JVI Accepted Manuscript Posted Online 17 February 2016
J. Virol. d0i:10.1128/JV1.03212-15
Copyright © 2016, American Society for Microbiology. All Rights Reserved.

1 JV103212-15 Version 2

3 Analyses of Coronavirus Assembly Interactions with Interspecies

4 Membrane and Nucleocapsid Protein Chimeras

(19)
=
6
O]
(1)
——
U2)
(0)
o
——
o
g
\9}
2]
>
(=
=
O
(1)
——
(O
(19)
O
9}
<(

7  Lili Kuo, Kelley R. Hurst-Hess, Cheri A. Koetzner, and Paul S. Masters”

9  Wadsworth Center, New York State Department of Health, Albany, New York 12201
10
11

12 "Corresponding author. Mailing address: Griffin Laboratory, Wadsworth Center, NYSDOH, Empire

Journal of Virology

13 State Plaza, P.O. Box 509, Albany, New York 12201-0509. Phone: (518) 485-6554. Fax:
14 (518) 869-6487. E-mail: Paul.Masters@health.ny.gov.

15

16

17 Running title:

18  CORONAVIRUS M AND N PROTEIN ASSEMBLY INTERACTIONS

19

20  Abstract: 241 words

21 Text: 6527 words (excluding references and figure legends)

Journal of Virology




(19)
=
6
O]
(1)
——
U2)
(0)
o
——
o
g
\9}
2]
>
(=
=
O
(1)
——
(O
(19)
O
9}
<(

Journal of Virology

Journal of Virology

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

JV103212-15 Version 2 page 2 of 30 02.04.16
ABSTRACT

The coronavirus membrane (M) protein is the central actor in virion morphogenesis. M
organizes the components of the viral membrane, and interactions of M with itself and with the
nucleocapsid (N) protein drive virus assembly and budding. In order to further define M-M and M-N
interactions we constructed mutants of the model coronavirus mouse hepatitis virus (MHV) in which
all or part of the M protein was replaced by its phylogenetically divergent counterpart from severe
acute respiratory syndrome coronavirus (SARS-CoV). We were able to obtain viable chimeras
containing the entire SARS-CoV M protein as well as mutants with intramolecular substitutions that
partitioned M protein at the boundaries between the ectodomain, transmembrane domains, or
endodomain. Our results show that the carboxy-terminal domain of N protein, N3, is necessary and
sufficient for interaction with M protein. However, despite some previous genetic and biochemical
evidence that mapped interactions with N to the carboxy terminus of M, it was not possible to define
a short linear region of M protein sufficient for assembly with N. Thus, interactions with N protein
likely involve multiple linearly discontiguous regions of the M endodomain. The SARS-CoV M
chimera exhibited a conditional growth defect that was partially suppressed by mutations in the
envelope (E) protein. Moreover, virions of the M chimera were markedly deficient in spike (S)
protein incorporation. These finding suggest that the interactions of M protein with both E and S

protein are more complex than previously thought.
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IMPORTANCE

The assembly of coronavirus virions entails concerted interactions among the viral structural
proteins and the RNA genome. One strategy to study this process is through construction of
interspecies chimeras that preserve or disrupt particular inter- or intramolecular associations. In this
work, we replaced the membrane (M) protein of the model coronavirus mouse hepatitis virus with its
counterpart from a heterologous coronavirus. The results clarify our understanding of the interaction
between the coronavirus M protein and the nucleocapsid protein. At the same time they reveal

unanticipated complexities in the interactions of M with the viral spike and envelope proteins.

INTRODUCTION

Coronaviruses are a family of enveloped positive-strand RNA viruses that cause disease in
numerous mammalian and avian hosts (1, 2). Of the six coronaviruses that can infect humans, the
two of greatest current concern are the etiologic agents of severe acute respiratory syndrome (SARS-
CoV) and Middle East respiratory syndrome (MERS-CoV). Virions of coronaviruses contain a
canonical set of four structural proteins. The most numerous constituent, the membrane (M) protein,
makes up a lattice in the viral envelope that associates with the other components. Trimers of spike
(S) protein form projections on the virion surface responsible for attachment to host cell receptors,
and minor amounts of the small envelope (E) protein also appear in the viral membrane. In the virion
interior, the nucleocapsid (N) protein encloses the ~30-kb viral genome into a helically symmetric
ribonucleoprotein.

Much of our knowledge of coronavirus assembly has been worked out through studies with
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the prototype mouse hepatitis virus (MHV). MHV falls into the betacoronaviruses, the second of the
four genera of the family and the one which also includes SARS-CoV and MERS-CoV. Key
contributions to understanding virion morphogenesis have also been made through analyses of the
gammacoronavirus infectious bronchitis virus (IBV) and the alphacoronavirus transmissible
gastroenteritis virus (TGEV). A large body of work points to M protein as the major player in virion
assembly. Coexpression of subsets of viral proteins revealed that just M protein and E protein are
sufficient for the formation of virus-like particles (VLPs) (3-5). The inclusion of N protein, although
it is not strictly required, greatly enhances the efficiency of VLP formation (6, 7). The critical role of
E protein is carried out at the site of budding, the endoplasmic reticulum-Golgi intermediate
compartment, with very little E being carried over into assembled virions (8). Additionally, M
protein captures S protein for incorporation into virions or VLPs (9, 10), but S is an optional
participant in virus formation (11, 12), even though it is essential for infectivity.

