1 Title: Carcinoembryonic Antigen-related Cell Adhesion Molecule 5 (CEACAM5) Is an

2 Important Surface Attachment Factor Facilitating the Entry of the Middle East

3 Respiratory Syndrome Coronavirus (MERS-CoV)

4

5 Che-Man Chan^{1,2*}, Hin Chu^{1,2*}, Yixin Wang², Bosco Ho-Yin Wong², Xiaoyu Zhao², Jie
6 Zhou^{1,2}, Dong Yang², Sze Pui Leung², Jasper Fuk-Woo Chan^{1,2,3,4}, Man-Lung Yeung^{1,2},
7 Jinghua Yan⁵, Guangwen Lu⁵, George Fu Gao⁵, Kwok-Yung Yuen^{1,2,3,4,6#}.

8

Affiliations: ¹ State Key Laboratory of Emerging Infectious Diseases; ² Department of
Microbiology; ³ Research Centre of Infection and Immunology; ⁴ Carol Yu Centre for
Infection; The University of Hong Kong, Hong Kong Special Administrative Region,
China; ⁵ CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of
Microbiology, Chinese Academy of Sciences, Beijing 100101, China; ⁶ The Collaborative
Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang
University, Hangzhou, China.

Downloaded from http://jvi.asm.org/ on August 6, 2016 by NORTHERN ILLINOIS UNIV

16 ^{*}C.-M.C. and H.C. contributed equally to this study.

17 Running title: CEACAM5 Facilitates MERS-CoV Entry

18 Word count: Text: 5845. Abstract: 231.

#Correspondence: Kwok-Yung Yuen, State Key Laboratory of Emerging Infectious
Diseases, Carol Yu Centre for Infection, Department of Microbiology, The University of
Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong Special
Administrative Region, China. Tel: 852-22554897. Fax: 852-28551241. Email:
kyyuen@hku.hk

24 Abstract

25	The spike proteins of coronaviruses are capable of binding to a wide range of cellular
26	targets, which contribute to the broad species tropism of coronaviruses. Previous reports
27	have demonstrated that Middle East respiratory syndrome coronavirus (MERS-CoV)
28	predominantly utilizes dipeptidyl peptidase-4 (DPP4) for cell entry. However, additional
29	cellular binding targets of the MERS-CoV spike protein that may augment MERS-CoV
30	infection have not been further explored. In the current study, using the virus overlay
31	protein binding assay (VOPBA), we identified carcinoembryonic antigen-related cell
32	adhesion molecule 5 (CEACAM5) as a novel cell surface binding target of MERS-CoV.
33	CEACAM5 co-immunoprecipitated with the spike protein of MERS-CoV in both
34	overexpressed and endogenous settings. Disrupting the interaction between CEACAM5
35	and MERS-CoV spike with anti-CEACAM5 antibody, recombinant CEACAM5 protein,
36	or siRNA knockdown of CEACAM5 significantly inhibited the entry of MERS-CoV.
37	Recombinant expression of CEACAM5 did not render the non-permissive baby hamster
38	kidney (BHK21) cells susceptible to MERS-CoV infection. Instead, CEACAM5
39	overexpression significantly enhanced the attachment of MERS-CoV to the BHK21 cells.
40	More importantly, the entry of MERS-CoV was increased when CEACAM5 was
41	overexpressed in permissive cells, which suggested that CEACAM5 could facilitate
42	MERS-CoV entry in conjunction with DPP4 despite not being able to support MERS-
43	CoV entry independently. Taken together, our study identified CEACAM5 as a novel cell
44	surface binding target of MERS-CoV that facilitates MERS-CoV infection through
45	augmenting the attachment of the virus to the host cell surface.
46	

Journal of Virology

47 Importance

48	Infection with the Middle East respiratory syndrome coronavirus (MERS-CoV) is
49	associated with the highest mortality rate among all known human-pathogenic
50	coronaviruses. Currently, there are no approved vaccines or therapeutics against MERS-
51	CoV infection. The identification of carcinoembryonic antigen-related cell adhesion
52	molecule 5 (CEACAM5) as a novel cell surface binding target of MERS-CoV advanced
53	our knowledge on the cell binding biology of MERS-CoV. Importantly, CEACAM5
54	could potentiate the entry of MERS-CoV through functioning as an attachment factor. In
55	this regard, CEACAM5 could serve as a novel target in addition to dipeptidyl peptidase-4
56	(DPP4) in the development of antiviral strategies for MERS-CoV.
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	

70 Introduction

71	Coronaviruses are enveloped, positive-sense, and single stranded RNA viruses with
72	genome size of approximately 30kb. They belong to the Coronaviridae family under the
73	order of <i>Nidovirales</i> and are currently classified into four major genera, including the α ,
74	β , γ , and δ genus (1). Coronaviruses can infect a wide range of mammals as well as birds
75	(2). The broad species tropism is predominantly attributed to the high diversity in
76	receptor usage across different coronaviruses. To date, six coronaviruses are known to
77	infect humans and they utilize different surface molecules for cell entry. In particular,
78	human coronavirus 229E (HCoV-229E) binds aminopeptidase N (APN) (3) and human
79	coronavirus OC43 (HCoV-OC43) binds O-acetylated sialic acid (4). Severe acute
80	respiratory syndrome coronavirus (SARS-CoV) (5) and human coronavirus NL63
81	(HCoV-NL63) (6) both binds angiotensin I converting enzyme 2 (ACE2). The receptor
82	for human coronavirus HKU1 (HCoV-HKU1) has not been defined. However, O-
83	acetylated sialic acid has been suggested as an attachment factor that contributes to the
84	binding of HCoV-HKU1 to the cell surface (7). The Middle East respiratory syndrome
85	coronavirus (MERS-CoV) is the sixth coronavirus known to cause infection in humans
86	(8). Intriguingly, MERS-CoV utilizes a unique cellular receptor, dipeptidyl peptidase-4
87	(DPP4), for virus entry (9). The host cell receptors for a number of animal coronaviruses
88	have also been identified. For instance, porcine transmissible gastroenteritis coronavirus
89	(TGEV) binds APN (10) and the prototype β -coronavirus mouse hepatitis virus (MHV)
90	uses carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) for entry
91	(11).

Downloaded from http://jvi.asm.org/ on August 6, 2016 by NORTHERN ILLINOIS UNIV

92

Journal of Virology

93	Coronaviruses have evolved complex receptor recognition patterns. In addition to the
94	defined receptors essential for virus entry into host cells, multiple co-receptors or
95	attachments factors have been reported to play critical roles in the propagation of
96	coronaviruses. In this regard, sialic acids (12) and glycoproteins (13) facilitate the
97	binding of TGEV to target cells in addition to APN. Similarly, HCoV-NL63 utilizes
98	heparan sulfate proteoglycans for attachment to target cells (14). Apart from ACE2,
99	SARS-CoV can also enter cells through liver/lymph node-specific intercellular adhesion
100	molecule-3-grabbing integrin (L-SIGN) (15) and dendritic cell-specific intercellular
101	adhesion molecule-3-grabbing non-integrin (DC-SIGN) (16). Additionally, we have
102	previously identified major histocompatibility complex class I C (HLA-C) as an
103	attachment factor for HCoV-HKU1 that facilitates the entry of the virus (17).
104	
105	The emerging MERS-CoV is associated with the highest mortality rate of more than 30%
106	among all known human-pathogenic coronaviruses in inflicted patients and there is as yet
107	no approved treatment regimens or vaccine for MERS (18, 19). As of May 16 th 2016,
108	
	MERS-CoV has caused 1733 laboratory-confirmed cases of human infection, including at
109	MERS-CoV has caused 1733 laboratory-confirmed cases of human infection, including at least 628 deaths (20). Clinical features of severe MERS include high fever, pneumonia,
109 110	MERS-CoV has caused 1733 laboratory-confirmed cases of human infection, including at least 628 deaths (20). Clinical features of severe MERS include high fever, pneumonia, acute respiratory distress syndrome (ARDS), as well as extrapulmonary manifestations
109 110 111	MERS-CoV has caused 1733 laboratory-confirmed cases of human infection, including at least 628 deaths (20). Clinical features of severe MERS include high fever, pneumonia, acute respiratory distress syndrome (ARDS), as well as extrapulmonary manifestations including gastrointestinal symptoms, lymphopenia, acute kidney injury, hepatic
109 110 111 112	MERS-CoV has caused 1733 laboratory-confirmed cases of human infection, including at least 628 deaths (20). Clinical features of severe MERS include high fever, pneumonia, acute respiratory distress syndrome (ARDS), as well as extrapulmonary manifestations including gastrointestinal symptoms, lymphopenia, acute kidney injury, hepatic inflammation, and pericarditis (21). In agreement with these clinical observations, recent
109 110 111 112 113	MERS-CoV has caused 1733 laboratory-confirmed cases of human infection, including at least 628 deaths (20). Clinical features of severe MERS include high fever, pneumonia, acute respiratory distress syndrome (ARDS), as well as extrapulmonary manifestations including gastrointestinal symptoms, lymphopenia, acute kidney injury, hepatic inflammation, and pericarditis (21). In agreement with these clinical observations, recent <i>in vitro</i> and <i>in vivo</i> studies have highlighted the extraordinarily wide range of tissue and
109 110 111 112 113 114	MERS-CoV has caused 1733 laboratory-confirmed cases of human infection, including at least 628 deaths (20). Clinical features of severe MERS include high fever, pneumonia, acute respiratory distress syndrome (ARDS), as well as extrapulmonary manifestations including gastrointestinal symptoms, lymphopenia, acute kidney injury, hepatic inflammation, and pericarditis (21). In agreement with these clinical observations, recent <i>in vitro</i> and <i>in vivo</i> studies have highlighted the extraordinarily wide range of tissue and cell tropism of MERS-CoV, which is unparalleled by other coronaviruses (22-24).
109 110 111 112 113 114 115	 MERS-CoV has caused 1733 laboratory-confirmed cases of human infection, including at least 628 deaths (20). Clinical features of severe MERS include high fever, pneumonia, acute respiratory distress syndrome (ARDS), as well as extrapulmonary manifestations including gastrointestinal symptoms, lymphopenia, acute kidney injury, hepatic inflammation, and pericarditis (21). In agreement with these clinical observations, recent <i>in vitro</i> and <i>in vivo</i> studies have highlighted the extraordinarily wide range of tissue and cell tropism of MERS-CoV, which is unparalleled by other coronaviruses (22-24). Following the identification of DPP4 as the receptor of MERS-CoV, the broad tissue

