- 1 Identification of the Fusion Peptide-Containing Region in Betacoronavirus Spike Glycoproteins
- 2 Xiuyuan Ou^{1&}, Wangliang Zheng^{1&}, Yiwei Shan¹, Zhixia Mu¹, Samuel R. Dominguez², Kathryn
- 3 V. Holmes³, and Zhaohui Qian¹
- 4
- 5 MOH Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese
- 6 Academy of Medical Sciences and Peking Union Medical College¹, Beijing, 100176, China;
- 7 Department of Pediatrics², Department of Microbiology³, University of Colorado School of
- 8 Medicine, Aurora, CO 80045
- 9
- 10 Key words: coronavirus spike glycoprotein, coronavirus fusion peptide, coronavirus membrane
- 11 fusion, MERS-CoV entry, SARS-CoV, MHV
- 12 Running title: Fusion peptide of spike protein of betacoronavirus
- 13
- 14 & XO and WZ contributed equally to this study.
- 15 #Address correspondence to Zhaohui Qian, zqian2013@sina.com,

17

18

 \leq

19 Abstract (250 words)

20 The fusion peptides (FP) play an essential role in fusion of viral envelope with cellular 21 membranes. The location and properties of the FPs in the spike (S) glycoproteins of different 22 coronaviruses (CoV) have not vet been determined. Through amino acid sequence analysis of S 23 proteins of representative CoVs, we identified a common region as a possible FP (pFP) that 24 shares the characteristics of FPs of Class-I viral fusion proteins including high Ala/Gly content, 25 intermediate hydrophobicity, few charged residues. To test the hypothesis that this region 26 contains the CoV FP, we systemically mutated every residue in the pFP of Middle East 27 Respiratory Syndrome betacoronavirus (MERS-CoV), and found that 11 of the 22 residues in the pFP (from G953 to L964, except for A956) were essential for S protein-mediated cell-cell fusion 28 29 and virus entry. The synthetic MERS-CoV pFP core peptide (955IAGVGWTAGL964) induced 30 extensive fusion of liposome membranes, while mutant peptide failed to induce any lipid mixing. 31 We also selectively mutated residues in pFPs of two other β -CoVs. Severe Acute Respiratory 32 Syndrome Coronavirus (SARS-CoV) and Mouse Hepatitis Virus (MHV). Although the amino 33 acid sequences of these two pFPs differed significantly from that of MERS-CoV and each other, 34 most of the pFP mutants of SARS-CoV and MHV also failed to mediate membrane fusion, 35 suggesting that these pFPs are also the functional FPs. Thus, the FPs of 3 different lineages of β -CoVs are conserved in location within the S glycoproteins and in their functions, although their 36 37 amino acid sequences have diverged significantly during CoV evolution. 38 Importance (150 words)

39 Within the Class-I viral fusion proteins of many enveloped viruses, the FP is the critical mediator

40 of fusion of the viral envelope with host cell membranes leading to virus infection. FPs from

41 within a virus family, like influenza viruses or human immunodeficiency viruses (HIV), tend to

Σſ

42	share high amino acid sequence identity. In this study, we determined the location and amino
43	acid sequences of the FPs of S glycoproteins of 3 β -CoVs: MERS-CoV, SARS-CoV, and MHV,
44	and demonstrated that they were essential for mediating cell-cell fusion and virus entry.
45	Interestingly, in marked contrast to the FPs of influenza and HIV, the primary amino acid
46	sequences of the FPs of β -CoVs in 3 different lineages differed significantly. Thus, during
47	evolution the FPs of β -CoVs have diverged significantly in their primary sequences, while
48	maintaining the same essential biological functions. Our findings identify a potential new target
49	for development of drugs against CoVs.

50

51 Introduction.

52	Viruses are obligate intracellular parasites, and host cell membranes act as a barrier to
53	virus entry. Enveloped viruses initiate infection of cells through fusion of the viral and cellular
54	membranes. CoVs are enveloped and single stranded plus sense RNA viruses that cause a variety
55	of diseases among many different species (1). Phylogenetically, CoVs are divided into four
56	genera: alphacoronavirus (α -CoV), betacoronavirus (β -CoV), gammacoronavirus (γ -CoV), and
57	deltacoronavirus (δ-CoV) (2).
58	CoVs enter cells through the interactions of the viral S proteins with host receptors.
59	Several cellular proteins have been identified as receptors for their respective CoVs. Specific
60	examples include human angiotensin converting-enzyme 2 (hACE2) for SARS-CoV and human
61	CoV NL63 (3, 4), human dipeptidyl peptidase IV (hDPP4) for MERS-CoV (5), bat DPP4 for bat
62	CoV HKU4 (6), human aminopeptidase N (hAPN) for human CoV 229E (7), mouse
63	carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a) for MHV (8).
64	The CoV S protein is a Class-I viral fusion proteins. On the CoV virions, the 180-200
65	kDa S proteins are found as trimers. S monomers contain two subunits called S1 and S2. S1
66	contains the receptor binding domain (RBD) and is responsible for receptor recognition and
67	binding, whereas S2 possesses the membrane fusion machinery (9, 10), including a fusion
68	peptide (FP), two heptad repeat domains (called the N-terminal and C-terminal heptad repeats,
69	HR-N and HR-C), the juxtamembrane domain (JMD) and a transmembrane domain (TMD) (Fig
70	1A).
71	To mediate membrane fusion, S protein must be activated, which requires both
72	proteolytic cleavage (priming) and receptor binding with or without pH change (triggering) (11-

13). Several host priming proteases are important for S protein mediated CoV entry, including

Z

74	cathepsin B and L, serine protease TMPRSS2 and 4, trypsin, elastase, HAT, and furin (14-20). S
75	protein activation leads to a series of conformational changes and insertion of a putative FP into
76	target membrane, an essential step in membrane fusion and virus infection. Class-I viral fusion
77	proteins generally contain one FP, located either internally, like the FPs of the glycoprotein (Gp)
78	of Ebola virus and the envelope protein (Env) of avian sarcoma leukosis virus (ASLV) (21-24),
79	or immediately down stream of the "priming" site, as seen in the hemagglutinin (HA) of
80	influenza and the Env protein of HIV (25, 26). Although the primary sequences and lengths of
81	FPs vary significantly among different Class-I viral fusion proteins, they share several common
82	features. Most are rich in Ala and/or Gly, have an intermediate level of hydrophobicity with
83	membrane binding potential, form helical structures in the presence of trifluoroethanol (TFE),
84	and contain very few charged resides in the middle of their sequences (13, 25, 27).
85	Although significant efforts have been made to locate the FPs of different CoVs (28-35),
86	the exact locations and sequences of CoV FPs remains controversial. While Chambers et al
87	predicted that the CoV FP was likely adjacent to HR-N (ref), Manu et al proposed that the
88	sequence immediately following a critical and conserved trypsin cleavage site at the arginine of
89	position 797 (R797) of SARS-CoV S protein, SFIEDLLFNKVTLADAGF, may be the FP of
90	SARS-CoV S protein (32). In this study, we used bioinformatics to identify a 17-22 amino acids
91	long region, just upstream of HR-N, in S2 of different CoVs with characteristic features of the
92	FPs of other Class-I viral fusion proteins. Using mutational, biochemical, and biophysical
93	analyses of this region of the S proteins of 3 β -CoVs, MERS-CoV, SARS-CoV, and MHV, we
94	provide data to support this region as the functional FP of CoV S proteins.

