Monoclonal Antibody Specifically Targeting Receptor-Binding Domain in Middle East Respiratory Syndrome Coronavirus Spike Protein. J Virol 88: 7045- 7053.
215 216 217 218	22.	Ma C, Wang L, Tao X, Zhang N, Yang Y, Tseng CT, Li F, Zhou Y, Jiang S, Du L. 2014. Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments-The importance of immunofocusing in subunit vaccine design. Vaccine 32: 6170-6176.
219 220 221	23.	Chen L, Lin YL, Peng GQ, Li F. 2012. Structural basis for multifunctional roles of mammalian aminopeptidase N. Proceedings of the National Academy of Sciences of the United States of America 109 :17966-17971.
222 223 224	24.	Liu C, Yang Y, Chen L, Lin YL, Li F. 2014. A unified mechanism for aminopeptidase N-based tumor cell motility and tumor-homing therapy. J Biol Chem.
225 226 227 228	25.	Peng GQ, Sun DW, Rajashankar KR, Qian ZH, Holmes KV, Li F. 2011. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor. Proceedings of the National Academy of Sciences of the United States of America 108 :10696-10701.
229 230 231	26.	Peng GQ, Xu LQ, Lin YL, Chen L, Pasquarella JR, Holmes KV, Li F. 2012. Crystal Structure of Bovine Coronavirus Spike Protein Lectin Domain. Journal of Biological Chemistry 287 :41931-41938.
232 233 234 235	27.	Yang Y, Du L, Liu C, Wang L, Ma C, Tang J, Baric RS, Jiang S, Li F. 2014. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat- to-human transmission of MERS coronavirus. Proc Natl Acad Sci U S A 111:12516-12521.
236 237 238	28.	Weingartl HM, Derbyshire JB. 1991. Antiviral activity against transmissible gastroenteritis virus, and cytotoxicity, of natural porcine interferons alpha and beta. Can J Vet Res 55: 143-149.
239 240 241 242	29.	Haraguchi N, Ishii H, Mimori K, Tanaka F, Ohkuma M, Kim HM, Akita H, Takiuchi D, Hatano H, Nagano H, Barnard GF, Doki Y, Mori M. 2010. CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest 120 :3326-3339.

Σ

243 244 245 246	30.	Wicht O, Li W, Willems L, Meuleman TJ, Wubbolts RW, van Kuppeveld FJ, Rottier PJ, Bosch BJ. 2014. Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture. J Virol 88:7952-7961.
247 248 249	31.	Shirato K, Matsuyama S, Ujike M, Taguchi F. 2011. Role of proteases in the release of porcine epidemic diarrhea virus from infected cells. J Virol 85 :7872-7880.

252 Figure legends

253	Figure 1. PEDV spike protein. (A) Domain structure of PEDV spike. It contains a
254	receptor-binding S1 subunit, a membrane-fusion S2 subunit, a single-pass transmembrane
255	anchor (TM), and a short intracellular tail (IC). S1 contains an N-terminal domain (S1-
256	NTD) and a C-terminal domain (S1-CTD). S2 contains the fusion peptide (FP), heptad
257	repeat 1 (HR1), and heptad repeat 2 (HR2), all of which are essential structural elements
258	for the membrane fusion process. (B) Amino acid sequence identities between PEDV
259	spike and the spikes from TGEV, BtCoV/512/2005, and HCoV-NL63 in different
260	regions. GenBank accession numbers are: AGO58924.1 for PEDV spike, CAA29175.1
261	for TGEV spike, ABG47078.1 for BtCoV/512/2005 spike, and AAS58177.1 for HCoV-
262	NL63 spike.
263	Figure 2. PEDV spike binds porcine APN, human APN, and sugar receptors. (A) SDS-
264	PAGE analysis of recombinant PEDV S1-NTD-CTD and TGEV S1-NTD-CTD. Both
265	proteins were fused with a C-terminal human IgG1 Fc tag. The gel was stained using
266	Coomassie Blue. (B) Dot blot hybridization assay showing the interactions between
267	PEDV or TGEV S1-NTD-CTD (with a C-terminal human IgG1 Fc tag) and porcine or
268	human APN (with a C-terminal His ₆ tag) using a procedure as previously described (24).
269	APN-binding S1-NTD-CTDs were detected using antibodies against their C-terminal Fc
270	tag, and subsequently subjected to enzymatic color reactions. BSA was used as a negative
271	control. (C) Dot-blot hybridization assay showing the interactions between PEDV or
272	TGEV S1-NTD-CTD and sugar moieties on mucin-spotted nitrocellulose membranes
273	using a procedure as previously described (25). Mucin was either mock-treated or treated