Σ

116	tropism of MERS-CoV infection is in part explained by the ubiquitous cellular expression
117	of DPP4. However, alternative factors may exist and potentiate the infection of MERS-
118	CoV either in conjunction or independently of DPP4. In this study, we employed the
119	virus overlay protein binding assay (VOPBA) followed by liquid chromatography-
120	tandem mass spectrometry (LC-MS/MS) approach to identify novel cell surface binding
121	targets of MERS-CoV. Our data demonstrated carcinoembryonic antigen-related cell
122	adhesion molecule 5 (CEACAM5) as a novel attachment factor that facilitated MERS-
123	CoV entry. Importantly, interrupting the interaction between CEACAM5 and MERS-
124	CoV-spike inhibited virus entry. Overexpression of CEACAM5 did not grant entry but
125	significantly increased the attachment of MERS-CoV on non-permissive cells.
126	Collectively, our study identified CEACAM5 as an important cell surface binding target
127	for MERS-CoV-spike that facilitates host cell entry for MERS-CoV.
128	
129	Materials and Methods
130	Cells. A549, AD293, Huh7, Caco2, and VeroE6 cells were maintained in Dulbecco's
131	Modified Eagle medium (DMEM) supplemented with 10% heat-inactivated fetal bovine
132	serum (FBS), 100 unit/ml penicillin and 100 μ g/ml streptomycin. BEAS2B and Calu3
133	cells were maintained in DMEM/F12 supplemented with 10% heat-inactivated FBS, 100
134	unit/ml penicillin and 100 μ g/ml streptomycin. BHK21 cells were maintained in
135	Minimum Essential medium (MEM) supplemented with 10% heat-inactivated FBS, 100
136	unit/ml penicillin and 100 μ g/ml streptomycin. L929 cells were maintained in MEM
137	supplemented with 20% heat-inactivated FBS, 100 unit/ml penicillin and 100 μ g/ml

138 streptomycin. Human primary T cells were isolated from PBMCs with negative selection

using the Dynabeads Untouched Human T cells Kit (Invitrogen, USA) as we previously
described (25). Isolated T cells were maintained in Roswell Park Memorial Institute
medium (RPMI)-1640 supplemented with 10% FBS, 100 ug/ml streptomycin, 100 U/ml
penicillin, 1% sodium pyruvate, 1% non-essential amino acids, and were used
immediately for infection.
Virus. The EMC/2012 strain of MERS-CoV (passage 8, designated MERS-CoV) was
provided by Dr. Ron Fouchier (Erasmus Medical Center) and cultured with VeroE6 cell
with serum free DMEM supplemented with 100 unit/ml penicillin and 100 μ g/ml
streptomycin. Three days post virus inoculation, culture supernatants were collected,
aliquoted, and stored at -80°C. To determine virus titer, aliquots of MERS-CoV were
used for plaque assays on confluent VeroE6 cells in 24-well plates. In brief, MERS-CoV
stocks were 10-fold serially diluted in DMEM. Diluted MERS-CoV was then added to
duplicate wells of 24-well plates at a volume of 200µl. After inoculating for 1 hour at
37°C, the inoculum was removed from the wells and an agarose overlay was added to the

141 medium (R 0 supplemented with 10% FBS, 100 ug/ml streptomycin, 100 U/ml 142 n pyruvate, 1% non-essential amino acids, and were used penicillin.

143 immediatel tion.

144

139

140

145 2 strain of MERS-CoV (passage 8, designated MERS-CoV) was Virus. The

146 provided by Fouchier (Erasmus Medical Center) and cultured with VeroE6 cells

147 EM supplemented with 100 unit/ml penicillin and 100 µg/ml with serum

148 streptomyc days post virus inoculation, culture supernatants were collected,

149 aliquoted, a at -80°C. To determine virus titer, aliquots of MERS-CoV were

150 used for pla s on confluent VeroE6 cells in 24-well plates. In brief, MERS-CoV

151 stocks were erially diluted in DMEM. Diluted MERS-CoV was then added to

152 duplicate w -well plates at a volume of 200µl. After inoculating for 1 hour at

153 37°C, the in vas removed from the wells and an agarose overlay was added to the

154 cells. The cells would then be incubated for approximately 72 hours. To count plaques,

155 the cells were fixed with 4% paraformaldehyde for 5 hours and stained with crystal

156 violet.

157

158 Antibodies. Rabbit anti-human DPP4, rabbit anti-human CEACAM5, rabbit control IgG 159 (Abcam, USA), and mouse anti-human β -actin (Immunoway, USA) were used in the 160 relevant experiments. MERS-CoV NP was detected with the guinea pig anti-MERS-CoV 161 NP serum as we previously described (25). MERS-CoV spike was detected either with the in-house mouse anti-MERS-CoV spike immune serum or with a rabbit anti-MERSCoV spike antibody (Sino Biological, China). Secondary antibodies including Alexa
Fluor 488/647 goat anti-guinea pig and Alexa Fluor 488/647 goat anti-rabbit (Life
Technologies, USA) were used for flow cytometry. Goat anti-mouse HRP (Abcam, USA)
was used for Western blot.

167

168 Plasmid construction. The synthetic human codon-optimized S gene was used as a 169 template for the construction of all MERS-CoV-S plasmids. For pcDNA-MERS-CoV-S 170 used in producing MERS-S-pseudotyped virus, the full-length S from the N-terminal 171 KpnI site to the C-terminal XhoI site was subcloned to generate full-length S in pcDNA 172 3.1(+). For the construction of the S1 plasmid (amino acids 1-925), the 5' forward primer 173 containing BSSHII (5'GCGCGCCACCATGATACACTC sequence а site 174 AGTGTTTCTACTGATGTTC) was used together with the 3' reverse primer (5'-175 GGGCCCATCACCGTCTTCCCACACAGTGGATG) with a ApaI site. The fragment 176 was PCR amplified and cloned into the pSFV1 vector (kindly provided by Dr. P. 177 Liljestrom) with the C terminus fused in-frame with the FLAG sequence (DYKDDDDK) 178 and resulting in the plasmid pSFV-MERS-CoV-S1-FLAG. For the construction of the 179 pSFV-DPP4-6xHis plasmid, forward primer containing a BSSHII site (5'-180 GCGCGCCACCATGAAGACACCGTGGAAGG) and reverse primer with a ApaI site 181 (5'- GGGCCCAGGTAAAGAGAAACATTGTTTTATG) were used. The fragment was 182 cloned into the pSFV1 vector with the 6x His sequence (HHHHHH) fused in-frame at the 183 C-terminus. For the construction of the pcDNA-DPP4, the forward primer containing a 184 KpnI site (5'-TAAGCAGGTACCGCCACCATGAAGACACCGTGGAAGGTTCT) and

185	the	reverse	primer	containing	а	EcoRI	site	(5'-
186	TGCTT	CAGAATTCO	CTAAGGTA	AAGAGAAACA	TTGTT	ГТАТGAAG	TGGC)	were
187	used to	insert the f	ull-length hu	man DPP4 into	the pcDN	NA3.1(+) ve	ctor betwe	een the
188	KpnI a	nd the EcoRI	sites. For th	e construction of	pcDNA	-CEACAM5	-V5, the f	orward
189	primer	(5'GATATO	CCACCATGO	GAGTCTCCCTC	GGCCC	CTCCCCAC	C') contai	ns the
190	N-termi	inal signal see	quence, the E	coRV site, and th	e Kozak	sequence. Tl	he reverse-	-primer
191	(5'- CT	CGAGTAT	CAGAGCAA	CCCCAACCAG	CACTC	C) contains	the XhoI	site at
192	the C-te	erminal cytop	plasmic doma	in. The amplifie	d fragme	ent was used	l to genera	ate full
193	length (CEACAM5 in	n pcDNA 3.1((+) with a V5 tag	(GKPIPI	NPLLGLDS	Г) in-fram	e at the
194	C-termi	nus, resulting	g in pcDNA-C	CEACAM5-V5.				
195								
196	Produc	tion of MER	S-S-pseudot	yped virus. Lenti	ivirus-bas	sed MERS-S	-pseudoty	ped
197	virus w	as generated	by co-transfee	cting 293FT cells	with pcI	ONA-MERS-	full length	ı spike

198 in combination with pNL4-3-R^{*}.E^{*}, which is a HIV backbone plasmid bearing the

199 luciferase reporter gene. pNL4-3-R⁻.E⁻ was obtained through the NIH AIDS research and

200 reference reagents program. The viral particles in supernatant were harvested at 48 hours

- 201 post transfection by ultra-centrifugation in 30% sucrose solution in Beckman rotor
- 202 SW32Ti at the speed of 32,000 rpm for 1 hour at 4°C (17). The p24 concentrations were
- 203 quantified with a p24 antigen enzyme-linked immunoassay kit (Cell Biolabs, USA) and
- 204 stored in aliquots at -80°C. Pseudovirus titer was quantified in unit of lentiviral particle
- 205 (LP) per ml according to the manufacturer's instruction.
- 206

Downloaded from http://jvi.asm.org/ on August 6, 2016 by NORTHERN ILLINOIS UNIV

207	Virus Overlay Protein Binding Assay (VOPBA) and Western Blot. Confluent A549
208	cells in 75 cm ² tissue flask were washed three times in chilled PBS, surface-biotinylated,
209	and extracted using Pierce Cell Surface Protein Isolation Kit (Thermo Scientific, USA)
210	according to the manufacturer's protocol. Biotinylated membrane extracts were bound
211	onto neutrAvidin agarose resin (Thermo Scientific, USA), washed, and eluted in LDS
212	sample buffer (Invitrogen, USA). After electrophoresis into 4-12% gradient NuPAGE
213	SDS-PAGE Gel (Invitrogen, USA) under reducing condition, biotinylated surface
214	extracts were electro-transferred onto Hybond-PVDF membranes (GE Healthcare, UK)
215	for 2 hours at constant voltage of 30 V at 4°C. Membrane was blocked in 10% skim milk
216	(Oxoid, UK) in PBS at 4°C overnight on a rotator. The membrane was then incubated
217	with 1% skim milk solution containing MERS-S-pseudotyped virus at 10 ⁹ lentiviral
218	particles/ml for 2 hours. Membrane was washed twice in 10% skim milk, once in PBS
219	and incubated with rabbit antiserum raised against MERS-CoV spike protein at 1 $\mu\text{g/ml}$
220	for 2 hours at room temperature. After incubating with the spike-specific antibody, we
221	washed the membrane twice in 10% skim milk, once in PBS, and incubated with PBS
222	containing 1:5000 goat anti-rabbit-800 infra-red dye (LI-COR, USA). Membranes were
223	scanned with an Odyssey Imaging System (LI-COR, USA). The visualized reactive
224	protein detected by VOPBA on Western blot was excised from the gel. The gel piece was
225	inserted into dialysis tubing and filled with 1X MOPS SDS running buffer. Protein
226	contents were electro-eluted at a constant voltage of 50V for 6 hours, collected, dialyzed
227	overnight at 4°C against PBS in Slide-A-Lyzer Cassette (Thermo Scientific, USA) and
228	concentrated using Microcon columns (Millipore, USA). Eluted contents were
229	electrophoresed and confirmed by VOPBA. The gel fragment was excised for LC-