95 Materials and Methods

96	Cell culture. HEK-293, 293T, HEK-293 cells stably expressing hACE2 (293/hACE2), HeLa
97	cells stably expressing hDPP4 (HeLa/hDPP4), and HeLa cells stably expressing mouse
98	CEACAM1a (HeLa/mCEACAM1a) were maintained in Dulbecco's modified Eagle's medium
99	(DMEM) (Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS) and 2%
100	penicillin-stereptomycin-fungizone (Invitrogen) at 37 °C with 5% CO ₂ .
101	Constructs and mutagenesis. The constructs, pcDNA-SARS-CoV SA19 (36), pcDNA-MERS-
102	CoV S Δ 16 (37), and pcDNA-MHV S (38) have been described previously. Briefly, DNA
103	encoding codon-optimized SARS-CoV S protein lacking the last 19aa, or MERS-CoV S protein
104	lacking last 16aa but with a FLAG tag at the C-terminus, or full length MHV S protein was
105	cloned between BamH I and Not I sites of pcDNA3.1. All SARS-CoV, MERS-CoV, and MHV S
106	mutants were derived from the plasmid pcDNA-SARS-CoV S Δ 19, pcDNA-MERS-CoV S Δ 16,
107	and pcDNA-MHV S, respectively. All mutagenesis was carried out using Q5 mutagenesis kit
108	(NEB, MA, USA). After the entire coding sequences were verified by sequencing, the BamH I
109	and Not I containing mutated S gene was cloned back into pcDNA3.1. A plasmid encoding full-
110	length hACE2 (pACE2-cq) was kindly provided by M. Farzan (Scripps Research Institute,
111	Florida campus). A plasmids encoding full-length human DPP4 (pcDNA-hDPP4) was purchased
112	from Sino Biological Inc (Beijing, China). A plasmid encoding full-length mouse CEACAM1a
113	(mCEACAM1a) has been described previously (39). To express soluble human ACE2 (shACE2)
114	and soluble human DPP4 (shDPP4), DNA fragments encoding residues 19-615 of human
115	hACE2 with N-terminal 6his and FLAG tags and residues 40-766 of human DPP4 with C-
116	terminal 6his and AVI tags were cloned between Sal I and Hind III and between BamH I and
117	<i>Xho I</i> of modified pFASTBac1 vector with gp67 signal peptide, respectively. To express soluble
118	mouse CEACAM1a (smCEACAM1a), residues 1-236 of mCEACAM1a with C-terminal 6his

 \leq

and AVI tags were cloned into *EcoR I* and *Not I* of pFASTBac1. These soluble receptors were
expressed in High Five insect cells using the bac-to-bac system (Invitrogen) and purified using
nickel affinity and ion-exchange chromatography.
Analysis of S protein expression on cell surface. Briefly, HEK-293T cells were transfected

123 with 2 µg of either wild-type or mutant S protein-expressing plasmid using polyethyleneimine 124 (PEI) (Polyscience Inc, Warrington, PA, USA). Forty hours later, cells were detached from 125 plates by incubating with PBS+1mM EDTA for 5min at 37°C. After washing, cells were 126 incubated with the respective primary anti-S antibody for 1 hour on ice. The primary antibodies 127 for SARS-CoV S Δ 19, MERS-CoV S Δ 16, and MHV S protein were rabbit polyclonal anti-SARS 128 S1 antibody (1:300 dilution) (Sinobiological Inc, Beijing, China), mouse monoclonal anti-MERS 129 S antibody (1:300 dilution) (Sinobiological Inc, Beijing, China), and goat polyclonal anti-MHV 130 S antibody (AO4) (1:200 dilution), respectively. After washing, cells were stained with Alexa 131 Fluor 488 conjugated goat anti-rabbit IgG (1:200) (ZSGB-Bio LLC, Beijing, China) for SARS S, 132 or goat anti-mouse IgG (1:200) (ZSGB-Bio LLC, Beijing, China) for MERS S, or rabbit anti-133 goat IgG (1:200) (ZSGB-Bio LLC, Beijing, China) for MHV S. After washing, cells were fixed 134 with 1% paraformaldehyde and analyzed by flow cytometry. 135 **Binding of soluble receptor.** HEK-293T cells were transfected with plasmids encoding either 136 wild-type or mutant S proteins with PEI. After 40 hours, cells were lifted with PBS+1mM EDTA

137 and immediately washed twice with PBS+2% normal donkey serum (NDS). About $2x10^5$ cells

138 were incubated with 1 µg of shACE2, or shDPP4, or smCEACAM1a for 1 hour on ice. After

139 washing, cells were incubated with mouse monoclonal anti-FLAG M2 antibody (1:1,000 dilution)

140 (Sigma, St Louis, MO, USA) for shACE2 and followed with Alexa Fluor 488 conjugated goat

141 anti-mouse IgG (1:200), or rabbit polyclonal anti-AVI antibody (1:200 dilution) (Shanghai

143

144 1% paraformaldehyde and analyzed by flow cytometry. 145 **Production and transduction of S protein-pseudotyped lentiviruses.** Pseudovirions with 146 spike proteins were produced as described previously (40) with minor modifications. Briefly, 147 plasmids encoding either wild-type or mutant S proteins were co-transfected into 293T cells with 148 pLenti-Luc-GFP (a gift from Dr. Fang Li, Duke University) and psPAX2 (Addgene, Cambridge, 149 MA) at a molar ratio of 1:1:1 by using PEI. The following day, the cells were fed with fresh 150 medium. After 24 hrs incubation, the supernatant media containing pseudovirions were 151 centrifuged at 800g for 5min to remove debris, and passed through a 0.45-µm filter. To quantify 152 S protein-mediated entry of pseudovirions, susceptible cells were seeded at about 25-30% 153 confluency in 24-well plates. The following day, cells were inoculated with 500ul of 1:1 diluted 154 viruses. At 40 hours post-inoculation (PI), cells were lysed at room temperature with 120µl of 155 media with an equal volume of Steady-glo (Promega, Madison, WI). Transduction efficiency 156 was monitored by quantitation of luciferase activity using Modulus II Microplate Reader (Turner 157 Biosystem, Sunnyvale, CA). All experiments were done in triplicate and repeated at least three 158 times. 159 Detection of viral spike glycoproteins by western blot. To evaluate S protein expression in 160 cells, HEK 293T cells were transfected with plasmids encoding either wild-type or mutant S 161 proteins by using PEI. Forty hours later, cells were lysed with lysis buffer (50 mM Tris-HCl 162 pH7.4, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.1% SDS) containing protease 163 inhibitors (Roche, USA). To determine S protein incorporation into pseudotype virions, the 164 virion-containing supernatant was pelleted through a 20% sucrose cushion at 30,000 rpm at 4°C