Thus, extensive networks of protein-protein interactions in coronavirus assembly involve one
or both of the most abundant virion components, M and N. The N protein is a highly basic
phosphoprotein containing structurally distinct amino-terminal and carboxy-terminal RNA-binding
domains (NTD and CTD) (13), which we have previously called domains N1b and N2b, respectively
(14-16) (Fig. 1A). In MHV N protein the CTD, but not the NTD, is a critical determinant for
recognition of the genomic RNA packaging signal (16). The CTD also mediates N-N dimerization
and longer-range interactions in the nucleocapsid (17). Flanking the NTD and CTD are intrinsically
disordered protein segments (13, 18). One of these, the linker between the NTD and CTD, harbors a
serine- and arginine-rich region that binds to the replicase nonstructural protein 3 in an interaction
crucial to an early step of infection (15, 19). At the carboxy terminus of the molecule is domain N3,
which many (20-24) but not all (25-27) prior studies have assigned as the locus of N-M interactions.

The M protein is a triple-spanning transmembrane protein with a small ectodomain and a
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large carboxy-terminal endodomain (28, 29) (Fig. 1A). As yet, there is only limited structural
information available for M. The assignment of intra- and intermolecular interactions to parts of the
M protein is more tentative than for the N protein. Evidence from cryo-electron micrographic (EM)
and tomographic reconstructions (30) and inferences drawn from a genetic study of evolved M
mutants (31) suggest that M-M monomer interactions occur among the transmembrane (Tm)
domains, whereas higher-order oligomerization of M dimers is governed by the endodomain. The
endodomain is also the locus of interactions of M protein with N protein (20-24, 32, 33) and with S
protein (34, 35). In order to learn more about intra- and intermolecular interactions of M, we
constructed MHV chimeras containing entire or partial substitutions of the SARS-CoV M protein.
This strategy allowed us to further define M-N and M-M interactions. Additionally, it revealed that

the interactions of M with the E and S proteins are more complex than currently pictured.

MATERIALS AND METHODS

Cells and viruses. MHV-A59 wild-type and mutant virus stocks were grown at 37°C in
mouse 17 clone 1 (17CI1) cells. Plaque titrations and plaque purifications were performed with
mouse L2 cells. The host-range chimeric coronavirus designated fMHV.v2 (36), used as the
recipient virus for reverse genetics, was grown in feline FCWF cells.

MHY mutant construction. All mutants in this study were isolated by targeted RNA
recombination, as described in detail previously (36, 37). Transcription vectors for donor RNA
synthesis were constructed from plasmid pSG6X (16), which contains the 3'-most 8.6 kb of the
MHV-AS59 genome. To create vector pMN1, SARS-CoV domain N3 was transferred to pSG6X from

the previously described pMN54-SN3 (15) by transfer of the Nhel-BstEII fragment, which runs from
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the center of the N gene through the start of the 3' UTR. All subsequent constructs containing SARS-
CoV domain N3 were then derived from pMN1. Whole or partial SARS-CoV M gene substitutions
were made through manipulation of the EcoRV-PspXI fragment running from the end of the E gene
through the M gene to the start of the N gene. Chimeric sequences were generated via PCR or two-
step PCR using a cloned SARS-CoV M gene cDNA as template (strain Urbani, GenBank accession
number AY278741). Alternatively, some M gene fragments were synthesized by PCR from
overlapping oligonucleotides and inserted into plasmids using the Eagl or BssHII site within M, or
else a coding-silent BspEI site that was created at MHV M codons 198 and 199 (equivalent to
SARS-CoV M codons 190 and 191). The entire SARS-CoV M substitution in vectors pMN2, pMN3,
PMNG6, and pMN7 was an exact replacement of the MHV M open reading frame (ORF). The
junctions in the partial SARS-CoV M substitutions in vectors pMN4A, pMN4B, pMN4C, pMNSA,
pMNS5B, pMNS8, pMN9, and pMN10 were made at the various boundaries shown in Fig. 1B. The
SARS-CoV E gene in vector pMNG6, which is an exact ORF-for-ORF replacement, was obtained by
transfer from the previously described pLK 106 (38) of the Sbfl-EcoRV fragment, which runs from
immediately downstream of the S gene through the end of the E gene. Similarly, the E gene F20S
mutation was placed in vectors pMNSA, pMN5B, pMN7, pMNS, and pMN10 by transfer of an Sbfl-
EcoRV fragment of cDNA from mutant MN3rev3. Oligonucleotides for PCR and DNA sequencing
were obtained from Integrated DNA Technologies. The overall compositions of constructed
plasmids were confirmed by restriction analysis, and all ligation junctions and regions generated by
PCR amplification were verified by DNA sequencing.

The wild-type virus used in this work was Alb741, a recombinant that was previously
isolated by targeted RNA recombination with donor RNA from pSG6X (16). For viable chimeric
viral mutants, at least three independent isolates were obtained. In each case, once it was established

in preliminary experiments that multiple isolates behaved identically, one of them was chosen for
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further analysis. The exceptions were mutants MN6 and MN7, each of which was isolated only once.
Particular chimeric constructs were judged to be lethal after yielding no recombinants in multiple
targeted RNA recombination experiments for which parallel positive controls with wild-type donor
RNA produced recombinants at a robust frequency.

Virus purification. Wild-type and mutant MN8 virus were grown in 17Cl11 cell monolayers
infected at a multiplicity of 1 PFU/cell. Medium containing released virus was harvested at 14 h
postinfection, at a point when monolayers exhibited maximal syncytia formation but minimal lysis
or detachment. Virions were purified by polyethylene glycol precipitation followed by equilibrium
centrifugation on preformed gradients of 20 to 30% iodixanol (OptPrep, Sigma-Aldrich) in a buffer
of 50 mM Tris-maleate (pH 6.5) and 1 mM EDTA. Gradients were centrifuged at 111,000 x g in a
Beckman SW41 rotor at 4°C for 18 h, and for each, 15 750-ul fractions were collected from the top.