Σ

Journal of Virology

M

Journal of Virology

230 MS/MS analysis carried out in the Center for Genomic Sciences at the University of

231 Hong Kong as we previously described (26).

232

233	Co-immunoprecipitation (co-IP). Co-IP was performed using anti-FLAG M2 affinity
234	gel beads (Sigma, USA) or V5 antibody pre-adsorbed to Protein A+G sepharose (Thermo
235	Scientific, USA). Cell lysates were harvested in lysis buffer (20 mM Tris-HCl [pH 7.4],
236	150mM NaCl, 1% Triton X-100, 0.1% NP-40, protease and phosphatase inhibitors
237	cocktails, Roche). Lysed cells were incubated on ice for 15-30 min and then centrifuged.
238	Supernatant was added to antibody-coupled beads or anti-FLAG affinity gel beads and
239	incubated overnight at 4°C. Beads were washed three times with lysis buffer and Western
240	blot was performed. Immunoprecipitated products or cell lysates were mixed with SDS
241	loading buffer and heated at 95°C for 10 min. Samples were fractionated in 10% SDS-
242	PAGE and then transferred onto PVDF membranes (GE Healthcare, UK). After blocking
243	overnight with 10% skim milk, membranes were incubated with corresponding primary
244	antibodies and then with infra-red dye conjugated secondary antibodies (LI-COR, USA).
245	Membranes were scanned with an Odyssey Imaging System (LI-COR, USA).
246	

247 Quantitative RT-PCR. Cells were lysed in RLT buffer with 40mM DTT and extracted 248 with the RNeasy mini kit (Qiagen, USA). Viral RNA in the supernatant was extracted 249 with the PureLink Viral RNA/DNA mini kit (Life Technologies, USA). Reverse 250 transcription (RT) and quantitative polymerase chain reaction (qPCR) were performed 251 with the Transcriptor First Strand cDNA Synthesis kit and LightCycler 480 master mix 252 from Roche as we previously described (27, 28). In the RT reactions, reverse primers

Accepted Manuscript Posted Online

Journal of Virology

lournal of Virology

253 against the NP gene of MERS-CoV were used to detect cDNA complementary to the 254 positive strand of viral genomes. The following sets of primers were used to detect NP in 255 qPCR.

256 (F) 5'- CAAAACCTTCCCTAAGAAGGAAAAG-3'

257 (R) 5'- GCTCCTTTGGAGGTTCAGACAT-3'

258 (Probe) FAM 5'-ACAAAAGGCACCAAAAGAAGAATCAACAGACC-3' BHQ1

259

260 Antibody blocking assays. The antibody blocking assay based on the MERS-S-

261 pseudotyped virus was performed by measuring the infection of target cells with the use

262 of luciferase as a reporter gene (17). In brief, antibody was diluted to $2\mu g/ml$ in serum

263 free culture medium and incubated with Calu3 cells for 1 hour at 37°C. Pseudotyped virus

264 was added to target cells at a ratio of 100 lentiviral particle (LP) per cell and the inoculum

265 was replaced with fresh medium with 10% FBS after 1 hour. Luciferase activity was

266 determined at 48 hours post infection. For the antibody blocking assay based on the

267 infectious MERS-CoV, Calu3 cells were pre-incubated with rabbit polyclonal anti-

268 CEACAM5 at different concentrations ranging from 0.5-4 µg/ml. Rabbit polyclonal anti-

269 DPP4 at 4 µg/ml and rabbit IgG at 4µg/ml were included as controls. After pre-incubating

270 with the antibodies for 1 hour at 37°C, the cells were challenged with MERS-CoV at 1

271 MOI for 1 hour at 37°C in the presence of antibodies. The cells were subsequently

272 washed with PBS and lysed with RLT with 40mM dithiothreitol (DTT). To determine the

273 impact of antibody blocking on MERS-CoV multi-cycle replication, Huh7 cells were pre-

274 incubated with 2 µg/ml anti-CEACAM5 antibody, anti-DPP4 antibody, or rabbit IgG.

275 After the pre-incubation, the cells were infected with MERS-CoV at 0.0005 MOI for 1

hour at 37°C in the presence of antibodies. The cells were then washed in PBS and
replenished with DMEM with blocking antibodies. Infected cells were incubated at 37°C
and harvested at 1, 24, and 48 hours post infection. The virus copy number was
determined with qPCR.

280

281 Human recombinant protein blocking assays. Human recombinant proteins (DPP4, 282 CEACAM5, and control IgG) were obtained from Sino Biological. MERS-CoV was pre-283 incubated with human recombinant proteins (5 µg/ml to 40 µg/ml for CEACAM5, 40 284 μ g/ml for DPP4, and 40 μ g/ml for control IgG) for 1 hour before inoculating onto Calu3 285 and Huh7 cells. The protein-virus complexes were then incubated with Calu3 and Huh7 286 cells for 2 hours at 37°C. After the incubation period, the inoculum was discarded and the 287 cells were washed with PBS followed by lysing in RLT with 40mM DTT. The virus copy 288 number was determined with qPCR.

Downloaded from http://jvi.asm.org/ on August 6, 2016 by NORTHERN ILLINOIS UNIV

289

290 siRNA knockdown. Silencer Select siRNA human CEACAM5 siRNA, Silencer Select 291 siRNA human DPP4 siRNA, and Silencer Select siRNA negative control were obtained 292 from Life Technologies. Transfection of siRNA on Huh7 cells was performed using 293 Lipofectamine 3000 (Thermo Fisher, USA) following manufacturer's manual. In brief, 294 Huh7 cells were transfected with 100µM siRNA for two consecutive days. At 24 hours 295 post the second siRNA transfection, the cells were challenged with MERS-CoV at 1 MOI 296 for 2 hours at 37°C. Following the incubation, the cells were washed with PBS and lysed 297 in RLT with 40mM DTT. The virus copy number was determined with qPCR.

298

Flow cytometry. All samples were detached with 10mM EDTA and fixed in 4%
paraformaldehyde. Cell permeabilization for intracellular staining was performed with
0.1% Triton X-100 in PBS. Immunostaining for flow cytometry was performed following
standard procedures as we previously described (29). The flow cytometry was performed
using a BD FACSCanto II flow cytometer (BD Biosciences, USA) and data was analyzed
using FlowJo vX (Tree Star, USA).

305

306 Flow cytometry of BHK21 cells with overexpression of DPP4 and CEACAM5.

BHK21 cells were transfected with pSFV-DPP4 or pcDNA-CEACAM5. The transfected
cells were inoculated with MERS-CoV at 48 hours post transfection. To determine virus
entry, the cells were inoculated with MERS-CoV at 5 MOI at 37°C for 2 hours. After 2

310 hours, the cells were washed with PBS and incubated for another 4 hours. At 6 hours

311 post-infection, the cells were washed extensively with PBS, fixed in 4%

312 paraformaldehyde, and immunolabeled for flow cytometry. To determine virus

313 attachment, the cells were inoculated with MERS-CoV at 30 MOI at 4°C for 2 hours.

314 After 2 hours, the cells were washed with PBS, fixed in 4% paraformaldehyde, and

315 immunolabeled for flow cytometry.

316

317 Confocal microscopy. This study was approved by the Institutional Review Board of the 318 University of Hong Kong/Hospital Authority Hong Kong West Cluster. Normal human 319 lung sections were deparaffinized and rehydrated following standard procedures. Antigen 320 unmasking was performed by boiling tissue sections with the antigen unmasking solution 321 from Vector Laboratories. Goat anti-DPP4 was obtained from R&D and rabbit anti322 CEACAM5 was obtained from Abcam. Secondary antibodies were obtained from Life
323 Technologies. Mounting and DAPI staining were performed with the Vectashield
324 mounting medium (Vector Laboratories). Images were acquired with a Carl Zeiss LSM
325 780 system.

326

327 **Statistical analysis.** Data on figures represented means and standard deviations. 328 Statistical comparison between different groups was performed by Student's *t*-test using 329 GraphPad Prism 6. Differences were considered statistically significant when p < 0.05. 330

331 Results

332 Identification of CEACAM5 as a cell surface binding protein of MERS-CoV

333 To probe for potential cell surface factors that can interact with MERS-CoV, we

334 employed the virus overlay protein binding assay (VOPBA), which we have previously

335 utilized to identify host cell surface binding proteins of the influenza A virus (26). In

brief, membrane proteins on A549 cells were selectively biotinylated and separated from

337 non-biotinylated intracellular proteins by binding to avidin agarose (23). The biotinylated

338 A549 surface extracts separated in 4-12% gradient SDS NuPAGE gel were transferred to

- 339 PVDF membrane before incubating with MERS-S-pseudotyped viruses for 2 hours at
- 340 room temperature (Figure 1A). Subsequently, reactive signals were revealed with a rabbit
- 341 polyclonal antibody against MERS-CoV spike. As shown in figure 1B, VOPBA revealed
- 342 several reactive bands from A549 surface extracts including two prominent bands at
- 343 molecular sizes of approximately 120 and 90 kDa (lane 1) but not from the control
- 344 NIH3T3 cell (lane 2), which is not permissive for MERS-CoV infection (30). In order to

