1 LETTER TO THE EDITOR

2

3 Testing of MERS-CoV replication inhibitors for their ability to block

- 4 viral entry
- 5
- 6
- 7 Qi Liu^{a,c}, Shuai Xia^a, Zhiwu Sun^a, Qian Wang^a, Lanying Du^b, Lu Lu^{a,*}, Shibo Jiang^{a,b,*}
- 8
- 9 Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College,
- 10 Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China^a; Lindsley
- 11 F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA^b;
- 12 Department of Medical Microbiology and Immunology, School of Basic Medicine, Dali
- 13 University, Dali 671000, China^c.
- 14
- *Address correspondence to Shibo Jiang, shibojiang@fudan.edu.cn or Lu Lu,
 lul@fudan.edu.cn.
- 17

18

19 As of 23 July 2014, 837 laboratory-confirmed cases of MERS-CoV infection,

20 including 291 deaths, had been reported to WHO

21 (http://www.who.int/csr/disease/coronavirus_infections/en/), raising concerns about its

pandemic potential and calling for the development of vaccines and therapeutics against
 MERS-CoV infection.

24 We previously identified potent peptidic HIV-1 and SARS-CoV fusion inhibitors 25 (5, 7), leading to the development of MERS-CoV spike (S) protein-mediated cell-cell 26 fusion and six-helix bundle (6-HB) formation assays. Using these assays, we identified a 27 peptide from the of MERS-CoV S protein HR2 region termed HR2P, which potently 28 inhibited 6-HB formation, cell-cell fusion and MERS-CoV replication (8). To identify 29 small molecule MERS-CoV fusion inhibitors, we used the cell-cell fusion assay to screen 30 1,280 compounds from an FDA-approved drug library obtained from MicroSource 31 Discovery Systems, Inc. (Gaylordsville, CT), but none of the compounds at 10 μ M could 32 significantly inhibit MERS-CoV S-mediated membrane fusion.

Most recently, de Wilde *et al.* (2) and Dyall *et al.* (3) used the cytopathogenic effect (CPE) assay to screen several hundreds of compounds from FDA-approved drug libraries and identified a series of compounds inhibiting both MERS-CoV and SARS-CoV replication in the low micromolar range. Although their mechanisms of action have not been defined, both groups suggested that some of them, such as chlorpromazine (a clathrin-mediated endocytosis inhibitor), might block virus entry (2, 3).

- 39 Coronavirus enters into the target cell via endocytosis or plasma membrane fusion,
- 40 while the latter is the main pathway for MERS-CoV entry (8). To determine whether

41	these reported MERS-CoV replication inhibitors also block virus entry via plasma
42	membrane fusion, we tested 16 compounds with MERS-CoV replication-inhibiting
43	activity available in the FDA-approved drug library from MicroSource, and ribavirin and
44	mycophenolic acid (Sigma-Aldrich) that were reported to inhibit MERS-CoV replication
45	(1), for their inhibitory activity on MERS-CoV S-mediated cell-cell fusion using HR2P as
46	a control. Cell-cell fusion inhibition assay was performed as we described before (8).
47	Briefly, Huh-7 cells were used as the target cells, and 293T cells that instantaneously
48	express MERS-CoV S protein and EGFP (293T/MERS/EGFP), used as the effector cells.
49	The 293T/MERS/EGFP cells were cocultured with HR2P or compounds at graded
50	concentrations (initial concentration at 40 μM) for 30min, then added into Huh-7 cells at
51	37 °C for 2 to 4 hours (8). As expected, HR2P inhibited cell-cell fusion with IC_{50} (half
52	maximal inhibitory concentration) value of $\sim 1~\mu M$ and effectively blocked 6-HB
53	formation. In contrast, most of these compounds at 40 μ M exhibited no significant
54	inhibitory activity, except the three neurotransmitter inhibitors (chlorpromazine,
55	promethazine, and fluphenazine) showing moderate inhibitory activity with IC_{50} values of
56	about 20, 20, and 29 μ M, respectively, on cell-cell fusion (Table 1).
57	Subsequently, we determined the inhibitory ability of these compounds (40 μM) on
58	6-HB formed between HR1P and HR2P-FITC, using a fluorescence native
59	polyacrylamide gel electrophoresis (FN-PAGE), adapted from the FN-PAGE assay for
60	testing HIV fusion inhibitors (6). As expected, HR1P showed no band because it carries
61	net positive charges, thus migrating up and off the gel under native electrophoresis
62	condition, which is consistent with the results of HR1 peptides from HIV-1 (6) and
63	SARS-CoV (7), while HR2P-FITC showed a band at a lower position. The mixture of