274 with neuraminidase (New England BioLabs Inc). Sugar-binding S1-NTD-CTDs were

Journal of Virology

Z

p† Pc	
scri	275
nuc	276
Ž	277
oted	278
cep	279
Ă	280
	281
	282

sted Online

76 enzymatic color reactions. (D) Glycan screen array that was performed to identify the 77 type(s) of sugar most favored by PEDV S1-NTD-CTD (with a C-terminal Fc tag) using a procedure as previously described (26). A glycan library composed of 609 different 78 79 natural and synthetic mammalian glycans (Table S1) was screened for PEDV S1-NTD-80 CTD binding. Glycan-binding S1-NTD-CTD was detected using antibodies against its C-81 terminal Fc tag. Readout was described arbitrarily as relative fluorescence unit (RFU). 82 Among these glycans, N-acetylneuraminic acid (Neu5Ac) shows the highest binding 283 affinity for PEDV S1-NTD-CTD.

detected using antibodies against their C-terminal Fc tag, and subsequently subjected to

284

285 Figure 3. PEDV-spike-mediated pseudovirus entry into host cells. PEDV- and TGEV-286 spike-pseudotyped retroviruses were produced and used to infect cells using a procedure 287 as previously described (27). Trypsin was not included in the pseudovirus entry assay. 288 The cells being infected were MDCK cells exogenously expressing human APN (hAPN), 289 porcine APN (pAPN) or empty vector (panel A), PK-15 cells (panel B), and Huh-7 cells 290 (panel C). For antibody inhibition, cells were pre-incubated with 20 µg/ml anti-hAPN 291 antibody (Santa Cruz Biotechnology) for 1 h at 37 °C before pseudovirus infection. For 292 mucin inhibition, PEDV- or TGEV-spike-pseudotyped retroviruses were pre-incubated 293 with 500 μ g/ml porcine or bovine mucin before they were used to infect cells. The 294 pseudovirus entry efficiency was characterized as luciferase activity accompanying the 295 entry. Error bars indicate SEM (n = 4). 296

Figure 4. PEDV infections in cell culture. PEDV strain Ohio VBS2 was used to infect
different cell lines at an MOI of 1.0 using a procedure as previously described (30). 5

µg/ml trypsin was included in the cell culture medium to facilitate live PEDV infections.
After 24 h post-inoculation, cells were fixed with 4.0% (v/v) paraformaldehyde-0.2%
(v/v). PEDV was detected with fluorescein isothiocyanate (FITC)-labeled mouse antiPEDV N protein antibody, and observed under a fluorescence microscope.

304

305

 $\overline{\leq}$

cepted <i>N</i>		
Ac	Α	

В

HCoV-NL63

S1-NTD	S1-CTD		FP	HR1 HR2 TM IC	
S1			S2		
PEDV spike	S1-NTD	S1-0	CTD	S1	S2
TGEV	/ 19% 23%		\$%	31%	56%
BtCoV/	48%	36%		48%	74%
512/2005					

29%

36%

60%

21%

Journal of Virology

Accepted Manuscript Posted Online

N

Journal of Virology

 \sum

Σ