Journal of Virology

346	relevant fractions from the SDS-PAGE gel was excised, electro-eluted, and hybridized
347	with MERS-S-pseudotyped virus. Although both proteins reacted with the virus, the
348	protein at around 90 kDa returned a much stronger signal and was selected for subsequent
349	analyses (Figure 1C). Tryptic peptides mass fingerprints derived from the excised band
350	revealed the protein to be human carcinoembryonic antigen-related cell adhesion
351	molecule 5 (CEACAM5) using the MASCOT search engine against NCBI and Swiss-
352	Prot database (Figure 1D).
353	
354	CEACAM5 is expressed on cell types that are highly susceptible to MERS-CoV
355	Most CEACAMs are considered as modulators of general cellular processes including
356	proliferation, motility, apoptosis, attachment, as well as cell-cell interaction. In addition,
357	CEACAM5 may also play roles in innate immune defense by binding and trapping
358	microorganisms (31). To verify the relevance of CEACAM5 in MERS-CoV entry, we
359	investigated the expression of CEACAM5 on a number of cell types. To this end,
360	different cell types in 6-well plates were detached with EDTA, washed, and fixed in 4%
361	paraformaldehyde. Immunostaining for surface CEACAM5 and DPP4 expression were
362	performed without cell permeabilization. The percentage of positive cells and the surface
363	mean fluorescent intensities (MFIs) were determined with flow cytometry. In agreement
364	with previously published reports, DPP4 was detected ubiquitously on different human
365	cell lines (Figure 2A) as well as human primary T cells (Figure 2B). In addition, the
366	polyclonal antibody against human DPP4 also cross-reacted with the DPP4 on a number
367	of non-human mammalian cells, which included VeroE6 (monkey), BHK21 (hamster),

Downloaded from http://jvi.asm.org/ on August 6, 2016 by NORTHERN ILLINOIS UNIV

confirm the immunoreactivity of these two proteins to MERS-S-pseudotyped virus, the

345

368	and L929 (mouse) cells (Figure 2C). Notably, despite being recognized by the human
369	DPP4 antibody, the DPP4 on hamster and mouse cells do not support MERS-CoV entry
370	(30). In contrast to DPP4, our data demonstrated that the expression of CEACAM5 was
371	more restricted. Among the six human cell lines we analyzed, CEACAM5 expression
372	was detected on A549, Calu3, and Huh7 cells (Figure 2A). At the same time, little to no
373	CEACAM5 expression was detected on AD293, BEAS2B, and Caco2 cells (Figure 2A).
374	Importantly, CEACAM5 expression was also detected on human primary T cells (Figure
375	2B). However, no human CEACAM5 ortholog was expressed on VeroE6, BHK21, and
376	L929 cells (Figure 2C). Quantitatively, CEACAM5 expression was detected
377	predominantly on cells that are highly susceptible to MERS-CoV infection, which
378	include Calu3, Huh7, A549, and T cells (Figure 2D and Figure 2E). Thus, our data
379	supported the notion that CEACAM5 might be an important surface binding protein,
380	which could facilitate MERS-CoV entry.
381	
382	CEACAM5 is co-expressed with DPP4 in human lung tissues
383	To further verify the physiological relevance of CEACAM5 in MERS-CoV infection, we
384	evaluated the expression of CEACAM5 in human lung tissues and compared the
385	expression with that of DPP4 by immunofluorescent microscopy. Our result revealed that
386	CEACAM5 could be readily detected in the epithelial cells in various regions of the
387	human lung tissues (Figure 3). In particular, colocalization between CEACAM5 and
388	DPP4 was observed in the bronchial epithelium (Figure 3A) but appeared to be more
389	extensive in the epithelium of small airways (Figure 3B). The colocalization between
390	CEACAM5 and DPP4 was also detected in alveoli (Figure 3C) including the alveolar

 \leq

392 epithelial cells of the human lung tissues and its co-expression with DPP4 in these 393 samples demonstrated the potential capacity of CEACAM5 in facilitating MERS-CoV 394 infection in the lower respiratory tract. 395 396 **CEACAM5** interacts with MERS-CoV spike 397 To validate our VOPBA-LC-MS/MS findings, the direct interaction between MERS-CoV 398 S1 and CEACAM5 was characterized by co-immunoprecipitation (co-IP). BHK21 cells 399 were either transfected with a CEACAM5-V5 expression vector or a control vector 400 tagged with V5. The surface and intracellular expression of transfected CEACAM-V5 401 was verified with flow cytometry (Figure 4A). Transfected BHK21 cells were then 402 immunoprecipitated with either MERS-CoV S1-FLAG or E. coli bacterial alkaline 403 phosphatase-FLAG (BAP-FLAG) pre-adsorbed onto anti-FLAG M2 agarose beads. The 404 bound protein complexes were spun down, washed, and subjected to Western blot 405 detection with the anti-FLAG (Figure 4B, upper panel) or the anti-V5 antibody (Figure 406 4B, lower panel). As demonstrated in figure 4B, CEACAM5 bound specifically to 407 MERS-CoV S1 (lower panel, lane 1). In contrast, CEACAM5 did not bind to the control 408 bait protein (lower panel, lane 2). At the same time, CEACAM5 was not detected in

Downloaded from http://jvi.asm.org/ on August 6, 2016 by NORTHERN ILLINOIS UNIV

macrophages (Figure 3C, arrowheads). Collectively, the detection of CEACAM5 in the

- 409 samples transfected with the empty vector (lower panel, lane 3). In parallel, we
- 410 performed reciprocal co-IP experiments, in which CEACAM5-V5 was used as the bait
- 411 instead of MERS-CoV S1-FLAG (Figure 4C). To this end, CEACAM5-V5 or empty
- 412 vector transfected BHK21 cell lysates were immunoprecipitated with anti-V5 pre-
- 413 adsorbed protein A/G sepharose, spun down, washed, and incubated with purified

391

414	MERS-CoV S1-FLAG or BAP-FLAG. Western blot detection with anti-FLAG showed
415	that CEACAM5-V5 interacted with MERS-CoV S1-FLAG (Figure 4C, upper panel, lane
416	1) but not BAP-FLAG (Figure 4C, upper panel, lane 2). As a negative control, the V5
417	empty vector did not pull down MERS-CoV S1 (Figure 4C, upper panel, lane 3). In line
418	with the flow cytometry data from Figure 2C, the antibody against human CEACAM5
419	did not pick up any signal from the BHK21 cell lysates (Figure 4C, lower panel, lane 3).
420	To further validate our findings and avoid the use of overexpressed or tagged fusion
421	proteins, we performed endogenous co-IP on non-transfected Huh7 cells infected with
422	MERS-CoV using antibody against CEACAM5 or MERS-CoV spike. As demonstrated
423	in figure 4D, MERS-CoV spike was detected in infected samples immunoprecipitated
424	with the anti-CEACAM5 antibody. In contrast, MERS-CoV spike was not detected from
425	uninfected samples or from infected samples immunoprecipitated with non-specific rabbit
426	IgG. The interaction between MERS-CoV spike and CEACAM5 was confirmed with
427	reciprocal co-IP using antibody against MERS-CoV spike. In this regard, endogenous
428	CEACAM5 was detected from infected samples immunoprecipitated with antibody
429	against MERS-CoV spike but not from uninfected samples or from infected samples
430	immunoprecipitated with non-specific rabbit IgG (Figure 4D). Take together, our co-IP
431	results demonstrated that MERS-CoV S1 could bind specifically to CEACAM5.
432	
433	CEACAM5-specific antibody blocks MERS-CoV entry and spread
434	After confirming the direct interaction between CEACAM5 and MERS-CoV S1, we next
435	investigated the potential functional role of CEACAM5 in MERS-CoV entry. We first

436 assessed the capacity of CEACAM5 antibody in blocking the entry of MERS-S-

Journal of Virology

438	against human CEACAM5, or with rabbit IgG and polyclonal antibody against DPP4 as
439	negative and positive controls, respectively. After the pre-incubation, MERS-S-
440	pseudoviruses were inoculated on to the cells for another hour in the presence of the
441	CEACAM5 antibody. Inoculum was replaced with fresh medium with 10% FBS after 1
442	hour and the luciferase activity was determined at 48 hours post infection. As
443	demonstrated in figure 5A, polyclonal antibody against human CEACAM5 at 2 μ g/ml
444	significantly reduced the entry of MERS-S-pseudovirus. Next, the antibody blocking
445	experiment was further validated using infectious MERS-CoV under a titration of
446	different CEACAM5 antibody concentrations ranging from 0.5 μ g/ml to 4 μ g/ml. Our
447	result demonstrated that CEACAM5 antibody blocked the infection of MERS-CoV in a
448	dose-dependent manner (Figure 5B). As a control, antibody added after MERS-CoV
449	inoculation did not affect virus entry (Figure 5C). At the same time, addition of the
450	CEACAM5 antibody did not prevent the entry of MERS-CoV in Caco2 cells, which
451	expressed a low level of CEACAM5 (Figure 5D). To determine the impact of
452	CEACAM5 inhibition on multi-cycle spread of MERS-CoV, we extended the antibody
453	blocking experiment to Huh7 cells. In this scenario, Huh7 cells were pre-incubated with
454	the CEACAM5 antibody for 1 hour and inoculated with MERS-CoV at low MOI in the
455	presence of the CEACAM5 antibody. Infected cells were then washed and incubated in
456	DMEM culture media in the presence of the CEACAM5 antibody. Remarkably, our data
457	suggested that the CEACAM5 antibody significantly reduced MERS-CoV propagation in
458	both cell lysates (Figure 5E) and supernatants (Figure 5F) of infected Huh7 cells. Overall,

pseudovirus. In this setting, Calu3 cells were pre-incubated with polyclonal antibody

437

 \sum

Journal of Virology

459

460

461

462

463

464

multi-cycle viral spread.