64	HR1P and HR2P-FITC showed a band at a higher position, suggesting the formation of
65	an HR1P/HR2P-FITC complex, possibly the 6-HB band (Fig. 1). In the presence of
66	HR2P, the upper band disappeared, while lower HR2P-FITC band displayed, suggesting
67	that HR2P binds to HR1P and block the 6-HB formation between HR2P-FITC and HR1P.
68	However, none of the MERS-CoV replication inhibitors at 40 μ M could block the 6-HB
69	formation by HR2P-FITC and HR1P (Fig. 1 and Table 1).
70	The cytotoxicity of these MERS-CoV replication inhibitors to the Huh-7 cells, which
71	were used as the target cells in cell-cell fusion assay, was determined using Cell Counting
72	Kit-8(CCK-8, Dojindo, Kumamoto, Japan) as previously described (8). Except Emetine
73	dihydrochloride, Triflupromazine hydrochloride, and Clomipramine hydrochloride with
74	CC_{50} (the concentration of a compound causing 50% cytotoxicity) at 28.63, 33.58, and <5
75	μ M, respectively, all other compounds exhibited no cytotoxicity at 40 μ M (Table 1).
76	We then tested the inhibitory activity of the 16 MERS-CoV replication-inhibitors on
77	MERS-CoV pseudovirus-based, clathrin-mediated endocytosis using an assay adapted
78	from the method for testing SARS-CoV inhibitors as previously described (4). The
79	pseudotyped MERS-CoV was constructed as describe before (8). Huh7 cells were
80	incubated with chlorpromazine hydrochloride (as a positive control) and other
81	MERS-CoV replication inhibitors at graded concentrations for 1 h and then infected with
82	the MERS-CoV pseudovirus for an additional 12 h. After extensive washes with PBS to
83	remove the virus and compounds, cells were further incubated for 48 h before the
84	luciferase activities were determined as described previously (4). HR2P was included as a
85	control. In addition to chlorpromazine, promethazine, and fluphenazine, all other
86	neurotransmitter inhibitors also exhibited inhibitory activity against clathrin-mediated

87	endocytosis of MERS-CoV with IC50 values in a range of $3.23 \sim 8.79 \ \mu\text{M}$. Unexpectedly,
88	HR2P and Tamoxifen citrate, an estrogen receptor inhibitor, also displayed some
89	inhibitory activity on clathrin-mediated endocytosis of MERS-CoV with IC_{50} valuea of
90	14.28 and 7.46 μ M, respectively, while other MERS-CoV replication inhibitors had no
91	significant inhibitory activity at the concentration of 40 μ M (Table 1).
92	Poste et al. (10) reported that the three neurotransmitter inhibitors (chlorpromazine,
93	promethazine, and fluphenazine) also inhibited herpes simplex virus-induced cell fusion
94	without impairing virus replication, suggesting that their weak cell-cell fusion inhibitory
95	activity may not contribute to their inhibition of MERS-CoV replication. Indeed, de
96	Wilde et al. (2) demonstrated that chlorpromazine inhibited MERS-CoV replication at
97	both an early and a post-entry stage, indicating that endocytosis is unlikely to be the sole
98	antiviral mechanism. Why HR2P also exhibited inhibitory activity in the
99	pseudovirus-based, clathrin-mediated endocytosis assay is possibly because the HR2P
100	peptide on the cell surface may be engulfed by the plasma membrane into endosome
101	where the peptide inhibits endosomal membrane fusion, in a similar way that HIV fusion
102	inhibitor, enfuvirtide, inhibits HIV endocytosis (9).
103	In conclusion, some of the reported MERS-CoV replication inhibitors from the
104	FDA-approved drug libraries could inhibit clathrin-mediated endocytosis, but most of
105	them do not block MERS-CoV fusion with the target cell membrane (only three of these
106	showed moderate inhibitory activity) and none of them inhibits 6-HB, suggesting that
107	their mechanisms of action are different from the MERS-CoV fusion inhibitor HR2P.
108	Therefore, the combinational use of HR2P with these reported MERS-CoV replication
109	inhibitors may have synergistic effect against MERS-CoV infection.
110	