Enzyme-linked Biotechnology Co., Shanghai, China) for shDPP4 and smCEACAM1a, and

followed with Alexa Fluor 488 conjugated goat anti-rabbit IgG (1:200). Cells were fixed with

165	for 2 h in a Beckman SW41 rotor (40). Viral pellets were resuspended into PBS. Cell lysates and
166	pseudovirion pellets were separated on a 4-15% SDS-PAGE and transferred to a nitrocellulose
167	blot. The SARS-CoV S Δ 19, MERS-CoV S Δ 16, and MHV S proteins were detected with
168	polyclonal rabbit anti-SARS S1 antibodies (1:2,000), monoclonal mouse anti-MERS S antibody
169	(1:1,000), and polyclonal goat anti-MHV S antibody (1:2,000), respectively, and the blots were
170	further stained with horseradish peroxidase conjugated antibodies, respectively: goat anti-rabbit
171	IgG (1:10,000), goat anti-mouse IgG (1:10,000), and rabbit anti-goat IgG (1:10,000), and
172	visualized with Clarity Western ECL substrate (Bio-Rad, Hercules, CA, USA). The β -actin and
173	HIV capsid protein (p24) were detected using mouse monoclonal anti-β-actin antibody (1:5,000)
174	(Sigma, St Louis, MO, USA) and rabbit polyclonal anti-p24 antibody (1:5,000) (Sinobiological
175	Inc, Beijing, China), respectively.
176	Cell-cell fusion assays. Cell-cell fusion assays were performed as previously described (37) with
177	modifications. Briefly, 293T cells were co-transfected with plasmids encoding CoV S
178	glycoprotein and GFP. Forty hours later, cells were detached with trypsin (0.25%) and overlaid
179	on a 70% confluent monolayer of 293/hACE2, or HeLa/hDPP4, or HeLa/mCEACAM1a cells at
180	a ratio of approximate one S-expressing cell to two receptor-expressing cells. After overnight
181	incubation, images of syncytia were captured with a Nikon TE2000 epifluorescence microscope
182	running MetaMorph software (Molecular Devices). To quantify S protein mediated cell-cell
183	fusion, 293T cells were co-transfected with pFR-Luc, which contains a synthetic promoter with
184	five tandem repeats of the yeast GAL4 binding sites that controls expression of the luciferase
185	gene, and plasmid encoding S protein, and the receptor-expressing cells (293/hACE2,
185 186	gene, and plasmid encoding S protein, and the receptor-expressing cells (293/hACE2, HeLa/hDPP4, or HeLa/mCEACAM1a) were transfected with pBD-NFκB, which encodes a

187 fusion protein with DNA binding domain of GAL4 and transcription activation domain of NFκB.

 \leq

188	The following day, S expressing 293T cells were lifted with trypsin and overlaid onto receptor
189	expressing cells at a ratio of about one S-expressing cell to two receptor-expressing cells. When
190	cell-cell fusion occurred, luciferase expression would be activated through binding of the GAL4-
191	$NF\kappa B$ fusion protein to GAL4 binding sites at the promoter of the luciferase gene. After 24 hrs
192	incubation, cells were lysed by adding $120\mu l$ of medium with an equal volume of Steady-glo, and
193	luciferase activity was measured with a Modulus II Microplate Reader. All experiments were
194	done in triplicate and repeated at least three times.
195	Peptide synthesis. All peptides were synthesized using a standard solid-phase FMOC (9-
196	fluorenylmethoxy carbonyl) method by Scilight Biotechnology LLC (Shanghai, China).
197	Purification was carried out by reversed-phase high-performance liquid chromatography (HPLC),
198	and verified by mass spectrometry. An Ahx-KKK linker was added to all peptides used in
199	circular dichroism (CD) spectroscopy analysis to increase peptide solubility in PBS. Peptides for
200	CD analysis include: CTRL: KWGQYTNSPFLTKGF-Ahx-KKK, a control peptide from a
201	previous SARS study (33); HIV FP (41): AVGIGALFLGFLGAAG-Ahx-KKK; and MERS pFP:
202	SSLLGSIAGVGWTAGLSSFAAI-Ahx-KKK. Peptides for lipid mixing study include: CTRL:
203	KWGQYTNSPFLTKGF; HIV FP: AVGIGALFLGFLGAAG; MERS short FP (sFP):
204	IAGVGWTAGL; MERS mutant FP (mFP): IAGRGRTAGL.
205	CD spectroscopy. CD spectroscopy analysis was performed to study the secondary structure of
206	fusion peptides in increasing trifluoroethanol (TFE) concentrations. CD spectra were acquired on
207	a Jasco J-815 spectropolarimeter (Jasco, Tokyo, Japan) using a 1-nm bandwidth with a 1-nm step
208	resolution from 195 to 260 nm at room temperature. Spectra were corrected by subtraction of its
209	respective solvent. The sample spectrum was smoothed with a Savitsky-Golay filter. The α -

helical content was estimated from the ellipticity value at 222nm, $[\theta]_{222,}$ according to the 210

Accepted N

lournal of Virology

empirical equation of Chen et al (42): %helical content= $100*([\theta]_{222}/-395000\times(1-2.57/n))$, where *n* is the number of peptide bonds.

213 **Preparation of liposomes.** Equimolar amounts of egg phosphatidylethanolamine (PE), egg 214 phosphatidylcholine (PC), and cholesterol (Avanti Polar Lipids, Alabaster, Ala., USA) were 215 dried from chloroform into a thin film by constant flow of nitrogen gas, and rehydrated in Tris 216 buffer (10 mM Tris, 150 mM NaCl, 0.1 mM EDTA, pH7.2) at a concentration of 10 mM. Large 217 unilamellar vesicles (LUV) were prepared by the extrusion procedure (43). Briefly, after ten 218 freeze-thaw cycles, liposomes were extruded 21 times through two stacked polycarbonate 219 membranes with a pore size of 0.1 µm using an Avanti mini-extruder. Liposome with 0.6% 220 (molar ratio) fluorescent resonance energy transfer (FRET) pairs Rho-PE and NBD-PE (Thermo 221 Fisher) were prepared in the same way. 222 **Lipid mixing.** Lipid mixing was determined using the resonance energy transfer assay, described 223 by Struck et al (44) with minor modifications. Briefly, Rho-PE and NBD-PE labeled liposomes 224 were mixed with unlabeled liposomes at a ratio of 1:9. The final lipid concentration was 300 μ M. 225 Specified amounts of various peptides were added to initiate fusion, and changes in fluorescence 226 were monitored at 535 nm with the excitation wavelength set at 465 nm and a slit width of 4 nm 227 using Fluromax-4 (Horiba, Paris, France). The initial residual fluorescence of the labeled and 228 unlabeled vesicles was set up as baseline for 0% fluorescence value (f₀); 100% fluorescence 229 value (f_{100}) was achieved by addition of Triton X-100 to final concentration of 0.2%. The extent

- 230 of lipid mixing was calculated using the following formula: $F_t = (f_t f_0)/(f_{100} f_0) * 100$, where f_t is
- the fluorescence value observed after addition of fusion peptide at time t.
- 232 Results