MERS-CoV entry

465 inhibition on MERS-CoV infection with alternative approaches including protein 466 blocking and siRNA knockdown. In protein blocking assays, MERS-CoV was pre-467 incubated with human recombinant CEACAM5 protein ranging from 5 μ g/ml to 40 468 µg/ml. Human recombinant DPP4 protein and human recombinant IgG were included as 469 controls. Calu3 or Huh7 cells were subsequently inoculated for 2 hours with the virus-470 protein mixes. After inoculation, the cells were washed and harvested for viral load 471 quantification with qPCR analysis. Remarkably, our data demonstrated that the human 472 CEACAM5 recombinant protein blocked the entry of MERS-CoV in a dose-dependent 473 manner in both Calu3 (Figure 6A) and Huh7 cells (Figure 6B). As a control, CEACAM5 474 protein added after MERS-CoV inoculation had no effect on virus entry (Figure 6C). 475 Next, we depleted the endogenous expression of CEACAM5 in Huh7 cells with siRNA. 476 The reduction of CEACAM5 surface expression was examined with flow cytometry with 477 no cell permeabilization (Figure 6D). As illustrated in figure 6E and figure 6F, siRNA 478 treatment significantly diminished the surface expression of CEACAM5 both in terms of 479 the percentage of CEACAM5 positive cell (Figure 6E) as well as the mean fluorescent 480 intensity (MFI) (Figure 6F). Notably, when the CEACAM5 siRNA-treated Huh7 cells 481 were challenged with MERS-CoV, we detected a significant decrease in MERS-CoV

we demonstrated that CEACAM5 was important for MERS-CoV entry as well as in

CEACAM5 recombinant protein and siRNA knockdown of CEACAM5 inhibits

In addition to antibody blocking, we sought to further verify the impact of CEACAM5

482 entry (Figure 6G). Overall, our data from protein blocking and siRNA knockdown
483 experiments corroborated with the findings of the antibody blocking assays, which
484 supported CEACAM5 to be an important cell surface protein in MERS-CoV infection.

485

486 CEACAM5 is an attachment factor for MERS-CoV

487 To further define the role of CEACAM5 in MERS-CoV infection, we examined the

488 capacity of CEACAM5 in supporting MERS-CoV entry and attachment. To assess the

489 role of CEACAM5 in MERS-CoV entry, CEACAM5-overexpressing BHK21 cells were

490 inoculated with MERS-CoV at 37°C for 2 hours. The cells were then washed and

491 incubated at 37°C for 4 additional hours before harvesting for flow cytometry. Next, to

492 assess the role of CEACAM5 in MERS-CoV attachment, CEACAM5-overexpressing

493 BHK21 cells were inoculated with high MOI MERS-CoV at 4°C for 2 hours. The

494 infected cells were subsequently washed, harvested, and immunolabeled for flow

495 cytometry. In both cases, DPP4-overexpressing BHK21 cells were included as controls.

Downloaded from http://jvi.asm.org/ on August 6, 2016 by NORTHERN ILLINOIS UNIV

496 The result of the entry assessment recapitulated the finding that human DPP4

497 overexpression could support MERS-CoV entry in the otherwise non-permissive BHK21

498 cells. In stark contrast, human CEACAM5-expressing BHK21 cells failed to sustain the

499 entry of MERS-CoV (Figure 7A and Figure 7B). In the attachment assessment, our data

500 suggested that while MERS-CoV could attach to the cell surface of BHK21 cells, human

501 DPP4 overexpression increased the amount of attached virus particles by around 3-folds.

502 Intriguingly, in human CEACAM5-expressing BHK21 cells, the amount of attached virus

503 particles was also significantly increased by more than 2-folds (Figure 7C and Figure

504 7D). To further verify the potential contribution of CEACAM5 in MERS-CoV entry, we

505	overexpressed CEACAM5 in BHK21 and AD293 cells followed by MERS-CoV
506	infection. In corroboration of the result from figure 7A, our data showed that while
507	CEACAM5 enhanced virus attachment to BHK21 cells (Figure 8B), it could not function
508	as an independent receptor for MERS-CoV entry in the non-permissive BHK21 cells
509	(Figure 8A). Perhaps most importantly, overexpression of CEACAM5 increased the entry
510	of MERS-CoV in permissive cells (Figure 8C) in addition to enhancing the attachment of
511	the virus (Figure 8D), which suggested that CEACAM5 could contribute to MERS-CoV
512	entry in conjunction with DPP4. To further investigate if CEACAM5 could facilitate the
513	entry of other human coronaviruses, we challenged CEACAM5-transfected VeroE6 cells
514	(Figure 9A) with SARS-S-pseudovirus and compared pseudovirus entry with that from
515	the empty vector-transfected VeroE6 cells. Our result demonstrated that CEACAM5
516	overexpression did not significantly enhance the entry of SARS-S-pseudovirus (Figure
517	9B). Taken together, our data identified CEACAM5 as an important cell surface binding
518	protein for MERS-CoV that could facilitate the entry of MERS-CoV by acting as an
519	attachment factor.
520	

521 Discussion

The spike proteins of coronaviruses are known to bind a broad range of cellular targets
including sialic acids, sugars, and proteins (32). It is now clear that MERS-CoV
predominantly utilizes DPP4 for cell entry (9). However, additional cellular binding
targets of the MERS-CoV spike protein that may augment MERS-CoV entry have not
been further explored. In the current study, using the VOPBA-LC-MS/MS approach, we
unveiled CEACAM5 as a novel cell surface binding protein of MERS-CoV (Figure 1).

M

529	that are highly permissive to MERS-CoV infection, including Calu3, Huh7, A549, and
530	primary T cells (Figure 2). CEACAM5 and DPP4 co-expressed in the human lung, which
531	highlighted the physiologically relevance of CEACAM5 in MERS-CoV entry (Figure 3).
532	Subsequently, a series of co-IP studies demonstrated the capacity of CEACAM5 in
533	binding to the spike protein of MERS-CoV either in overexpressed or endogenous
534	settings (Figure 4). Remarkably, when the interaction between CEACAM5 and MERS-
535	CoV spike was perturbed with anti-CEACAM5 antibody (Figure 5), recombinant
536	CEACAM5 protein (Figure 6), or CEACAM5 siRNA knockdown (Figure 6), the
537	infection of MERS-CoV was significantly inhibited. Notably, recombinant expression of
538	CEACAM5 did not confer susceptibility of non-permissive BHK21 cells to infection by
539	MERS-CoV (Figure 7A). Instead, CEACAM5 overexpression significantly enhanced the
540	attachment of MERS-CoV to the BHK21 cells (Figure 7B). Perhaps most importantly,
541	the entry of MERS-CoV was increased when CEACAM5 was overexpressed in AD293,
542	which suggested that CEACAM5 could facilitate MERS-CoV entry in conjunction with
543	DPP4 despite being unable to support MERS-CoV entry independently (Figure 8). The
544	interaction between CEACAM5 and MERS-CoV appeared to be specific since
545	CEACAM5 did not facilitate the entry of SARS-CoV (Figure 9). Taken together, our
546	study identified CEACAM5 as a novel cell surface binding protein of MERS-CoV that

facilitates MERS-CoV infection through augmenting the attachment of the virus to thecell surface.

Intriguingly, expression analysis revealed that CEACAM5 were expressed on cell types

549

528

 \leq

55	0 CEACAM family members including CEACAM5 are heavily glycosylated cell surface
55	1 proteins (33, 34). Currently, 12 members of the CEACAM family have been identified in
55	2 human. Most CEACAMs are considered as modulators of general cellular processes
55	3 including proliferation, motility, apoptosis, attachment, as well as cell-cell interaction
55	4 (35). Notably, aberrant CEACAM function is associated with tumor progression and a
55	5 number of CEACAMs are utilized as clinical biomarkers. In addition, members of the
55	6 CEACAM family have been implicated in signal transduction and the binding of bacteria
55	to host target cells. In particular, certain CEACAMs including CEACAM5 are expressed
55	8 on the apical membrane of epithelial cells and are exploited as receptors or binding
55	9 factors for a number of pathogenic bacteria (35). Engaging surface CEACAMs by these
56	0 bacteria not only provides a portal of attachment but also triggers internalization and
56	1 entry of the bacteria into epithelial cells.
56	2

563 In the context of coronaviruses, previous reports have identified murine CEACAM1 as 564 the principal cellular receptor of the mouse hepatitis virus (MHV) (11). The discovery of 565 CEACAM5 as a cellular binding target of MERS-CoV spike suggested that perhaps cell 566 surface CEACAMs are common binding targets of coronavirus spikes that can be 567 exploited for attachment or entry. It will be tempting to speculate that other members of 568 the coronavirus family can also make use of certain CEACAMs to facilitate infection. 569 Notably, the spike proteins of coronaviruses are capable of binding to multiple cellular 570 targets. As an example, SARS-CoV binds to ACE2 with the spike S1 C-terminal domain 571 (CTD) (36). At the same time, the SARS-CoV spike can also bind DC-SIGN (16), DC-572 SIGNR (16), and L-SIGN (15). Similarly, TGEV binds to APN with the spike S1 CTD

 \leq

573	(10) but the virus is also capable of binding to cell surface sugars and sialic acids using
574	the N-terminal domain (NTD) of S1 (37). Since MHV binds CEACAM1 at the first 330
575	amino acids of the S1 NTD (38), one may postulate that MERS-CoV spike may similarly
576	bind CEACAM5 with the NTD of S1. In this regard, the CEACAM5-S1 NTD interaction
577	may orchestrate with the DPP4-S1 CTD interaction (36, 39) and facilitates the infection
578	of MERS-CoV. Importantly, the epitopes from the receptor-binding domain of MERS-
579	CoV S1 are known to trigger the production of potent neutralization antibodies. It is
580	potentially feasible to include additional epitopes derived from the CEACAM5-binding
581	domain in future vaccine designs, which may further enhance the efficiency of the
582	produced neutralizing antibodies at the same time avoiding potential immunopathological
583	effects as observed from using the full length spike protein (40).
584	
585	By definition, a receptor is a cellular factor essential for viral entry and bound by the viral
586	glycoproteins whereas an attachment factor is a cellular factor that can increase the
587	efficiency of virus entry but is not sufficient to render otherwise refractory cells
588	susceptible to infection. In line with the definitions, CEACAM5 expression was
589	predominantly detected in cell types highly susceptible to MERS-CoV infection,
590	including Huh7, Calu3, and T cells. Therefore, the expression of CEACAM5 may in part
591	contribute to the permissiveness of a certain cell type in addition to DPP4. Our data
592	showed that the expression of CEACAM5 did not confer infectivity by MERS-CoV to
593	the non-permissive BHK21 cells. However, the expression of CEACAM5 markedly
594	increased the amount of virus particles that were bound to the cell surface. Subsequent
595	analyses confirmed that CEACAM5 expression could enhance MERS-CoV entry in

Downloaded from http://jvi.asm.org/ on August 6, 2016 by NORTHERN ILLINOIS UNIV

AD293 cells, which expressed endogenous DPP4. Therefore, mechanistically CEACAM5
may help to concentrate the virus particles at the cell surface and render the virus
particles a higher accessibility to DPP4, which can then be used to initiate the cell entry
process.