111		References
112	1.	Chan JFW, KH Chan, RYT Kao, KKW To, BJ Zheng, CPY Li, PTW Li, J
113		Dai, FKY Mok, HL Chen, FG Hayden, and KY Yuen. 2013. Broad-spectrum
114		antivirals for the emerging Middle East respiratory syndrome coronavirus. J.
115		Infect. 67 :606-616.
116	2.	de Wilde AH, D Jochmans, CC Posthuma, JC Zevenhoven-Dobbe, S van
117		Nieuwkoop, TM Bestebroer, BG van den Hoogen, J Neyts, and EJ Snijder.
118		2014. Screening of an FDA-Approved Compound Library Identifies Four
119		Small-Molecule Inhibitors of Middle East Respiratory Syndrome Coronavirus
120		Replication in Cell Culture. Antimicrob. Agents Chemother. 58:4875-4884.
121	3.	Dyall J, CM Coleman, BJ Hart, T Venkataraman, MR Holbrook, J
122		Kindrachuk, RF Johnson, GG Olinger, PB Jahrling, M Laidlaw, LM
123		Johansen, CM Lear-Rooney, PJ Glass, LE Hensley, and MB Frieman. 2014.
124		Repurposing of Clinically Developed Drugs for Treatment of Middle East
125		Respiratory Syndrome Coronavirus Infection. Antimicrob. Agents Chemother.
126		58 :4885-4893.
127	4.	Inoue Y, N Tanaka, Y Tanaka, S Inoue, K Morita, M Zhuang, T Hattori, and
128		K Sugamura. 2007. Clathrin-dependent entry of severe acute respiratory
129		syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail
130		deleted. J. Virol. 81:8722-8729.
131	5.	Jiang SB, K Lin, N Strick, and AR Neurath. 1993. HIV-1 Inhibition by A
132		Peptide. Nature 365 :113.

133	6.	Liu S, Q Zhao, and S Jiang. 2003. Determination of the HIV-1 gp41 fusogenic
134		core conformation modeled by synthetic peptides: applicable for identification of
135		HIV-1 fusion inhibitors. Peptides 24:1303-1313.
136	7.	Liu SW, GF Xiao, YB Chen, YX He, JK Niu, CR Escalante, HB Xiong, J
137		Farmar, AK Debnath, P Tien, and SB Jiang. 2004. Interaction between heptad
138		repeat 1 and 2 regions in spike protein of SARS-associated coronavirus:
139		implications for virus fusogenic mechanism and identification of fusion inhibitors.
140		Lancet 363 :938-947.
141	8.	Lu L, Q Liu, Y Zhu, KH Chan, LL Qin, Y Li, Q Wang, JFW Chan, LY Du, F
142		Yu, CQ Ma, S Ye, KY Yuen, RG Zhang, and SB Jiang. 2014. Structure-based
143		discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat.
144		Commun. 5 :3067.
145	9.	Miyauchi K, Y Kim, O Latinovic, V Morozov, and GB Melikyan. 2009. HIV
146		Enters Cells via Endocytosis and Dynamin-Dependent Fusion with Endosomes.
147		Cell 137 :433-444.
148	10.	Poste G and P Reeve. 1972. Inhibition of Virus-Induced Cell Fusion by Local
149		Anesthetics and Phenothiazine Tranquilizers. J. Gen. Virol. 16:21-28.
150		
151		
152		
153		
154		