233	During membrane fusion, the FP of S proteins inserts into the host membranes. We
234	reasoned that CoV FPs might share some common properties with the transmembrane domains
235	(TMD) and that the location of the FP within the S protein might be predictable by using TMD
236	prediction software programs. The FPs of HIV-1 Env and influenza HA have been studied
237	extensively and their locations and amino acid sequences are known. As a proof of concept, we
238	first tested whether TM software programs could accurately identify the FPs of HIV-1Env and
239	influenza H1N1HA proteins. Both the FPs and TMDs of HIV-1 Env and influenza HA were
240	accurately identified by two software programs, TMpred
241	(http://www.ch.embnet.org/software/TMPRED_form.html) and TMHMM
242	(http://www.cbs.dtu.dk/services/TMHMM/) (Data not shown). Subsequently, we applied these
243	two software programs to analyze S proteins of a wide variety of CoVs. The positions of the
244	TMDs of the S proteins of all CoVs studied were correctly identified by both software programs
245	(Fig 1B). In addition, both of these TMD prediction programs identified another region
246	consistently flanked by YT at the N-terminus and PF at the C-terminus in all of the S proteins of
247	the CoVs tested (Figs. 1B and 1C). Although the primary amino acid sequences of this region
248	were not conserved in all of the CoVs studied, they were all Ala or Gly rich, relatively
249	hydrophobic, and contained no charged residues, characteristics shared by the FPs of other
250	Class-I viral fusion proteins (Fig. 1C). We named this region in CoV S proteins the possible FP
251	(pFP).
252	To investigate if the pFP is the functional fusion peptide of CoVs, we selected the S
253	protein of MERS-CoV, a lineage C β -CoV, as an example. The MERS-CoV pFP contains amino
254	acids 949 to 970 (Fig. 1C). Individual and occasionally double amino acid substitutions were
255	introduced at each position of pFP (Fig. 1D). First, we determined if any of the mutations altered

Σ

256	the expression of S protein in 293T cells. Consistent to our previous report (37), two bands
257	around 200 kDa were detected in the cell lysate of 293T cells expressing wild-type (WT) S
258	protein, likely reflecting the different glycosylation of full length S proteins during transport
259	through the Golgi apparatus. However, the cell lysate also contained a significant proportion of S
260	protein cleaved between S1 and S2, around 100 kDa, which was absent in our previous report,
261	but previously reported by the Pohlmann laboratory (45). The difference between this study and
262	our early report likely resulted from different culture conditions, especially sera and media from
263	different vendors. Among the total 44 G, A, V, or R substitutions, 30 (S949G, S950G, L952A,
264	G953A, G953R, S954G, S954R, I955G, A956V, A956R, G957A, G957R, V958G, V958R,
265	I955G/V958G, G959A, G959R, W960G, W960R, V958G/W960G, T961A, A962V, A962R,
266	G963A, G963R, L964G, L964R, S965G, S966G, and A968V) showed no or minor effects on S
267	protein expression or processing when compared to WT(Fig. 2A and Table 1). On the contrast,
268	14 substitutions (L951G, L952G, L951G/L952G, S965R, S966R, F967G, L964F/F967G, A968R,
269	A969V, A969R, I970G, P971V, F972G, and I970G/F972G) showed significant reductions in S
270	protein expression and changes in patterns of S protein processing (Fig. 2A and Table 1). The
271	cleaved S protein species were almost absent in corresponding cell lysates, suggesting that these
272	residues (L951, L952, S965, S966, F967, A968, A969, I970, P971, and F972) may be important
273	for S protein folding and processing.
274	We then investigated if any amino acid substitutions in the pFP influenced transport of
275	the S protein to the cell surface. The 293T cells expressing WT or mutant S proteins were
276	incubated on ice with mouse monoclonal anti-MERS-CoV S protein antibody and analyzed by
277	flow cytometry. The same 30 mutants that showed WT levels of S protein expression in cell
278	lysates also showed WT levels of S protein on the cell surface (Fig. 2B and Table 1). As

 \sum

Journal of Virology

lournal of Virology

279 expected, the mutants with defects in S protein expression and processing also showed only low 280 levels of S proteins on the cell surface.

281 Although the pFP is located within the MERS-CoV S2 subunit, amino acid substitutions 282 in pFP might affect S protein binding to its cognate receptor, hDPP4, by altering the overall 283 conformation of the S protein. To determine whether or not any amino acid substitution in pFP 284 changed S protein binding to hDPP4, we used V5-tagged soluble hDPP4 (shDPP4) to bind 293T 285 cells transiently expressing WT or pFP mutant S proteins of MERS-CoV. The percentage of cells 286 that bound shDPP4 and the level of shDPP4 bound to S protein were quantitated by flow 287 cytometry. The same 30 mutant S proteins that showed WT levels of expression on cell surface 288 also bound to shDPP4 at levels similar to WT S protein (Fig. 3 and Table 1), indicating that these 289 pFP mutations had no effect on receptor binding.

290 Because the fusion peptide is essential for S protein-mediated membrane fusion, we then 291 explored whether any mutation in pFP altered MERS-CoV S protein-mediated cell-cell fusion. 292 To more easily visualize cell-cell fusion or syncytia, the 293T cells expressing S protein were co-293 transfected with a GFP-expressing plasmid, then overlaid with HeLa/hDPP4 cells in the presence 294 of trypsin. Consistent with our previous report (37), WT MERS-CoV S protein induced very 295 large syncytia (Fig 4) and syncytia formation depended on the availability of hDPP4 (data not 296 shown). Among 30 pFP S protein mutants that were expressed well, transported to the cell 297 surface efficiently, and bound to hDPP4 at levels similar to WT, 14 mutants (S949G, S950G, 298 G953A, S954G, A956V, A956R, G957A, V958G, G959A, A962V, G963A, L964G, S965G, and 299 A968V) induced large syncytia in HeLa/hDPP4 cells similar to WT, while 12 mutants (G953R, 300 S954R, I955G, G957R, V958R, I955G/V958G, W960R, V958G/W960G, T961G, A962R,

301 G963R, and L964R) induced little or no syncytia formation, and 4 mutants (L952A, G959R, W960G, and S966G) induced syncytia of much smaller size than WT (Fig 4). These results
indicate that these 13 residues, L952, G953, S954, I955, G957, V958, G959, W960, T961, A962,
G963, L964, and S966, in MERS-CoV S protein are critical for S protein-mediated, receptordependent membrane fusion that would lead to virus infection.