600

In conclusion, in this study we identified CEACAM5 as a novel surface binding protein
for MERS-CoV that could facilitate MERS-CoV entry through serving as an important
attachment factor. This novel cell surface factor could be a potential antiviral target in the
combat against MERS-CoV infection.

605

Acknowledgements. We thank Professor Suet Yi Leung for providing the normal human
lung sections. We thank the staff at the Core Facility, Li Ka Shing Faculty of Medicine,
The University of Hong Kong, for facilitation of the study.

609

610 Funding Information. This work was partly supported by The Providence Foundation 611 Limited in memory of the late Dr. Lui Hac Minh, the Hong Kong Health and Medical 612 Research Fund (14131392 and 15140762), the NSFC/RGC Joint Research Scheme 613 (N HKU728/14), the Theme-Based Research Scheme (T11/707/15) of the Research 614 Grants Council, Hong Kong Special Administrative Region, and funding from the 615 Ministry of Education of China for the Collaborative Innovation Center for Diagnosis and 616 Treatment of Infectious Diseases. The funding sources had no role in the study design, 617 data collection, analysis, interpretation, or writing of the report.

618

620		
621		
021		
622		
623	Refere	ence
010		
624	1.	Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY. 2015. Middle East
625		respiratory syndrome coronavirus: another zoonotic betacoronavirus
626		causing SARS-like disease. Clin Microbiol Rev 28: 465-522.
627	2.	Chan JF, To KK, Tse H, Jin DY, Yuen KY. 2013. Interspecies transmission
628		and emergence of novel viruses: lessons from bats and birds. Trends
629		Microbiol 21: 544-555.
630	3.	Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look
631		AT, Holmes KV. 1992. Human aminopeptidase N is a receptor for human
632		coronavirus 229E. Nature 357: 420-422.
633	4.	Vlasak R, Luytjes W, Spaan W, Palese P. 1988. Human and bovine
634		coronaviruses recognize sialic acid-containing receptors similar to those of
635		influenza C viruses. Proc Natl Acad Sci U S A 85: 4526-4529.
636	5.	Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M,
637		Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. 2003.
638		Angiotensin-converting enzyme 2 is a functional receptor for the SARS
639		coronavirus. Nature 426: 450-454.
640	6.	Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pohlmann S.
641		2005. Human coronavirus NL63 employs the severe acute respiratory
642		syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A
643		102: 7988-7993.
644	7.	Huang X, Dong W, Milewska A, Golda A, Qi Y, Zhu QK, Marasco WA, Baric
645		RS, Sims AC, Pyrc K, Li W, Sui J. 2015. Human Coronavirus HKU1 Spike
646		Protein Uses O-Acetylated Sialic Acid as an Attachment Receptor
647		Determinant and Employs Hemagglutinin-Esterase Protein as a Receptor-
648		Destroying Enzyme. J Virol 89: 7202-7213.
649	8.	Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA.
650		2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi
651		Arabia. N Engl J Med 367: 1814-1820.
652	9.	Raj VS, Mou H, Smits SL, Dekkers DH, Muller MA, Dijkman R, Muth D,
653		Demmers JA, Zaki A, Fouchier RA, Thiel V, Drosten C, Rottier PJ,
654		Osterhaus AD, Bosch BJ, Haagmans BL. 2013. Dipeptidyl peptidase 4 is a
655		functional receptor for the emerging human coronavirus-EMC. Nature
656		495: 251-254.
657	10.	Delmas B, Gelfi J, L'Haridon R, Vogel LK, Sjostrom H, Noren O, Laude H.
658		1992. Aminopeptidase N is a major receptor for the entero-pathogenic
659		coronavirus TGEV. Nature 357: 417-420.

Potential conflicts of interest. All authors: No reported conflicts.

619

 \sum

Journal of Virology

660	11.	Williams RK, Jiang GS, Holmes KV. 1991. Receptor for mouse hepatitis
661		virus is a member of the carcinoembryonic antigen family of glycoproteins.
662		Proc Natl Acad Sci U S A 88: 5533-5536.
663	12.	Schultze B, Krempl C, Ballesteros ML, Shaw L, Schauer R, Enjuanes L,
664		Herrler G. 1996. Transmissible gastroenteritis coronavirus, but not the
665		related porcine respiratory coronavirus, has a sialic acid (N-
666		glycolylneuraminic acid) binding activity. J Virol 70: 5634-5637.
667	13.	Schwegmann-Wessels C, Zimmer G, Schroder B, Breves G, Herrler G.
668		2003. Binding of transmissible gastroenteritis coronavirus to brush border
669		membrane sialoglycoproteins. J Virol 77:11846-11848.
670	14.	Milewska A, Zarebski M, Nowak P, Stozek K, Potempa J, Pyrc K. 2014.
671		Human coronavirus NL63 utilizes heparan sulfate proteoglycans for
672		attachment to target cells. J Virol 88: 13221-13230.
673	15.	Jeffers SA, Tusell SM, Gillim-Ross L, Hemmila EM, Achenbach JE, Babcock
674		GJ, Thomas WD, Jr., Thackray LB, Young MD, Mason RJ, Ambrosino DM,
675		Wentworth DE, Demartini JC, Holmes KV. 2004. CD209L (L-SIGN) is a
676		receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad
677		Sci U S A 101: 15748-15753.
678	16.	Marzi A, Gramberg T, Simmons G, Moller P, Rennekamp AJ, Krumbiegel
679		M, Geier M, Eisemann J, Turza N, Saunier B, Steinkasserer A, Becker S,
680		Bates P, Hofmann H, Pohlmann S. 2004. DC-SIGN and DC-SIGNR interact
681		with the glycoprotein of Marburg virus and the S protein of severe acute
682		respiratory syndrome coronavirus. J Virol 78: 12090-12095.
683	17.	Chan CM, Lau SK, Woo PC, Tse H, Zheng BJ, Chen L, Huang JD, Yuen KY.
684		2009. Identification of major histocompatibility complex class I C molecule as
685		an attachment factor that facilitates coronavirus HKU1 spike-mediated
686		infection. J Virol 83: 1026-1035.
687	18.	Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. 2016. Coronaviruses - drug
688		discovery and therapeutic options. Nat Rev Drug Discov 15: 327-347.
689	19.	Yeung ML, Yao Y, Jia, L, Chan, J.F., Chan K.H., Cheung, K.F., Chen, H.L.,
690		Poon, V.K., Tsang, A.K., To, K.K., Yiu, M.K., Teng, J.L., Chu, H., Zhou, J.,
691		Zhang, Q., Deng, W., Lau, S.K., Lau, J.Y., Woo, P.C., Chan, T.M., Yung, S.,
692		Zheng, B.J., Jin, D.Y., Mathieson, P.W., Qin, C., Yuen, K.Y. 2016. MERS
693		coronavirus induces apoptosis in kidney and lung by upregulating Smad7
694		and FGF2. Nature Microbiology 1: doi:10.1038/nmicrobiol.2016.1034.
695	20.	WHO. http://www.who.int/csr/don/16-may-2016-mers-saudi-arabia/en/.
696		Accessed May.
697	21.	Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, Al-Rabiah FA, Al-Hajjar S, Al-
698		Barrak A, Flemban H, Al-Nassir WN, Balkhy HH, Al-Hakeem RF,
699		Makhdoom HQ, Zumla AI, Memish ZA. 2013. Epidemiological,
700		demographic, and clinical characteristics of 47 cases of Middle East
701		respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive
702		study. Lancet Infect Dis 13:752-761.
703	22.	Muller MA, Raj VS, Muth D, Meyer B, Kallies S, Smits SL, Wollny R,
704		Bestebroer TM, Specht S, Suliman T, Zimmermann K, Binger T, Eckerle I,
705		Tschapka M, Zaki AM, Osterhaus AD, Fouchier RA, Haagmans BL,

 \leq

706		Drosten C. 2012. Human coronavirus EMC does not require the SARS-
707		coronavirus receptor and maintains broad replicative capability in
708		mammalian cell lines. MBio 3 .
709	23.	Chan JF, Chan KH, Choi GK, To KK, Tse H, Cai JP, Yeung ML, Cheng VC,
710		Chen H, Che XY, Lau SK, Woo PC, Yuen KY. 2013. Differential cell line
711		susceptibility to the emerging novel human betacoronavirus 2c EMC/2012:
712		implications for disease pathogenesis and clinical manifestation. J Infect Dis
713		207: 1743-1752.
714	24.	Zhou J, Chu H, Chan JF, Yuen KY. 2015. Middle East respiratory syndrome
715		coronavirus infection: virus-host cell interactions and implications on
716		pathogenesis. Virol J 12: 218.
717	25.	Chu H, Zhou J, Wong BH, Li C, Chan JF, Cheng ZS, Yang D, Wang D, Lee AC,
718		Li C, Yeung ML, Cai JP, Chan IH, Ho WK, To KK, Zheng BJ, Yao Y, Qin C,
719		Yuen KY. 2016. Middle East Respiratory Syndrome Coronavirus Efficiently
720		Infects Human Primary T Lymphocytes and Activates the Extrinsic and
721		Intrinsic Apoptosis Pathways. J Infect Dis 213: 904-914.
722	26.	Chan CM, Chu H, Zhang AJ, Leung LH, Sze KH, Kao RY, Chik KK, To KK,
723		Chan JF, Chen H, Jin DY, Liu L, Yuen KY. 2016. Hemagglutinin of influenza A
724		virus binds specifically to cell surface nucleolin and plays a role in virus
725		internalization. Virology 494: 78-88.
726	27.	Zhou J, Chu H, Li C, Wong BH, Cheng ZS, Poon VK, Sun T, Lau CC, Wong
727		KK, Chan JY, Chan JF, To KK, Chan KH, Zheng BJ, Yuen KY. 2014. Active
728		replication of Middle East respiratory syndrome coronavirus and aberrant
729		induction of inflammatory cytokines and chemokines in human
730		macrophages: implications for pathogenesis. J Infect Dis 209: 1331-1342.
731	28.	Chan JF, Yao Y, Yeung ML, Deng W, Bao L, Jia L, Li F, Xiao C, Gao H, Yu P,
732		Cai JP, Chu H, Zhou J, Chen H, Qin C, Yuen KY. 2015. Treatment With
733		Lopinavir/Ritonavir or Interferon-beta1b Improves Outcome of MERS-CoV
734		Infection in a Nonhuman Primate Model of Common Marmoset. J Infect Dis
735		212: 1904-1913.
736	29.	Chu H, Zhou J, Wong BH, Li C, Cheng ZS, Lin X, Poon VK, Sun T, Lau CC,
737		Chan JF, To KK, Chan KH, Lu L, Zheng BJ, Yuen KY. 2014. Productive
738		replication of Middle East respiratory syndrome coronavirus in monocyte-
739		derived dendritic cells modulates innate immune response. Virology 454-
740		455: 197-205.
741	30.	van Doremalen N, Miazgowicz KL, Milne-Price S, Bushmaker T,
742		Robertson S, Scott D, Kinne J, McLellan JS, Zhu J, Munster VJ. 2014. Host
743		species restriction of Middle East respiratory syndrome coronavirus through
744		its receptor, dipeptidyl peptidase 4. J Virol 88: 9220-9232.
745	31.	Hammarstrom S. 1999. The carcinoembryonic antigen (CEA) family:
746		structures, suggested functions and expression in normal and malignant
747		tissues. Semin Cancer Biol 9: 67-81.
748	32.	Graham RL, Donaldson EF, Baric RS. 2013. A decade after SARS: strategies
749		for controlling emerging coronaviruses. Nat Rev Microbiol 11: 836-848.