Northern blotting. RNA was extracted from aliquots of gradient fractions with TRI Reagent
(Zymo) according to the manufacturer's instructions. Purified RNA denatured with formaldehyde
and formamide was directly dot-blotted onto Nytran Supercharge membranes (Whatman, GE
Healthcare) by filtration through a vacuum manifold, followed by UV-crosslinking. Membranes
were hybridized with a PCR-amplified probe corresponding to nucleotides 401-909 of the MHV
genome, a region unique to genomic (and absent from subgenomic) RNA. The probe was labeled
with an AlkPhos Direct kit; blots were visualized using CDP-Star detection reagent (GE Healthcare)
and quantitated with a BioRad ChemiDoc XRS+ instrument.

Western blotting. Purified virions or NP40 lysates prepared from infected 17CI1 cell
monolayers were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) (10%, except where indicated otherwise) and analyzed by Western blotting exactly as
described previously (31). Proteins were detected with one of the following: anti-MHV N protein

rabbit polyclonal antibody (14); anti-MHV M protein monoclonal antibody J.1.3, generously
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provided by John Fleming, University of Wisconsin, Madison; anti-SARS-CoV M protein
monoclonal antibody NR-621, similar to 283C (39), obtained through the NIH Biodefense and
Emerging Infections Research Resources Repository; or anti-MHV S protein rabbit polyclonal
antibody raised against a peptide corresponding to the carboxy-terminal 13 residues of S
(DSIVIHNISSHED). Bound antibodies were visualized by enhanced chemiluminescence detection

(Pierce), and quantitation was carried with a BioRad ChemiDoc XRS+ instrument.

RESULTS

Construction of an MHV mutant containing the entire SARS-CoV M protein. To more
completely elucidate structural protein requirements for coronavirus assembly, we constructed an
MHYV chimera containing the SARS-CoV M protein. The equivalence of the M endodomain of
MHYV with that of the very closely related bovine coronavirus was demonstrated in an earlier study
(40). However, we anticipated that substitution of the much less homologous SARS-CoV M protein
would provide a more stringent test of compatible and incompatible intermolecular interactions. The
M proteins of MHV and SARS-CoV, which are lineage A and lineage B betacoronaviruses,
respectively, share only 38% amino-acid sequence identity (Fig. 1B). Although M protein is known
to engage with each of the other three coronavirus structural proteins, we did not expect that a
SARS-CoV M chimera would be significantly hindered in essential M-S or M-E interactions. We
had previously found that the SARS-CoV E protein could functionally substitute for MHV E protein
(38). Additionally, it was shown that the endodomain of the MHV S protein, the region of S that
interacts with M (41, 42), could be completely replaced by its SARS-CoV counterpart (43).

By contrast, we postulated that substitution of a heterologous M protein would require that it
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be partnered with the region of N protein that assembles with M. Much prior work indicated that N
interactions with M are confined to the carboxy-terminal domain of N protein (domain N3) (20-24),
which has little or no sequence homology between MHV and SARS-CoV (Fig. 1C). Accordingly,
we used targeted RNA recombination (36, 37) to isolate an MHV mutant, MN3, which harbored the
complete SARS-CoV M protein as well as domain N3 (plus the adjacent spacer B) of SARS-CoV N
protein (Fig 2A). Consistent with our initial assumptions, a chimeric construct that paired the MHV
M protein with the SARS-CoV domain N3 (mutant MN1) was lethal, confirming earlier results (15).
Likewise, a chimeric construct that paired the SARS-CoV M protein with the MHV domain N3
(mutant MN2) was also lethal. These results showed that domain N3 is essential for functional
interaction between the coronavirus N and M proteins. Previous work has established that the highly
variable spacer B is not essential for virion formation. MHV N spacer B can be altered with
divergent coronavirus sequence (44) or an epitope tag (21) or even entirely replaced with a synthetic
flexible linker peptide sequence (14). Moreover, the complete deletion of spacer B, in the classical
temperature-sensitive mutant Alb4, still allows virion assembly at the permissive temperature (45).
Three independent isolates of the MN3 mutant were obtained and their sequences were
confirmed. Two of the three contained the exact SARS-CoV M gene sequence. The third isolate had
two coding changes in M, N206S and T207A. However, since this virus was phenotypically
identical to the other two, these mutations were deemed extraneous, and one (unmutated) isolate was
chosen for further study. Notably, none of the MN3 isolates had any sequence changes in the S
endodomain, the E gene, or the chimeric N gene. Thus, the substitution of the SARS-CoV M protein
did not depend upon the acquisition of second-site mutations in protein domains that interact with M
protein, other than N3. To verify expression of proteins encoded by the chimeric virus, lysates from
infected cells were analyzed by Western blotting (Fig. 2B). As expected, an anti-SARS-CoV M

monoclonal antibody reacted with MN3 M protein but not with wild-type MHV M protein.
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Conversely, an anti-MHV M monoclonal antibody reacted with wild-type MHV M protein but not
with MN3 M protein. Since the two anti-M antibodies recognize different epitopes, the level of M
expression by MN3 could not be directly compared to that of wild type. However, both viruses
expressed comparable amounts of wild-type (49.7-kDa) or chimeric (48.3-kDa) N protein, as judged
by probing infected cell lysates with polyclonal anti-MHV N antibody. Additionally, as predicted, a
monoclonal antibody that recognizes an epitope in wild-type MHV domain N3 (21) did not react
with the chimeric MN3 N protein (data not shown).

Although the MN3 mutant was viable, it grew to a ~40-fold lower infectious titer than did
wild-type virus and formed smaller plaques at 37°C (Fig. 2C). This plaque size difference was more
pronounced at 33°C, and at 39°C MN3 plaques were tiny compared to those of the wild type. This
indicated that at least one of the intermolecular interactions of SARS-CoV M protein with MHV
components was partially impaired.