306 To quantify the effect of amino acid substitutions on S protein-mediated syncytia 307 formation, we utilized a luciferase-based quantification assay from a yeast two hybrid system 308 from Stratagene-Agilent Technologies, Inc. Compared to mock transfection and parental HeLa 309 cell controls, fusion of 293T cells expressing WT MERS-CoV S proteins with HeLa/hDPP4 cells 310 increased luciferase activity by about 1,000-fold (Fig.5). The overall pattern of cell-cell fusion 311 induced by pFP mutants in this quantification assay was very similar to our visual method (Fig. 4 312 and 5, Table 1). Among the same 30 mutants showing WT level of expression and receptor 313 binding, 16 mutants (S949G, S950G, L952A, G953A, S954G, A956V, A956R, G957A, V958G, 314 G959A, A962V, G963A, L964G, S965G, S966G, and A968V) retained 50-110% of WT level 315 fusion activity, but 14 mutants (G953R, S964R, I955G, G957R, V958R, I955G/V958G, G959R, 316 W960G, W960R, V958G/W960G, T961G, A962R, G963R, and L964R) reduced S protein-317 mediated cell-cell fusion by more than 85%, indicating that these residues (G953, S954, I955, 318 G957, V958, G959, W960, T961, A962, G963, and L964) are essential for membrane fusion. 319 To determine whether or not any mutation in the pFP of the S protein of MERS-CoV also 320 affected virus entry, we measured transduction of HeLa/hDPP4 cells by lentiviral pseudovirions 321 with envelopes containing either WT or pFP mutant MERS-CoV S proteins. Compared to mock 322 control (pseudovirions without any S protein), the luciferase activity in HeLa/hDPP4 cells 323 increased by more than 10,000 fold following transduction by pseudovirions with WT MERS-324 CoV S proteins (Fig. 6A). Among the same 30 mutants that showed little or no effects on S

325	protein expression or receptor binding (Figs 2A, 2B, 3, and Table 1), 5 mutants (L952A, G953A,
326	G953R, G963R, and S966G) showed marked reduction in S protein incorporation into
327	pseudovirions, whereas the S proteins of the other 25 mutants were incorporated into
328	pseudovirions as well as WT S protein (Fig. 6B). Ten out of these 25 amino acid substitutions,
329	S954R, I955G, G957R, V958R, I955G/V958G, W960R, V958G/W960G, T961G, A962R, or
330	L964R, almost abolished MERS-CoV S protein-mediated, receptor-dependent pseudovirion
331	entry (Fig 6A and Table 1), suggesting that S954, I955, G957, V958, W960, T961, A962, and
332	L964 are essential for virus entry. In addition, G959R mutation also reduced the transduction by
333	more than 95%, indicating that G959 may also be critical for virus entry too (Fig. 6A).
334	Interestingly, although G953A, G953R, and G963R mutants showed reduced but similar levels
335	of S protein incorporation into pseudovirions (Fig. 6B), the infectivity of the pseudovirions
336	differed drastically. While G953A result in only 30% of WT level of pseudovirion entry, the
337	G953R and G963R mutations almost abrogated S protein mediated pseudovirion entry,
338	indicating that G953 and G963 may also be important for virus entry.
339	Because the FPs of most Class-I viral fusion proteins fold predominantly in an α -helix
340	structure in the presence of TFE (13), we used circular dichroism spectroscopy (CD) analysis to
341	investigate whether our MERS-CoV pFP also adapts an α -helical fold. A scrambled peptide
342	from a previous SARS-CoV study (33) was chosen as the negative control, and the FP of HIV-1
343	was selected as the positive control (46). To facilitate the synthesis of the peptides and increase
344	their solubility, an aminocaproic acid (Ahx) linker followed by 3 Lys residues (Ahx-KKK) was
345	added to the C-termini of the peptides. Consistent with the previous reports (46), while the FP of
346	HIV-1 folded as a random coil in Tris/salt buffer, it formed an α -helix in the presence of
347	trifluoroethanol (TFE) (Fig. 7A), a solvent known to stabilize the α -helical formation (47).

Z

Similarly, in the absence of TFE, the pFP of MERS-CoV (SSLLGSIAGVGWTAGLSSFAAI)
folded as a random coil, but with the addition of TFE, it folded as an α-helix. At 95% of TFE,
helical population accounted for more than 64% (Fig. 7A).

351 FPs of Class-I viral fusion proteins also promote membrane fusion when mixed with 352 liposomes. Accordingly, we investigated whether the pFP of MERS-CoV S protein could 353 mediate liposome fusion using a FRET-based assay. To rule out any possible effect of the Ahx-354 KKK tag, we decided to use peptides without any tag. However, because of the technical 355 difficulty of synthesizing the full length pFP without the AHX-KKK tag, we decided to use 356 instead the core sequence of pFP (955IAGVGWTAGL964, called "short pFP" or sFP) in this study, 357 in which almost all of the residues were shown to be essential for cell-cell fusion and virus entry. 358 As shown in Fig 7B, both the FP of HIV-1 and the sFP of MERS-CoV induced membrane fusion 359 of liposome in a concentration dependent manner, whereas the negative control peptide did not 360 induce any significant lipid mixing. Moreover, when we replaced V958 and W960, two residues 361 essential for cell-cell fusion and virus entry, with Arg in the MERS-CoV sFP peptide, the 362 resulting mutant FP (mFP) (955IAGRGRTAGL964) failed to induce any noticeable lipid mixing, 363 confirming that these two residues are essential for lipid mixing. 364 Having established the essential roles in membrane fusion and virus entry of the pFP of 365 the S protein MERS-CoV, a β -CoV in group C, we also investigated the functional role of the 366 pFPs of other CoVs. After examining the alignment of the pFPs of different CoVs (Fig. 1B), we 367 selected the pFPs of the S proteins of SARS-CoV, a lineage B β -CoV, and MHV, a lineage A β -368 CoV, for functional study. While the pFP of SARS-CoV shares the same length and has about 369 1/3 of amino acid sequence identity with the pFP of MERS-CoV, the pFP of MHV differs 370 markedly from that of MERS-CoV in both length and amino acid sequence. Since hydrophobic

371 residues in the pFP of MERS-CoV play important roles in membrane fusion, we selected W868,
372 F870, L876 and I878 of SARS-CoV S protein and M936, F937, P938, P939, and W940 of MHV
373 S protein for further analysis. Single Arg and/or Gly substitutions were introduced into the MHV
374 and SARS-CoV S proteins at these positions.

375 With the exception of I878-related mutants, the pFP mutant S proteins of SARS-CoV 376 were expressed well (data not shown), bound well to its receptor, hACE2, at levels similar to WT 377 (data not shown), and were incorporated into pseudovirions efficiently (Fig 8B). 1878 mutants 378 (I878G, I878R, and double mutant L876G/I878G) were expressed slightly less well in cell 379 lysates (data not shown) and showed reduced S protein incorporation into pseudovirons (Fig. 8B), 380 indicating that I878 may play a role in folding and transport of S protein. Similar to MERS-CoV 381 S protein, all Arg mutations in pFP of SARS-CoV effectively abolished S protein mediated cell-382 cell fusion and virus entry (Fig. 8A, 8C, and Table 1), suggesting that these residues are indeed 383 essential for membrane fusion. Compared to Arg mutations, Gly substitutions in the pFP of 384 SARS S protein had less effect on cell-cell fusion and virus entry. Interestingly, although the 385 single mutants, W868G and F870G, showed almost WT level infection, the double mutant 386 W868G/F870G abolished S protein mediated virus entry (Fig. 8A), confirming that these two 387 residues in S protein of SARS-CoV are important for membrane fusion. 388 All MHV S protein pFP with single Arg substitutions (M936R, F937R, P938R, P939R, 389 and W940R) showed significant reduction in both S-mediated pseudovirion entry (Fig. 8D and

390 Table 1) and cell-cell fusion (Fig. 8F and Table 1). S proteins with M936R substitutions,

however, showed significantly decreased expression of S protein in cell lysate (data not shown)
and incorporation into pseudovirions (Fig. 8E). This may partly explain why M936R mutations

393 had detrimental effects on virus infection and cell-cell fusion. P938R substitution also showed

Journal of Virology

394 slight reduction in expression and virion incorporation of S protein. In contrast, S proteins with 395 F937R, P939R, and W940R substitutions had wild-type levels of S protein expression (data not 396 shown) and incorporation into virions (Fig. 8E), and binding to its cognate receptor (data not 397 shown), mCEACAM1a, but failed to mediate virus entry or syncytia formation. These data 398 indicate that F937, P939, and W940 in the pFP may be essential for MHV S protein-mediated 399 membrane fusion.