 \sum

750 751 752	33.	Han SU, Kwak TH, Her KH, Cho YH, Choi C, Lee HJ, Hong S, Park YS, Kim YS, Kim TA, Kim SJ. 2008. CEACAM5 and CEACAM6 are major target genes for Smad3-mediated TGF-beta signaling. Oncogene 27 :675-683.
753 754	34.	Roda G, Jianyu X, Park MS, DeMarte L, Hovhannisyan Z, Couri R, Stanners CP, Yeretssian G, Mayer L. 2014. Characterizing CEACAM5
755 756		interaction with CD8alpha and CD1d in intestinal homeostasis. Mucosal Immunol 7: 615-624.
757	35.	Tchoupa AK, Schuhmacher T, Hauck CR. 2014. Signaling by epithelial
758 759		bacteria. Cell Commun Signal 12: 27.
760 761	36.	Lu G, Wang Q, Gao GF. 2015. Bat-to-human: spike features determining 'host
761		23: 468-478.
763	37.	Li F. 2015. Receptor recognition mechanisms of coronaviruses: a decade of
764 765	38.	structural studies. J Virol 89:1954-1964. Kubo H. Yamada YK. Taguchi F. 1994. Localization of neutralizing epitopes
766	001	and the receptor-binding site within the amino-terminal 330 amino acids of
767	0.0	the murine coronavirus spike protein. J Virol 68: 5403-5410.
768	39.	Du L, Zhao G, Kou Z, Ma C, Sun S, Poon VK, Lu L, Wang L, Debnath AK,
769		Lineng BJ, Zhou Y, Jiang S. 2013. Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle Fast respiratory
771		syndrome coronavirus as an essential target for vaccine development. I Virol
772		87: 9939-9942.
773	40.	Du L, Tai W, Zhou Y, Jiang S. 2016. Vaccines for the prevention against the
774		threat of MERS-CoV. Expert Rev Vaccines
775		doi:10.1586/14760584.2016.1167603 : 1-12.
776		
777		
778		
779		
780		
781		
782		
783		
784		
785		

Journal of Virology

786 787 788 789 790 **Figure Legends** 791 Figure 1. CEACAM5 is a cell surface binding protein of MERS-CoV. (A) A549 and 792 NIH3T3 biotinylated cell membrane proteins were extracted, separated by 4-12% 793 gradient gel, and transferred to PVDF membrane. (B) Membrane proteins were probed 794 with MERS-S-pseudotyped virus followed by detection of virus binding by incubating 795 with immune serum directed against the MERS-CoV spike protein (lane 1). Non-796 susceptible cell membrane extracts from NIH3T3 was included as a negative control 797 (lane 2). (C) The gel fractions corresponding to the positive signal at approximately 798 90kDa was cut, electro-eluted, and confirmed by VOPBA prior to submission for MS 799 protein identification. (D) The identified amino acid sequences and their corresponding 800 positions were illustrated. The position of CEACAM5 in (B) and (C) was indicated with *. 801 802 803 Figure 2. Surface expression of CEACAM5 on mammalian cells. (A) The indicated 804 human cell lines were fixed in 4% paraformaldehyde and immunolabeled for surface 805 DPP4 and CEACAM5 expression. The shaded curve and the solid line represented 806 isotype and antigen-specific staining, respectively. The same fixation and 807 immunostaining procedures were performed for human primary T cells (B) as well as a 808 number of non-human mammalian cells (C). (D) The average percentage of

809 DPP4/CEACAM5 positive cells was illustrated. (E) The average DPP4/CEACAM5 mean 810 fluorescent intensity (MFI) was quantified. Rabbit isotype IgG was used in place of 811 antigen-specific antibodies for the controls. Data in (D) and (E) represented mean and 812 standard deviation from three independent experiments. 813 814 Figure 3. The expression of CEACAM5 in human lung tissues. Immunostaining of 815 CEACAM5 and DPP4 were performed on paraffin slides of normal human lung tissues. 816 Representative images of CEACAM5 and DPP4 expression in various regions of the 817 human lung were illustrated, which included the bronchi (A), small airways (B), and 818 alveoli (C). Arrowheads indicated alveolar macrophages with CEACAM5 and DPP4 co-819 expression. Bars represented 50µm. 820 821 Figure 4. CEACAM 5 interacts with MERS-CoV spike. (A) Surface and intracellular 822 expression of CEACAM5-V5 were verified with flow cytometry. (B) For co-IP, BHK21 823 cells were transfected with CEACAM5-V5 (lane 1 and lane 2) or empty vector (lane 3). 824 The cell lysate was immunoprecipitated with MERS-CoV-S1-FLAG (lane 1 and 3) or E. 825 coli bacterial alkaline phosphatase (BAP)-FLAG protein (lane 2) pre-adsorbed onto anti-826 FLAG M2 agarose beads prior to SDS-PAGE. The protein complex was detected by 827 using the anti-FLAG antibody or the anti-V5 antibody. (C) Reciprocal co-IP was 828 performed using CEACAM5-V5 as the bait. Purified MERS-CoV-S1-FLAG (lane 1 and 829 3) or BAP-FLAG proteins (lane 2) were immunoprecipitated with overexpressed 830 CEACAM5-V5 or pcDNA-V5 protein pre-adsorbed onto anti-V5 sepharose beads. 831 Western blots were detected with the anti-FLAG or the anti-CEACAM5 antibody. (D)

832	Endogenous co-IP was performed from MERS-CoV-infected or mock-infected Huh7 cell
833	lysates. Immunoprecipitation was performed using the rabbit anti-CEACAM5 antibody,
834	the rabbit anti-MERS-CoV spike antibody, or the rabbit isotype IgG. Western blots were
835	detected with the rabbit anti-MERS-CoV spike antibody or the rabbit anti-CEACAM5
836	antibody.

837

838 Figure 5. CEACAM5-specific antibody blocks MERS-CoV entry and replication.

839 (A) The antibody blocking assay was performed in Calu3 cells using MERS-S-

840 pseudotyped virus. Antibodies were diluted to 2 µg/ml and incubated with Calu3 cells for

1 hour at 37°C. Pseudotyped viruses were then added at a ratio of 100 lentiviral particle

842 (LP) per cell for 1 hour. Luciferase activity was determined at 48 hours post infection and

843 was normalized to that of the mock-treated cells. (B) The antibody blocking assay was

Downloaded from http://jvi.asm.org/ on August 6, 2016 by NORTHERN ILLINOIS UNIV

844 performed in Calu3 cells using MERS-CoV. Calu3 cells were pre-incubated with

845 antibodies at the indicated concentrations for 1 hour at 37°C. The cells were then

846 inoculated with MERS-CoV at 1 MOI for 1 hour at 37°C in the presence of the

847 antibodies. After 1 hour, the cells were washed and harvested. MERS-CoV entry was

848 assessed with qPCR and the result was normalized to that of the mock-treated cells. (C)

- 849 Calu3 cells were treated with CEACAM5 antibody for a total of 2 hours during pre-
- 850 incubation and virus inoculation (-1 1) or after virus inoculation (1 3). MERS-CoV
- 851 entry was assessed with qPCR. (D) The antibody blocking assay was performed in Caco2
- 852 cells. (E and F) The impact of CEACAM5 inhibition on MERS-CoV replication was
- 853 investigated in Huh7 cells. Huh7 cells were pre-incubated with antibodies at 2 µg/ml for
- 1 hour at 37°C. The cells were then inoculated with MERS-CoV at 0.0005 MOI for 1