Analysis of revertants of MN3. To gain an understanding of the defect in the SARS-CoV M
chimera, we isolated mutants with improved growth following 6 to 10 serial passages at 39°C of
multiple individual cultures of MN3, each of which had been started from a single plaque. These
mutants (referred to as revertants hereafter) formed plaques at 39°C that were markedly larger than
those of the MN3 parent but were not fully as large as wild-type plaques. We mapped the mutations
that had arisen in each by sequencing the S endodomain and the entire E, M, and N genes. Among
10 independent revertants that were isolated, seven had single changes in the E protein, which
localized in either the Tm domain or the endodomain (Fig. 3A). Of the three other revertants, two
had mutations in SARS-CoV M (V96L or S172P), and one had a mutation in both S (H1310Y) and
N (E146Q). Since most of the reverting mutations fell in E, and since these were in the revertants
which formed the largest plaques, this suggested that wild-type MHV E cannot optimally cooperate

with SARS-CoV M in virion morphogenesis. Such a finding was unexpected, because we had
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previously found that the SARS-CoV E protein was nearly completely able to replace the MHV E
protein (38).

More surprising was that substitution of the entire SARS-CoV E protein in conjunction with
the SARS-CoV M protein generated a virus that was further impaired, rather than improved, with
respect to MN3. The resulting E-M chimera, MN6, formed very small plaques at 37°C and pinpoint
plaques at 39°C (Fig. 3B and C), and it had a ~3-fold lower infectious titer. This unforseen outcome
may have been the consequence of distinct activities of the substituted E protein (46) acting in
conflict with each other (see Discussion). To ascertain whether alteration of the MHV E protein was
sufficient to enhance the fitness of the SARS-CoV M chimera, we reconstructed the mutation from
the most robust of the revertants, MN3rev3. The MN7 construct, containing F20S in its E protein,
exhibited substantially larger plaques than the MN3 mutant at both 37°C and 39°C (Fig. 3B and C),
and it had a 20- to 30-fold higher infectious titer than MN3. This established that the F20S mutation
alone is capable of significantly enhancing the growth of the MN3 mutant, suggesting that there
exists an interaction between the E and M proteins. However, as MN7 did not entirely recapitulate
the phenotype of MN3rev3, we determined the entire genomic sequence of the latter. This revealed
four additional mutations in MN3rev3: D42G in nsp2, T2981 in nsp15, S163L in the HE pseudogene,
and F270V in the S protein ectodomain. We think it likely that none of these points to a previously
unknown interaction with M protein, although the S ectodomain mutation conceivably contributed to
the larger plaque size of MN3rev3. We therefore included just the E protein F20S mutation in further
M chimeric constructs.

Domain substitutions within the M protein. Multiple lines of evidence from previous
structural (30), genetic (31), and virus-like particle studies (47) all suggest that the M protein
ectodomain, Tm domains, and endodomain might have separable roles in assembly. To test this

notion, we generated intramolecular M protein chimeric substitutions. The first of these, MN8 (Fig.
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4A), retained the entire SARS-CoV M protein, except for the restoration of the MHV M ectodomain.
The crossover point chosen between MHV and SARS-CoV sequence was a conserved pair of
residues (WN) at the junction of the ectodomain and the first Tm domain (Fig. 1B). As with the
MN7 construct, the E protein of MN8 incorporated the F20S mutation, and the SARS-CoV domain
N3 of N protein. In two additional recombinants, MN9 and MN10 (Fig. 4A), both the MHV
ectodomain and Tm domains were restored to the SARS-CoV M protein. In this case, the
constructed crossover between MHV and SARS-CoV sequence was a motif (WSFNPETN)
occurring shortly after the third Tm domain (Fig. 1B). This motif is highly conserved among all
betacoronavirus M proteins, and in MHYV it has been shown to be critical for virus-like particle
assembly and for virus viability (48). Mutant MN9 was made with the wild-type MHV E protein,
while MN10 had the E protein F20S mutation.

The ectodomains of the MHV and SARS-CoV M proteins diverge extensively (Fig. 1B).
Moreover, the MHV-A59 M protein ectodomain is O-glycosylated (49), whereas the SARS-CoV M
protein ectodomain is N-glycosylated (50). These differences appeared to have no major effect on
the growth of MN8 at 37°C (Fig. 4B), relative to that previously seen for the complete SARS-CoV
M substitution mutants MN3 and MN7. Likewise, the MN9 and MN10 mutants tolerated the pairing
of heterologous Tm and endodomains within the M molecule, indicating that these two regions
participate largely independently in intermolecular interactions. Nevertheless, it was noted that at
39°C all three mutants formed smaller plaques than did MN3 or MN7 (data not shown). This
impairment was most profound for MN9, suggesting that in MN8 and MN10 the E protein F20S
mutation made a beneficial contribution to SARS-CoV M endodomain associations in M protein
oligomers.

In contrast to the substitutions that were allowed in MN8, MN9, and MN10, we were not

able to subdivide the M protein endodomain in order to define a minimal region capable of
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interacting with N protein. Based on prior evidence that the M-N interaction maps to the carboxy
terminus of the M endodomain (20, 21, 23, 32), various potential crossover points between the two
species of M protein were tested. In constructs MN4A, MN4B, and MN4C, SARS-CoV sequence
was grafted onto the tail of the MHV M protein at conserved residues positioned 30 (SGFA), 43
(YK), or 20 (GNY) amino acids, respectively, from the carboxy terminus (Fig. 1B and 4C).
Reciprocal substitutions of MHV M sequence on a SARS-CoV M background were also made in
constructs MNSA and MNS5B. In each case, domain N3 of the N protein was derived from the
species corresponding to that of the tail of the M protein. None of these five constructs yielded
viable viruses, despite numerous independent trials of targeted RNA recombination, some of which
included mutagenized donor RNAs and all of which had robust wild-type controls. The lethality of
all of these mutants likely means that, due to the globular nature of the M endodomain, the surface
that interacts with domain N3 is more complex than merely a linear stretch of primary sequence.