> 400 Discussion.

401 Proteolytic priming is one of the early essential steps required to activate the fusion 402 potential of Class-I viral fusion proteins, and is believed to release the restrain on the viral FP 403 leading to exposure of the FP. The proteolytic priming sites for most of the Class-I viral fusion 404 proteins are either immediately proximal to or not far upstream of the viral FP (21-26). Therefore, 405 identifying the key proteolytic priming site may lead to discovery of a viral FP. However, in the 406 case of CoVs, the priming sites are less clear. In an attempt to identify the trypsin cleavage site 407 essential for MERS-CoV S protein mediated trypsin-dependent entry, we mutated several trypsin 408 sites (R884G/R887G, K897G, R921G, and K933G) upstream of the N-terminus of HR-N of 409 MERS-CoV S protein (48, 49). Surprisingly, we found that none of these sites was essential for 410 trypsin-primed MERS-CoV S protein-mediated virus entry (Data not shown). Therefore, there 411 might be built-in redundancy of trypsin priming sites within the MERS-CoV S protein such that 412 cleavage by trypsin might occur at multiple sites and single cleavage at any one of these sites 413 might be sufficient to prime the MERS-CoV S protein. 414 Since there was not a single essential trypsin priming site for the S protein of MERS-CoV,

415 we used an alternative approach to look for the FP of MERS-CoV S protein. Using TMpred and

416 TMHMM software programs to analyze the S2 domains of a variety of CoVs, we identified a

417	region in S2 that is flanked by YT at the N-terminus and PF at the C-terminus and found in all
418	the CoVs studied (Figs 1B and 1C). This pFP region has characteristics of the known FPs of
419	other Class-I viral fusion proteins, Gly or Ala rich, relatively hydrophobic, and without charged
420	residues. This pFP region is located at about 7-23 amino acids upstream of the N-terminus of
421	HR-N of CoV S proteins, depending on where the N-terminus of HR-N was proposed (48-53).
422	Mutagenesis analysis on the pFPs of MERS-CoV, SARS-CoV, and MHV S proteins revealed
423	that this region was essential for S protein mediated syncytia formation and virus entry (Table 1),
424	and strongly support the idea that the pFP of β -CoV S protein is the functional viral fusion
425	peptide. This conclusion is further strengthened by our findings that the synthetic pFP of MERS-
426	CoV S protein formed an α -helix in the presence of TFE and its core short sequence, called sFP,
427	mediated membrane fusion of liposome efficiently (Fig 7), which are characteristics of FPs of
428	other Class-I viral fusion proteins (13). Our results are also consistent with previous biophysical
429	studies on synthetic peptides from SARS-CoV S protein (29, 33) and previous studies in MHV
430	showing that P939 may be critical for membrane fusion and virus infection (54, 55).
431	About one third of the residues located at the C-terminus of the pFP of MERS-CoV S
432	protein appear to play important roles in the stability and processing of the S protein, since
433	introduction of amino acid substitutions into these positions significantly reduced S protein
434	expression, processing and incorporation into pseudotyped virions. Residues close to the C-
435	terminus of the pFP of the SARS-CoV S protein also appear to be important for S protein folding,
436	as replacement of I878 with R or G also decreased S protein expression and incorporation into
437	virions. However, this region might also be important for membrane fusion mediated by S
438	protein. A recent study on SARS-CoV by Liao et al (56) raised the possibility that this region
439	might make direct interactions with the JMD in S protein during membrane fusion.

Z

Σ		
Σ	_	
2	-	_
~		>
	-	

440	Among the amino acid substitutions that we introduced into the pFP of MERS-CoV S
441	protein, Arg had a more profound effect on the function of the pFP of MERS-CoV S protein than
442	Gly, Ala, or Val. Compared to Gly, Ala, and Val, Arg is positively charged and its side chain is
443	significant longer than Gly, Ala, or Val, hence Arg substitution represents a more dramatic
444	change than these amino acids. Moreover, Arg substitution may cause a higher free energy
445	barrier for insertion of FP into membrane (57). Although the exact mechanism(s) of how these
446	substitutions in the pFP abrogate membrane fusion requires further investigation, there are
447	several possibilities. Introduction of mutation(s) into the pFP of MERS-CoV S protein might
448	distort the structure of FP required for membrane fusion similar to G1V and W14A mutations of
449	the FP of influenza HA (58-60). Alternatively, the substitutions might change how the FP inserts
450	into membranes (61-63), or affect the oligomerization of the FPs that is important for membrane
451	fusion (64, 65).
452	Recent studies in influenza HA (66), paramyxovirus F protein (67), and HIV Env (68)

453 reveal that many viral FPs interact and oligomerize with their TMDs in the lipid, which promotes 454 lipid mixing and membrane fusion. Whether the FP and TMD of CoV S protein interact with 455 each other during membrane fusion remains to be further determined. Interestingly, the primary 456 amino acid sequences of the TMDs among different CoVs also do not share high identity (Fig 9). 457 Of note, there is a GXXXG or (small)XXX(small) motif (G, Gly; small, Ala or Gly or Ser; X, any residue) present in all of the pFPs of CoVs. These motifs were initially discovered in human 458 459 glycophorin A and have subsequently been implicated in TMD interactions of more than 20 460 proteins (69). Recent studies in influenza HA and HIV Env have suggested that such GXXXG 461 motifs may also play an important role in FP:FP or FP:TMD interaction (66, 68, 70). There are 462 two GXXXG motifs, GSIAG and GWTAG, within the FP of MERS-CoV. Replacement in

MERS-CoV S protein of any one of these four Gly residues (G953, G957, G959, or G963) with
Arg abrogated the membrane fusion activity of the viral protein. However, whether these
GXXXG motifs in the pPF of MERS S protein are essential for oligomerization or interaction
with the TMD requires further investigation.