855	hour at 37°C in the presence of the antibodies. At the end of the inoculation period, the
856	inoculum was replaced with culture media containing the indicated antibodies. Cell
857	lysates (E) and supernatants (F) were harvested at 1, 24, and 48 hours post infection. The
858	virus genome copy number was determined with qPCR. ND indicated that virus was not
859	detected in the corresponding samples. In all panels, data represented mean and standard
860	deviation from three independent experiments. Results from the anti-DPP4-, anti-
861	CEACAM5-, and control IgG-treated samples were compared with that of the mock-
862	treated samples. Statistical analyses were carried out using Student's t-test. Statistical
863	significance was indicated by asterisk marks when $p < 0.05$.
864	
865	Figure 6. CEACAM5 recombinant protein and siRNA knockdown of CEACAM5
866	inhibits MERS-CoV entry. (A and B) MERS-CoV at 0.1 MOI was pre-incubated with
866 867	inhibits MERS-CoV entry. (A and B) MERS-CoV at 0.1 MOI was pre-incubated with human recombinant proteins at the indicated concentrations for 1 hour at 37°C. After the
866 867 868	inhibits MERS-CoV entry. (A and B) MERS-CoV at 0.1 MOI was pre-incubated with human recombinant proteins at the indicated concentrations for 1 hour at 37°C. After the pre-incubation, the protein-virus mix was added to Calu3 cells (A) or Huh7 cells (B) for 2
866 867 868 869	inhibits MERS-CoV entry. (A and B) MERS-CoV at 0.1 MOI was pre-incubated with human recombinant proteins at the indicated concentrations for 1 hour at 37°C. After the pre-incubation, the protein-virus mix was added to Calu3 cells (A) or Huh7 cells (B) for 2 hours at 37°C. The cell lysates were subsequently harvested for qPCR analysis. Human
866 867 868 869 870	inhibits MERS-CoV entry. (A and B) MERS-CoV at 0.1 MOI was pre-incubated with human recombinant proteins at the indicated concentrations for 1 hour at 37°C. After the pre-incubation, the protein-virus mix was added to Calu3 cells (A) or Huh7 cells (B) for 2 hours at 37°C. The cell lysates were subsequently harvested for qPCR analysis. Human recombinant DPP4 and human recombinant IgG were included as positive and negative
866 867 868 869 870 871	inhibits MERS-CoV entry. (A and B) MERS-CoV at 0.1 MOI was pre-incubated with human recombinant proteins at the indicated concentrations for 1 hour at 37°C. After the pre-incubation, the protein-virus mix was added to Calu3 cells (A) or Huh7 cells (B) for 2 hours at 37°C. The cell lysates were subsequently harvested for qPCR analysis. Human recombinant DPP4 and human recombinant IgG were included as positive and negative controls, respectively. Results from the human recombinant DPP4-, huamn recombinant
866 867 868 869 870 871 872	inhibits MERS-CoV entry. (A and B) MERS-CoV at 0.1 MOI was pre-incubated with human recombinant proteins at the indicated concentrations for 1 hour at 37°C. After the pre-incubation, the protein-virus mix was added to Calu3 cells (A) or Huh7 cells (B) for 2 hours at 37°C. The cell lysates were subsequently harvested for qPCR analysis. Human recombinant DPP4 and human recombinant IgG were included as positive and negative controls, respectively. Results from the human recombinant DPP4-, huamn recombinant CEACAM5-, and control human recombinant IgG-treated samples were compared with
866 867 868 869 870 871 872 873	inhibits MERS-CoV entry. (A and B) MERS-CoV at 0.1 MOI was pre-incubated with human recombinant proteins at the indicated concentrations for 1 hour at 37°C. After the pre-incubation, the protein-virus mix was added to Calu3 cells (A) or Huh7 cells (B) for 2 hours at 37°C. The cell lysates were subsequently harvested for qPCR analysis. Human recombinant DPP4 and human recombinant IgG were included as positive and negative controls, respectively. Results from the human recombinant DPP4-, huamn recombinant CEACAM5-, and control human recombinant IgG-treated samples were compared with that of the mock-treated samples. (C) Huh7 cells were treated with CEACAM5 protein
866 867 868 870 870 871 872 873 873	inhibits MERS-CoV entry. (A and B) MERS-CoV at 0.1 MOI was pre-incubated with human recombinant proteins at the indicated concentrations for 1 hour at 37°C. After the pre-incubation, the protein-virus mix was added to Calu3 cells (A) or Huh7 cells (B) for 2 hours at 37°C. The cell lysates were subsequently harvested for qPCR analysis. Human recombinant DPP4 and human recombinant IgG were included as positive and negative controls, respectively. Results from the human recombinant DPP4-, huamn recombinant CEACAM5-, and control human recombinant IgG-treated samples were compared with that of the mock-treated samples. (C) Huh7 cells were treated with CEACAM5 protein for a total of 3 hours during pre-incubation and virus inoculation (-1 - 2) or after virus
866 867 868 870 871 872 873 874 875	inhibits MERS-CoV entry. (A and B) MERS-CoV at 0.1 MOI was pre-incubated with human recombinant proteins at the indicated concentrations for 1 hour at 37°C. After the pre-incubation, the protein-virus mix was added to Calu3 cells (A) or Huh7 cells (B) for 2 hours at 37°C. The cell lysates were subsequently harvested for qPCR analysis. Human recombinant DPP4 and human recombinant IgG were included as positive and negative controls, respectively. Results from the human recombinant DPP4-, huamn recombinant CEACAM5-, and control human recombinant IgG-treated samples were compared with that of the mock-treated samples. (C) Huh7 cells were treated with CEACAM5 protein for a total of 3 hours during pre-incubation and virus inoculation (-1 - 2) or after virus inoculation (2 - 5). MERS-CoV entry was assessed with qPCR. (D) Huh7 cells were
866 867 869 870 871 872 873 873 874 875	inhibits MERS-CoV entry. (A and B) MERS-CoV at 0.1 MOI was pre-incubated with human recombinant proteins at the indicated concentrations for 1 hour at 37°C. After the pre-incubation, the protein-virus mix was added to Calu3 cells (A) or Huh7 cells (B) for 2 hours at 37°C. The cell lysates were subsequently harvested for qPCR analysis. Human recombinant DPP4 and human recombinant IgG were included as positive and negative controls, respectively. Results from the human recombinant DPP4-, huamn recombinant CEACAM5-, and control human recombinant IgG-treated samples were compared with that of the mock-treated samples. (C) Huh7 cells were treated with CEACAM5 protein for a total of 3 hours during pre-incubation and virus inoculation (-1 - 2) or after virus inoculation (2 - 5). MERS-CoV entry was assessed with qPCR. (D) Huh7 cells were treated with 100uM gene-specific or scrambled siRNA for two consecutive days. (E and

Downloaded from http://jvi.asm.org/ on August 6, 2016 by NORTHERN ILLINOIS UNIV

877 F) The reduction of surface CEACAM5 and DPP4 expression was summarized. (G)

 \sum

878	siRNA-treated Huh7 cells were then subjected to MERS-CoV infection at 1 MOI for 2
879	hours at 37°C. Cell lysates were subsequently harvested for qPCR analysis and the result
880	was normalized to that of the mock-treated cells. Results from the DPP4 siRNA-,
881	CEACAM5 siRNA-, and scrambled siRNA-treated samples were compared with that of
882	the mock-treated samples. In all panels, data represented mean and standard deviation
883	from three independent experiments. Statistical analyses were carried out using Student's
884	<i>t</i> -test. Statistical significance was indicated by asterisk marks when $p < 0.05$.
885	
886	Figure 7. CEACAM5 is an attachment factor for MERS-CoV. (A and B) To assess
887	whether CEACAM5 is important for MERS-CoV entry, human CEACAM5 was
888	overexpressed in BHK21 cells. Human CEACAM5-expressing BHK21 cells were then
889	challenged with MERS-CoV at 5 MOI for 2 hours at 37°C. The inoculum was then
890	replaced with culture media and the cells were incubated for another 4 hours before
891	harvesting for flow cytometry. (C and D) To assess whether CEACAM5 is important for
892	MERS-CoV attachment, human CEACAM5-expressing BHK21 cells were challenged
893	with MERS-CoV at 30 MOI for 2 hours at 4°C before harvesting for flow cytometry.
894	Human DPP4-expressing BHK21 cells were included as controls for both entry and
895	attachment assays. Data in (B) and (D) represented the percentage of MERS-CoV NP
896	positive BHK21 cells after infection with or without DPP4/CEACAM5-overepression. In
897	both panels, mean and standard deviation were derived from three independent
898	experiments. Statistical analyses were carried out using Student's t-test. Statistical
899	significance was indicated by asterisk marks when $p < 0.05$.
900	

Downloaded from http://jvi.asm.org/ on August 6, 2016 by NORTHERN ILLINOIS UNIV

901	Figure 8. CEACAM5 overexpression does not confer infectivity by MERS-CoV to
902	non-permissive cells but enhances MERS-CoV entry in permissive cells. (A and C)
903	To verify the role of CEACAM5 in MERS-CoV entry, human CEACAM5 was
904	overexpressed in BHK21 cells or AD293 cells. The cells were then challenged with
905	MERS-CoV at 1 MOI for 2 hours at 37°C. After 2 hours, the cells were washed
906	extensively and harvested for qPCR analysis. (B and D) To verify the role of CEACAM5
907	in MERS-CoV attachment, human CEACAM5-expressing BHK21 cells or human
908	CEACAM5-expressing AD293 cells were challenged with MERS-CoV at 1 MOI for 2
909	hours at 4°C. The cell lysates were then harvested for qPCR analysis. DPP4- and empty
910	vector (pcDNA3.1)-expressing BHK21 cells were included as controls. In all panels, data
911	represented mean and standard deviation from three independent experiments. Results
912	from the human DPP4-, human CEACAM5-, and empty vector-overexpressing samples
913	were compared with that of the mock-treated samples. Statistical analyses were carried
914	out using Student's t -test. Statistical significance was indicated by asterisk marks when p
915	< 0.05.
916	
917	Figure 9. CEACAM5 overexpression does not facilitate SARS-CoV entry in VeroE6
918	cells. (A) VeroE6 cells were transfected with a CEACAM5-expressing plasmid or an
919	empty vector. (B) The cells were challenged with SARS-S-pseudovirus or VSV-G-

- 920 pseudovirus at a ratio of 100 lentiviral particle (LP) per cell for 1 hour. Luciferase
- 921 activity from CEACAM5-transfected VeroE6 cells was determined at 48 hours post
- 922 pseudovirus challenge and was normalized to that of the empty vector-transfected
- 923 VeroE6 cells. Mean and standard deviation in panel B were derived from three

 \leq

- 924 independent experiments. Statistical analyses were carried out using Student's *t*-test.
- 925 Statistical significance was indicated by asterisk marks when p < 0.05.

926

Journal of Virology

WB: Streptavidin IR dye

 \sum

Α

% Max

В

% Max

D

Journal of Virology

A549

53.8

26.3

T cell

DPP4

20.1

CEACAM5

AD293

37.4

0.23

С

% Max

BEAS2B

Caco2

48.9

4.08

BHK21

9.7

DPP4

0.53

Calu3

27.7

35.4

L929

12.9

0.42

Huh7

61.5

57.1

Cell line

 \leq

Downloaded from http://jvi.asm.org/ on August 6, 2016 by NORTHERN ILLINOIS UNIV

 \sum

Journal of Virology

 \sum

Journal of Virology

Α

Mock Transfection

Mock Infection

0

41.3

0.6

DPP4 Transfection

Mock Infection

0.4

31.8

В

11.4

50-

40

DPP4 Transfection

MERS-CoV Infection

Entry

+

Attachment

- +

+

 \sum

Journal of Virology

С

Α

Viral Genome Copy

25000-

20000-

15000-

10000-

5000-

0

DPP4-

*

Г

CEACAM5-

Empty Vector-

Z

В