Analysis of virions of the SARS-CoV M protein chimera. We consistently noted that
monolayers inoculated at 37°C with MN3 or MNS exhibited a progression of syncytia formation and
cytopathic effect similar to monolayers inoculated with wild-type virus at the same multiplicity of
infection. However, virus released from cells infected with either of these SARS-CoV M chimeras
had a markedly lower infectious titer than wild type. Moreover, preliminary evidence showed that
virions of MN3 and MNS8 were defective in the selective packaging of genomic RNA (L. Kuo and P.
S. Masters, unpublished data), suggesting a possible basis for their reduced infectivity. These
observations prompted us to examine SARS-CoV M chimeric virions in more detail. We chose MNS§
for this analysis because its composition would allow us to directly compare M protein in wild-type
and mutant virions using an anti-M monoclonal antibody that recognizes the MHV M protein
ectodomain (40).

Virions of MN8 and wild type were purified by equilibrium centrifugation on continuous
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gradients of 20 to 30% iodixanol and collected in multiple fractions that were analyzed for
infectivity, viral protein, and genomic RNA (Fig. 5). One readily apparent distinction between the
two viruses was that they had markedly different buoyant densities. This difference was confirmed
by the nearly identical density profiles of the two gradients shown in Fig. SA. MNS8 and wild-type
virions were also seen to sediment differently in glycerol-tartrate gradients (41) and in iodixanol
gradients of other densities (data not shown). A second salient contrast between the two viruses was
that the MN8 mutant had a severely reduced infectious titer, nearly 30-fold lower than that of the
wild type (Fig. SA and F). However, this deficiency was not due to a decreased quantity of
assembled viral particles. The levels of N and M proteins detected by Western blotting were
comparable for MN8 and wild-type virions, and the two had similar ratios of N protein to M protein
(Fig. 5B, C, and F). Additionally, contrary to our original expectations, there was no impairment in
the amount of genomic RNA packaged by the mutant. Indeed, virions of MN8 contained slightly
more genomic RNA than wild-type virions (Fig. 5D-F), and Northern blotting verified that MN8
genomic RNA was intact (data not shown). For both mutant and wild type, the peaks of protein and
RNA coincided with the respective peaks of infectivity. This indicated that MNS virions did not
consist of separate pools of empty and RNA-containing particles.

Surprisingly, MNS virions contained drastically reduced amounts of S protein compared to
wild-type virions. MHV S protein is synthesized as a 180-kDa glycoprotein, Sy, that is cleaved by
cellular proteases into amino- and carboxy-terminal halves, S; and S,. Using an antibody specific for
the carboxy terminus of the molecule, we observed that S in wild-type virions was almost entirely in
the cleaved S, form, although trace amounts of Sy were seen as well (Fig. 6A). By contrast, only
minor quantities of S, were detected in MNS virions. Since S is essential for the initiation of
infection, this accounted for the diminished infectivity of the M chimera. This difference in MN§

was not due to a failure to synthesize S. Examination of lysates of infected cells showed that wild
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type and MNS expressed equivalent amounts of S protein, and intracellular S was almost all in the
uncleaved Sy form (Fig. 6B). We also separated virions in a higher-density SDS-PAGE gel to look
for evidence of degradation of S protein, analogous to that described for an E protein mutant of IBV
(51). This revealed a minor amount of a 12.5-kDa carboxy-terminal fragment of S protein in wild-
type virions, corresponding to roughly 110 amino acids, which would comprise heptad-repeat region
2, the Tm domain, and the endodomain (Fig. 6C). However, no such membrane-bound remnant of S
was found in MNS virions, although we would have expected it to be abundant if S had been
incorporated into mutant virions and then degraded. Our results therefore indicated that, even though
adequate amounts of MHV S protein were available, they were not efficiently incorporated into
assembling virions by SARS-CoV M protein. To determine if this was a general characteristic of the
SARS-CoV M protein chimeras, we grew separate stocks of wild-type, MN8, MN3, and MN3rev3
viruses and purified them on continuous iodixanol gradients. Equivalent quantities of virions, as
judged by N protein content, were analyzed for S protein. As shown in Fig. 6D, virions of the
original chimera, MN3, had even more severely reduced incorporation of S protein than did MNS.
By contrast, the large-plaque revertant MN3rev3 had levels of S protein approaching those of the
wild type. Thus, the levels of S protein incorporation into various SARS-CoV M protein chimeras
was consistent with their relative titers with respect to that of the wild type. To attempt to remedy
this defect, we designed an additional chimeric construct, MN11 (Fig. 6E). This mutant incorporated
the SARS-CoV S protein Tm and endodomain, in addition to the M, N, and E substitutions already
made in MNS8. Remarkably, this modification further impaired the virus, since MN11 was lethal. In
eight independent targeted RNA recombination trials no recombinants were obtained with MN11
donor RNA, whereas wild-type control RNA samples in the same experiments yielded robust
numbers of recombinants. Contrary to expectations, the inclusion of the SARS-CoV homolog of the

region of S protein known to directly interact with the M endodomain was not sufficient to rescue
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normally assembled viruses. This suggests that there exist structural protein interactions or host cell-

specific interactions that remain unaccounted for in coronavirus virion morphogenesis.

DISCUSSION

The construction of interspecies chimeras has proven valuable in the identification of intra-
and intermolecular interactions of the coronavirus N protein (15, 16, 19, 44). We have now applied
this approach to the M protein. It was previously found that substitution of the highly homologous
BCoV M protein endodomain had no discernable effect on MHV (40). In the present study, we
extended this test over a significantly greater phylogenetic distance, by creating substitutions of
SARS-CoV M sequence in MHV. This has sharpened our picture of the interaction of M with itself
and with N protein, and it has revealed unanticipated complexities of the interactions of M with the
E and S proteins.