467 FPs of some Class-I viral fusion proteins, like HIV Env and influenza HA, share high 468 identity in primary amino acid sequence within each virus family. In marked contrast, this study 469 found no strong amino acid sequence identity among the pFPs of MERS-CoV, SARS-CoV, and 470 MHV. The lengths of the FPs of these three different lineages of β -CoVs also differ significantly. 471 ranging from 18 for MHV to 22 amino acids for MERS-CoV and SARS-CoV (Fig. 1B). Within 472 each lineage of β -CoVs, the pFPs appear to be better conserved (Fig 1B). Although underline 473 mechanism(s) causing the amino acid sequence diverge of FPs of different lineages of β -CoVs 474 remains to be determined, CoV RNA-dependent RNA polymerase error, recombination, and 475 selective pressure during evolution likely contribute to these changes. Previous study of MHV 476 persistent infection in DBT cells showed that accumulation of mutations in fusion peptide and 477 HR-N could lead to extending host range (55). The lack of conservation of the pFP amino acid 478 sequences, however, is not unique for CoVs, as FPs from different paramyxoviruses also lack 479 high identity in their primary amino acid sequences (67). 480 As an internal fusion peptide, how does the activated FP of CoVs fold and mediate

membrane fusion? Recent studies have demonstrated that FPs from different Class-I viral fusion proteins might adapt different conformations to mediate membrane fusion. Depending on the lipid composition, the FPs of HIV-1 Envs and PIV F proteins can fold as either α -helix (67, 71) or β -sheet (65, 72), and both can be fusiogenic. In contrast, the overall conformation of the FPs of Ebola Gp and influenza HA is α -helical in the presence of TFE, but they fold as hairpin-like

487

488

489

490

491 membranes. In the FPs of SARS-CoV and MERS-CoV in β -CoV groups b and c respectively, 492 however, neither a GG nor a PP motif is present. Of note, the FP from group 2 influenza HA also 493 lacks a central GG or PP motif, but instead it forms a hairpin-like structure with G13 at the turn 494 with a Trp and a hydrophilic residue immediately following G13 (74). Interestingly, a similar 495 motif is also present in the pFPs of SARS-CoV and MERS-CoV (Fig 1B). 496 While all known Class-III viral fusion protein have two fusion loops, all known Class-I 497 viral fusion proteins except for CoV S protein only have a single fusion peptide. In the case of 498 CoVs, in addition to pFP found in this study, Manu et al previously found a highly conserved 499 region in SARS-CoV S protein essential for membrane fusion and proposed it as the possible 500 fusion peptide (32), although this sequence lacks some common features of FPs of other Class-I 501 viral fusion proteins, including high Ala/Gly content. Their proposed FP is about 80 amino acids 502 away from the N-terminus of HR-N (50, 52) and about 40 amino acids upstream of the N-503 terminus of our pFP. The possibility of presence of two possible fusion peptides in the S protein 504 of CoV is very intriguing. How these two possible fusion peptides collaborate to mediate 505 membrane fusion requires further investigation. 506 In summary, using a bioinformatics approach we have identified a region in the S 507 proteins of CoVs that has several properties the FPs of several classical Class-I viral fusion 508 proteins. Further molecular biological, biochemical, and biophysical analyses demonstrated that

structure or "knuckle" conformations when they insert into their target membranes (63, 73).

Sequence analysis of the S proteins of different CoVs (Fig 1B) shows the presence in the pFPs of

a Gly-Gly (GG) motif in α -, γ -, and δ -CoVs or a Pro-Pro (PP) motif in β -CoVs in lineage A. As

GG and PP motifs favor the formation of turn or hairpin structures, this observation suggests that

the FPs of some CoVs might also adapt a hairpin-like structure when inserting into host

510 several β -CoVs in different lineages, strongly suggesting that it is the functional FP of these and 511 likely other CoVs. These findings will provide significant clues for future studies of the 512 membrane fusion mechanism of CoVs and may provide a new target for drugs against CoV 513 infections. 514 Acknowledgement 515 This work was supported by grants from Chinese Science and Technology Key Projects 516 (2014ZX10004001), National Natural Science Foundation of China (31470266), MOHRSS of 517 China (9019005), and Institute of Pathogen Biology, CAMS (2014IPB101 and 2015IPB301) to 518 ZQ. This work was also supported by PUMC Youth Fund and the Fundamental Research Funds 519 for the Central Universities (3332013118), and the Program for Changjiang Scholars and 520 Innovative Research Team in University (IRT13007). 521 Figure legend. 522 Figure 1. pFPs of CoVs. (A) Diagram of CoV spike protein. NTD, N-terminal domain; C-523 domain, C-terminal domain; Cleavage site, protease cleavage site separating S1 and S2; pFP, 524 possible fusion peptide; HR-N, N-terminal heptad repeat; HR-C, C-terminal heptad repeat; 525 JMD, Juxtamembrane domain; TMD, transmembrane domain. (B) Locations of pFPs and TMDs 526 of S proteins of representative CoVs predicted by TMPred. (C) Amino acid sequence alignment

this region is essential for receptor-dependent membrane fusion mediated by S proteins of

of the pFPs of different CoVs. (D) Summary of the amino acid substitutions made in the pFP of
MERS-CoV S protein.

529 Figure 2. Analysis of expression of pFP mutants of MERS-CoV S protein in 293T cells. (A)

530 Western blot analysis of expression of WT or mutant MERS S protein in cell lysate. The MERS

531 S protein was detected by using mouse monoclonal anti-MERS S antibody; β -actin was detected

533	MERS-CoV S protein by flow cytometry. MERS-CoV S protein expressing 293T cells were
534	stained with mouse monoclonal anti-MERS S antibody. The amount of wild-type S protein on
535	cell surface was set as 100%. All of the experiments shown were repeated at least three times.
536	Figure 3. Receptor binding by mutant MERS S proteins. MERS-CoV S protein expressing 293T
537	cells were incubated with soluble AVI-tagged hDPP4, followed with polyclonal rabbit anti-AVI
538	antibody and FITC conjugated goat anti-rabbit IgG. The results from wild-type were set as 100%.
539	Figure 4. Cell-cell fusion mediated by WT or mutant MERS-CoV S protein. MERS-CoV S
540	protein expressing 293T cells were transiently transfected with eGFP, then incubated with
541	HeLa/hDPP4 cells for overnight in the presence of trypsin.
542	Figure 5. Quantitative analysis of syncytia formation mediated by WT or mutant MERS-CoV S
543	protein. Cell-cell fusion was quantified by measurement of luciferase activities. Typically, the
544	relative luciferase activities from cell-cell fusion induced by wild-type S protein were over 10^7 ,
545	while the reading for mock control was less than 1000. The experiments were done at least three
546	times.
547	Figure 6. Entry of pseudotype virions with wild-type or mutant MERS S protein. A. Entry of
548	pseudovirions with wild-type or mutant MERS-CoV S proteins into HeLa/hDPP4 cells.
549	Pseudovirus entry was quantitated by luciferase activity at 40 hrs post inoculation. A typical
550	transduction by wild-type S protein pseudoviruses resulted in increase of over 10,000-fold of
551	luciferase activity. The experiments were repeated at least three times and an average of three
552	experiments is shown. B. Detection of wild-type or mutant S protein incorporation into
553	pseudovirions by western blot analysis. MERS S protein was detected using mouse monoclonal
554	anti-MERS S antibody; p24, a gag protein of HIV, was detected using rabbit polyclonal anti-p24

with mouse monoclonal anti-actin antibody. (B) Analysis of surface expression of mutant

 $\overline{\leq}$

556

is shown.