AAC Accepts published online ahead of print

155 Figure legend

156

157	Figure 1. Inhibition of the HR2P peptide and compounds on the MERS-CoV S protein
158	6-HB formation. Inhibitory activity of the peptide and compounds on 6-HB formation
159	between HR1P and HR2P-FITC was detected using an FN-PAGE assay. Briefly, HR1P
160	(20 $\mu M)$ was incubated with HR2P (40 $\mu M)$ or each of the compound tested (40 $\mu M)$ at
161	37 °C for 30 min before addition of HR2P-FITC (20 μ M). Tris-glycine native sample
162	buffer (Invitrogen, Carlsbad, CA) was then to add to the mixture at a ratio of 1:1. The
163	samples were then loaded to a 10 cm \times 1 cm precast gel (25 μl each well) and the gel
164	electrophoresis was carried out with 125V constant voltage at room temperature for 2 h.
165	The fluorescence bands in the gel were then imaged by the FluorChem 8800 Imaging
166	System using a transillumination UV light source with excitation wavelength at 302 nm
167	and a fluorescence filter with emission wavelength at 520 nm (6).
168	

169

170

171 **Table 1.** Inhibitory activity of the reported MERS-CoV replication inhibitors available in the FDA-approved

drug library from MicroSource and the control HR2P peptide on MERS-CoV S-mediated cell-cell fusion

173 and 6-HB formation.

174

Drug name	Original drug function	IC ₅₀ (μM) for inhibiting	IC ₅₀ (μM) for inhibiting	IC ₅₀ (µM) for inhibiting	CC ₅₀ (µМ) *†	Inhibiting 6-HB
		MERS-CoV	cell-cell fusion*	clathrin-mediate		formation at
		replication (ref)		d endocytosis*		40 µM* ⁸
Lopinavir	HIV protease inhibitor	17.10(2)	>40	>40	>40	-
Loperamide	Opioid-receptor agonist	5.90 (2)	>40	>40	>40	-
Chloroquine diphosphate	Antiparasitic agent	4.10(2); 6.28 (3)	>40	>40	>40	-
Hydroxychloroquine sulfate	Antiparasitic agent	8.28 (3)	>40	>40	>40	-
Amodiaquine dihydrochloride	Antiparasitic agent	6.21 (3)	>40	>40	>40	-
Chlorpromazine hydrochloride	Neurotransmitter inhibitor	8.80 (2); 9.51(3)	23.33±2.89	7.24 ± 2.55	>40	-
Promethazine hydrochloride	Neurotransmitter inhibitor	11.80 (3)	16.67±7.22	7.48 ± 4.53	>40	-
Fluphenazine hydrochloride	Neurotransmitter	5.86 (3)	15.00±4.33	3.23 ± 2.79	~40	-
Thiothixene	Neurotransmitter	9.30 (3)	>40	5.74 ± 2.51	>40	-
Astemizole	Neurotransmitter inhibitor	4.88 (3)	>40	3.48±1.34	28.63±1.94	-
Triflupromazine hydrochloride	Neurotransmitter inhibitor	5.76 (3)	>40	3.32 ± 1.51	33.58±2.37	-
Clomipramine hydrochloride	Neurotransmitter inhibitor	9.33 (3)	>40	8.79 ± 2.35	>40	-
Emetine dihydrochloride	Antibacterial agent	0.01(3)	>40	>5‡	<5	-
Tamoxifen citrate	Estrogen receptor inhibitor	10.12 (3)	>40	7.46 ± 2.74	>40	-
Cycloheximide	Protein-processing inhibitor	0.19 (3)	>40	>40	>40	-
Dasatinib	Kinase signaling inhibitor	5.47 (3)	>40	>40	>40	-
Ribavirin	Nucleoside analogue	9.99 (1)	>40	>40	>40	-
Mycophenolic acid (MPA)	Immunosuppressant agent	0.17(1)	>40	>40	>40	-
HR2P	Fusion inhibitor	0.60 (8)	1.64 ± 0.75	14.28 ± 5.57	>40	+

175 *The samples were tested in triplicate and the experiment was repeated twice. The data are presented as

176 mean \pm SD.

177 If a compound at 40 μ M had no more than 50% inhibition, its IC₅₀ was recorded as > 40 μ M. [†]If a

178 compound at 40 μ M had no more than 50% cytotoxicity, its CC₅₀ was recorded as > 40 μ M. § If a compound

179 at 40 µM could or could not inhibit 6-HB formation, its activity was recorded as "+" or "-", respectively.

180 [‡]No inhibitory activity at its CC_{50} value (5 μ M).

181

Inhibition of 6-HB formation by HR2P or compounds