M-N and M-M interactions. Our isolation of the chimera MN3 made clear that
incorporation of the heterologous SARS-CoV M protein into MHV required the concomitant
inclusion of the SARS-CoV N protein carboxy-terminal domain N3 (Fig. 2). Chimeras MN1 and
MN2, containing just one or the other of these components, were not viable. Moreover, analysis of
the chimera MNS8 showed that its virions contained abundant amounts of N and M proteins in a ratio
comparable to that of wild-type virions (Fig. 5). Together, these results demonstrated that domain
N3 is both necessary and sufficient for N protein to interact with M protein in virus assembly. This
conclusion conforms with most previous genetic and molecular biological studies (20-24). The
necessity of domain N3 for virion assembly also explains why intracellular carboxy-terminal

truncated forms of N protein, likely generated by caspases late in infection (52, 53), are not
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incorporated into released virions. The sufficiency of N3 accords well with cryo-EM and
tomographic reconstructions of MHV and SARS-CoV virions, which found the M endodomain to be
connected to the nucleocapsid via a single “thread-like” connection (54, 55). Nevertheless, some
work has purported to detect essential interactions with M that map to parts of N protein other than
N3. A mammalian two-hybrid analysis of SARS-CoV N and M localized the interacting segment of
N to a region comprising the downstream end of the NTD and all of the SR region (25). Another
study used GST pull-down assays to map the SARS-CoV N-M interaction to a segment of N
encompassing the linker between the SR region and the CTD (26). Finally, an analysis of SARS-
CoV M and N proteins found the carboxy terminus of N to be required for formation of virus-like
particles with M, but proposed an additional M-binding site falling in the center of the NTD (27).
The biological relevance of any of these latter reported interactions remains to be determined, but
our results establish that they are not required for virion assembly.

Beyond substitution of the entire SARS-CoV M protein in MHV, we found that it was
possible to construct functional chimeric viruses in which intramolecular M protein substitutions
were made (Fig. 4). In the chimera MNS, the ectodomain of MHV M was linked to the Tm domains
and endodomain of SARS-CoV M. This substitution mutant was nearly as robust as the complete M
protein chimera MN3. Such an outcome was not unexpected, because the M ectodomain varies
considerably among different strains of MHV, and it is relatively tolerant to mutation (40).
Additionally, the MHV ectodomain, which is normally O-glycosylated, can be altered to either an
unglycosylated or an N-glycosylated form without affecting virus growth in tissue culture (56). Our
replacement of the N-glycosylated SARS-CoV M ectodomain with its O-glycosylated MHV M
counterpart provides further support that the mode of M protein glycosylation is not a crucial factor
in virion assembly.

A more extensive intramolecular substitution was made in mutants MN9 and MN10, in
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which the ectodomain and Tm domains of MHV M were linked to the endodomain of SARS-CoV M
(Fig. 4). The viability of these constructs suggests that folding and oligomerization of the M protein
Tm domains and the endodomain, for the most part, occur independently of one another. This
conclusion is consistent with our previous finding of truncated endodomain variants of the M
protein, designated M*, that evolved by gene duplication in MHV E-deletion mutants to compensate
for the absence of E protein (31). Similar M* proteins have very recently been observed to arise
upon passaging of SARS-CoV E-deletion mutants, also (57). The MHV M* protein was found to be
incorporated into purified virions, which showed that interactions among Tm domains were
sufficient to sustain the assembly of M* with native M protein. Conversely, cryo-EM analyses of
coronavirus virions resolved the basic unit of M as a dimer, and intermolecular contacts in higher-
order oligomers were seen to occur exclusively between M endodomains (30). Thus, the MN9 and
MN10 chimeras demonstrate that these two classes of interactions can even be apportioned between
M Tm and endodomains derived from two divergent coronavirus species.

Although the M protein could be partitioned at domain boundaries, we were not able to
further dissect the M endodomain to identify a short linear segment functionally analogous to
domain N3 of N protein. Various considerations had indicated that this ought to be possible. First, an
early characterization of M protein showed that roughly 15 carboxy-terminal residues were
susceptible to protease digestion, which was taken to mean that the carboxy terminus of M was
structurally separate from the rest of the globular endodomain (28, 29). Second, prior genetic studies
mapped a dominant role in the MHV M-N interaction to an electrostatic bridge between the
penultimate M residue, R227, and residues D440 and D441 in domain N3 (20-23). Additionally, in
vitro assays with TGEV (32) and SARS-CoV (33) M protein fragments also appeared to localize the
N-binding component of M to within 30 residues of the carboxy terminus. However, our multiple

attempts to obtain chimeric recombinants with crossover sites chosen at distinct motifs near the
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carboxy terminus of either SARS-CoV or MHV M protein were uniformly unsuccessful (Fig. 4C).
This negative result accords well with previous findings that the mutations in several second-site
revertants of defective MHV M or N assembly mutants mapped to positions considerably upstream
in the M endodomain (20, 21, 23). Moreover, it was pointed out previously that, in many cases, the
identical upstream mutation in the M endodomain was independently isolated either as an intragenic
suppressor of certain R227 M protein mutants or as an intergenic suppressor of a D440/D441 N
mutant (23). This convergence presents a strong argument that direct or indirect contributions are
made by upstream regions of the M endodomain to the interaction with N protein. Further evidence
for a larger participation of the endodomain comes from cryo-EM reconstructions showing that
virion M protein endodomains exist in either a compact form or an extended form, with only the
latter making contact with the nucleocapsid (30). This suggests that binding to domain N3 induces a
conformational change affecting the entire M endodomain. Since domain N3 is intrinsically
disordered (18) we envision that it fits into a surface on the globular M endodomain composed of
residues that are discontiguous in the primary sequence. More detailed exploration of this interaction
would benefit greatly from higher-resolution structural information on the M endodomain, which is
as yet unavailable.

M-E and M-S interactions. At the outset of this study, we assumed that interactions with
MHYV E or S would not be affected by the SARS-CoV M protein substitution. Nevertheless, despite
the complete reconstitution of the M-N interaction in chimeric viruses, the transplanted SARS-CoV
M protein did not perform well with the other two structural proteins of MHV. In a previous study,
we showed that the SARS-CoV E protein could efficiently replace the MHV E protein (38), which
seemed to imply that the reciprocal pairing of MHV E with SARS-CoV M would be equally robust.
However, the marked temperature-sensitivity of the original M chimera MN3 was found to be

partially suppressed by mutations in the MHV E protein (Fig. 3). Although there is extensive
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evidence for colocalization and association of M and E in infected cells (8, 58), this is the first
observed instance of genetic cross-talk between the M and E proteins. Previously, only intragenic
revertants of E mutants had been isolated (38, 59-61). This finding suggested that the SARS-CoV M
protein would ideally require its homologous E partner. Paradoxically, though, substitution of the
entire SARS-CoV E protein in mutant MN6 was deleterious, rather than beneficial (Fig. 3).

E protein is known to have at least three separate functions. First, it promotes the assembly of
virions, specifically through mediating aggregation-prone M-M interactions in the membrane of the
budding compartment (6). Second, it triggers disassembly of the Golgi, which somehow facilitates
the cellular egress of assembled virions (51, 62, 63). Third, E associates with host factors, thereby
affecting cell signaling and viral pathogenesis (64, 65). The first two of these functions, virion
assembly and Golgi-disruption, are carried out by distinct oligomeric states of the E molecule (46).
The third role is the only one that has yet been shown to depend on the ion channel activity of E
protein (61). Not all functions of E protein appear to be required by all coronaviruses. The
consequences of deletion of the E gene were seen to vary from modest impairment for SARS-CoV
(66) to severe impairment for MHV (38, 67) to lethality for TGEV and MERS-CoV (68, 69); also,
for SARS-CoV the E-deletion phenotype was dependent on cell type. The multiplicity of roles of E
protein likely explains why we were previously able to substitute the phylogenetically distant E
proteins of SARS-CoV or IBV for that of MHV, but, on the other hand, the TGEV E protein was
inert in an MHV background (38). Thus, some functions of E may be interchangeable between a
given pair of coronaviruses, while others are not. It is therefore conceivable that transplanting the
SARS-CoV M protein into MHV placed it in a heterologous environment where neither MHV E nor
SARS-CoV E could simultaneously (i) address the requirements of M protein and (ii) interact with
cellular components in a manner optimal for productive infection.

More enigmatic than the M-E interaction was the defective M-S interaction in the SARS-
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CoV M chimera. Our analysis of the MN& mutant revealed that virions of the chimera had a striking
deficiency of S protein, and consequently, a much higher particle-to-PFU ratio than wild type (Fig.
6). MNS virions also had a lower buoyant density than wild-type virions (Fig. 5), which may be
attributed to the lack of S or may point to some as yet uncharacterized defect in virion
morphogenesis in the chimera. There is ample evidence that M protein has the sole responsibility for
recruiting S protein into virions (9, 10) through interactions that localize to the endodomain of S (41,
42). One possible reason for the reduced complement of S protein in MN8 could be that the SARS-
CoV M protein cannot efficiently bind to the MHV S endodomain. This seems unlikely, given that
the opposite arrangement is fully functional. Previous work showed that the SARS-CoV S protein
Tm and endodomain were completely able to replace their MHV S counterpart (43, 70).
Additionally, a foreign membrane protein harboring the SARS-CoV S Tm and endodomain was
incorporated into MHYV virions with slightly higher efficiency than the MHV version of the same
protein (43). Moreover, if the carboxy terminus of MHV S was incompatible with SARS-CoV M,
then the defect in the MN8 mutant should have been repaired by substitution of the SARS-CoV S
Tm and endodomain. Surprisingly, the chimeric construct containing that substitution (MN11) was
lethal.

A second possible cause of the sparse incorporation of S protein into MN8 virions could be
that despite being well able to interact, the two proteins colocalize too briefly to do so efficiently. It
has been shown that the terminus of the SARS-CoV S endodomain contains a COPI-binding KxHxx
motif that is thought to be responsible for recycling of S protein from the Golgi back to the ER, thus
increasing the time S spends in the proximity of M protein (71). The MHV S protein endodomain
does not possess such a signal, although this lack does not impede its ability to interact with the
MHV M protein. Again, if this constituted a deficiency in MN8 with respect to S protein contacting

the SARS-CoV M protein, then it should have been rescued by the SARS-CoV S endodomain
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substitution in the MN11 chimera. Finally, we could find no evidence that MHV S protein was
incorporated into MNS virions but subsequently degraded, as was found to happen with a particular
E protein mutant of IBV (51). Thus, further work will be required to unravel the complete range of

intermolecular interactions in which the coronavirus M protein participates.
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FIGURE LEGENDS

FIG 1 Coronavirus M and N protein domain structure. (A) Schematics of the M and N proteins, with
summary of currently assigned interactions. Tm, transmembrane domain; NTD (N1b), amino-
terminal RNA-binding domain; SR, serine- and arginine-rich region; CTD (N2b), carboxy-terminal
RNA-binding domain; B, spacer region; N3, carboxy-terminal domain. (B) Alignment of the MHV
and SARS-CoV M proteins. Tm domains are as modeled in Rottier et al. (29). Vertical bars between
the ectodomain, Tm domains, and endodomain indicate functional crossover boundaries in
constructed chimeras; filled circles denote nonfunctional crossover boundaries within the M
endodomain. (C) Alignment of the carboxy termini of the MHV and SARS-CoV N proteins. The
vertical bar indicates the functional crossover boundary in chimeras; broken line indicates the
boundary between spacer B and domain N3. GenBank accession numbers for the sequences shown

are: MHV-A59, AY700211; and SARS-CoV strain Urbani, AY278741.

FIG 2 Construction of an MHV chimera containing the entire M protein of SARS-CoV. (A)
Schematics of wild-type virus and chimeras MN1, MN2, and MN3 containing mutant M and N
proteins. Shading represents SARS-CoV sequence substituted for that of MHV. (B) Western blots of
lysates from mouse 17Cl1 cells infected with wild-type MHV or MN3 virus; mock, uninfected 17Cl1
cells. Additional controls, designated mock (V) and SCoV (V), were protein fractions from TRIzol
extracts of mock-infected and SARS-CoV-infected Vero cells. Blots were probed with polyclonal
anti-MHV N antibody (left panel), monoclonal anti-SARS-CoV M antibody (middle panel), or
monoclonal anti-MHV M antibody (right panel). (C) Plaques of the MN3 mutant (passage 2 stock)
at 33, 37 or 39°C compared with those of isogenic wild-type virus (passage 3 stock). Plaque

titrations were carried out on L2 cells; monolayers were stained with neutral red at 72 h postinfection
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and were photographed 18 h later. Infectious titers measured at all three temperatures were 8.6 x 10

PFU/ml for wild type and 2.3 x 10° PFU/ml for MN3.

FIG 3 Effect of E protein mutations on SARS-CoV M chimeras. (A) Alignment of MHV and
SARS-CoV E proteins showing independent reverting mutations that enhance the growth of the
MN3 chimera at 39°C. The solid bar marks the Tm domain; the circled mutation of MN3rev3 (F20S)
was chosen for incorporation into subsequent constructs. GenBank accession numbers for the
sequences shown are: MHV-A59, AY700211; and SARS-CoV strain Urbani, AY278741. (B)
Schematics of wild-type virus and chimeras containing mutant E, M, and N proteins. Shading
represents SARS-CoV sequence substituted for that of MHV. (C) Plaques of wild-type, MN3,
MN3rev3, MN6, and MN7 viruses at 37 and 39°C (passage 4 stock for wild type, passage 2 stocks
for mutants). Plaque titrations were carried out on L2 cells; monolayers were stained with neutral red
at 72 h postinfection and were photographed 18 h later. Measured infectious titers (PFU/ml) at each

temperature are indicated.

FIG 4 Intramolecular M protein chimeric substitutions. (A) Schematics of wild-type virus and
chimeras MN8, MN9, and MN10 containing mutant E, M, and N proteins. Shading represents
SARS-CoV sequence substituted for that of MHV. (B) Plaques of wild-type, MN8, MN9, and MN10
viruses at 37°C (passage 4 stock for wild type, passage 3 stocks for mutants). Plaque titrations were
carried out on L2 cells; monolayers were stained with neutral red at 72 h postinfection and were
photographed 18 h later. Measured infectious titers (PFU/ml) are indicated. (C) Schematics of lethal
substitutions in chimeras MN4A-C and MN5A-B made in attempts to define a carboxy-terminal
subregion of the M endodomain sufficient for interaction with domain N3. MN5A and MNS5B also

contained the MHV E gene mutation F20S.
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FIG 5 Analysis of MN8 mutant virions. MN8 and wild-type virions were purified by equilibrium
centrifugation on continuous gradients of 20 to 30% iodixanol that were collected in 15 fractions, as
detailed in Materials and Methods. (A) Infectious titers determined for viral peak fractions 4 through
11 for MN8 (shaded bars) and wild type (open bars). Densities of all fractions were measured by
refractometry (triangles, MNS; circles, wild type). (B, C) Western blots of virion proteins in each
fraction probed with polyclonal anti-N (MHV) and monoclonal anti-M-ectodomain (MHV)
antibodies. (D, E) Northern dot blots of serial 2-fold dilutions of purified virion RNA detected with a
probe specific for genomic RNA. (F) Total protein, genomic RNA (gRNA), and infectivity for wild-
type and MN8 virions. Chemiluminescence was quantitated for N protein, M protein, and gRNA,
and summed over fractions 3 through 12; values are expressed relative to wild type. Total infectivity

(PFU) was summed over fractions 4 through 11.

FIG 6 Deficiency of S protein in MNS virions. (A) Viral peak fractions from iodixanol gradients
(fractions 7-10 for wild type and 4-7 for MNS) were separated in 12% SDS-PAGE and analyzed by
Western blot probed with a polyclonal antibody specific for the carboxy terminus of S protein, as
well as with polyclonal anti-N and monoclonal anti-M antibodies. At the right is a longer exposure
of MNS fraction 5 to allow visualization of S. (B) Western blot of lysates from mouse 17Cl1 cells
infected with wild-type or MNS virus, separated in 8% SDS-PAGE, probed with polyclonal anti-S
antibody; mock, uninfected 17CI1 cells. (C) Western blot of wild-type and MNS virions separated in
15% SDS-PAGE and probed with polyclonal anti-S antibody. (D) Western blot of purified wild-
type, MNS8, MN3, and MN3rev3 virions separated in 8% SDS-PAGE and probed with polyclonal
anti-S antibody. (A-D) Sy, 180-kDa uncleaved S protein; S,, 90-kDa carboxy-terminal cleavage
product of S; S¢, carboxy-terminal fragment of S. (E) Schematic of lethal substitution in chimera

MN11, which did not rescue the S protein deficiency in MNS.
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