557	Figure 7. Biophysical analysis of synthetic pFP peptide of MERS-CoV. A. CD analysis of
558	secondary structure of pFP of MERS-CoV S protein. CTRL: KWGQYTNSPFLTKGF-Ahx-
559	KKK, a control peptide from previous SARS-CoV peptide study (33); HIV FP:
560	AVGIGALFLGFLGAAG-Ahx-KKK; MERS pFP: SSLLGSIAGVGWTAGLSSFAAI-Ahx-
561	KKK. All peptides were dissolved in PBS, and their CD spectrum was measured in the presence
562	of indicated concentration of TFE. Experiments were done twice and one representative is shown.
563	B. Lipid mixing induced by synthetic pFP of MERS-CoV S protein. LUVs were made with
564	equal moles of PE, PC, and cholesterol. The extent of lipid mixing was determined by
565	monitoring the changes in fluorescence intensity at 535 nm at 37°C upon addition of peptide.
566	Each data point is averaged from three independent experiments, and error bars represent
567	standard deviations of the means. CTRL: KWGQYTNSPFLTKGF; HIV FP:
568	AVGIGALFLGFLGAAG; MERS sFP: IAGVGWTAGL; MERS mFP: IAGRGRTAGL.
569	Figure 8. Effects of mutations at the pFPs of SARS-CoV and MHV on pseudovirus transduction
570	and cell-cell fusion. A, D. Entry of wild-type or mutant SARS-CoV S protein pseudovirions into
571	293/hACE2 cells (A) or MHV S protein pseudovirions into HeLa/mCEACAM1a cells (D).
572	Pseudovirus entry was quantitated by luciferase activity at 40 hrs post inoculation. The
573	experiments were repeated at least three times and average of three experiments is shown. B, E.
574	Detection of wild-type or mutant S protein of SARS-CoV (B) or MHV (E) incorporation into
575	pseudovirions by western blot analysis. SARS S protein was detected using rabbit polyclonal
576	anti-SARS S1 antibody; MHV S protein was detected using goat polyclonal anti-MHV S
577	antibody AO4; p24, a gag protein of HIV, was detected using rabbit polyclonal anti-p24

antibodies. FL S: full length S protein. The experiments were repeated twice and a representative

 \sum

- 578 antibodies. The experiments were repeated at least three times and one representative is shown.
- 579 C, F. Cell-cell fusion mediated by mutant SARS (C) or MHV (F) S proteins. Experiments were
- 580 performed as in Fig. 3B, except that 293/hACE2 cells were used as targets for SARS-CoV S
- 581 protein (C) and HeLa/mCEACAM1a cells were used as targets for MHV S protein (F). An
- 582 average of three experiments is shown.
- 583 Figure 9. Alignment of TMDs of S proteins of representative CoVs.

585 Reference 1

586	1.	Masters PS, Perlman S. 2013. Coronaviridae, p. 825-858. In Knipe DM, Howley PM
587		(ed.), Fields Virology, sixth ed, vol. 1.
588	2.	Viruses ICoTo. 2011. Virus Taxonomy: 2011 Release.
589		http://ictvonline.org/virusTaxonomy.asp?version=2011.
590	3.	Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pohlmann S. 2005.
591		Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus
592		receptor for cellular entry. Proc Natl Acad Sci U S A 102:7988-7993.
593	4.	Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M,
594		Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. 2003. Angiotensin-
595		converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450-
596		454.
597	5.	Raj VS, Mou H, Smits SL, Dekkers DH, Muller MA, Dijkman R, Muth D, Demmers
598		JA, Zaki A, Fouchier RA, Thiel V, Drosten C, Rottier PJ, Osterhaus AD, Bosch BJ,
599		Haagmans BL. 2013. Dipeptidyl peptidase 4 is a functional receptor for the emerging
600		human coronavirus-EMC. Nature 495:251-254.
601	6.	Yang Y, Du L, Liu C, Wang L, Ma C, Tang J, Baric RS, Jiang S, Li F. 2014.
602		Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human
603		transmission of MERS coronavirus. Proc Natl Acad Sci U S A 111:12516-12521.
604	7.	Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT,
605		Holmes KV. 1992. Human aminopeptidase N is a receptor for human coronavirus 229E.
606		Nature 357: 420-422.
607	8.	Williams RK, Jiang GS, Holmes KV. 1991. Receptor for mouse hepatitis virus is a
608		member of the carcinoembryonic antigen family of glycoproteins. Proc Natl Acad Sci U
609		S A 88: 5533-5536.
610	9.	Babcock GJ, Esshaki DJ, Thomas WD, Jr., Ambrosino DM. 2004. Amino acids 270
611		to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for
612		interaction with receptor. J Virol 78:4552-4560.
613	10.	Wong SK, Li W, Moore MJ, Choe H, Farzan M. 2004. A 193-amino acid fragment of
614		the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J
615		Biol Chem 279: 3197-3201.
616	11.	Li F, Berardi M, Li W, Farzan M, Dormitzer PR, Harrison SC. 2006.
617		Conformational states of the severe acute respiratory syndrome coronavirus spike protein
618		ectodomain. J Virol 80:6794-6800.
619	12.	Harrison SC. 2015. Viral membrane fusion. Virology 479-480:498-507.
620	13.	White JM, Delos SE, Brecher M, Schornberg K. 2008. Structures and mechanisms of
621		viral membrane fusion proteins: multiple variations on a common theme. Crit Rev
622		Biochem Mol Biol 43: 189-219.
623	14.	Bertram S, Glowacka I, Muller MA, Lavender H, Gnirss K, Nehlmeier I, Niemeyer
624		D, He Y, Simmons G, Drosten C, Soilleux EJ, Jahn O, Steffen I, Pohlmann S. 2011.
625		Cleavage and activation of the severe acute respiratory syndrome coronavirus spike
626		protein by human airway trypsin-like protease. J Virol 85:13363-13372.
627	15.	Millet JK, Whittaker GR. 2014. Host cell entry of Middle East respiratory syndrome
628		coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad
629		Sci U S A 111: 15214-15219.

630	16.	Belouzard S, Madu I, Whittaker GR. 2010. Elastase-mediated activation of the severe
631	10.	acute respiratory syndrome coronavirus spike protein at discrete sites within the S2
632		domain. J Biol Chem 285: 22758-22763.
633	17.	Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P. 2004.
634		Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-
635		CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci U S A 101:4240-4245.
636	18.	Watanabe R, Matsuyama S, Shirato K, Maejima M, Fukushi S, Morikawa S,
637		Taguchi F. 2008. Entry from the cell surface of severe acute respiratory syndrome
638		coronavirus with cleaved S protein as revealed by pseudotype virus bearing cleaved S
639		protein. J Virol 82:11985-11991.
640	19.	Bertram S, Dijkman R, Habjan M, Heurich A, Gierer S, Glowacka I, Welsch K,
641		Winkler M, Schneider H, Hofmann-Winkler H, Thiel V, Pohlmann S. 2013.
642		TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell
643		entry and is expressed in viral target cells in the respiratory epithelium. J Virol 87:6150-
644		6160.
645	20.	Glowacka I, Bertram S, Muller MA, Allen P, Soilleux E, Pfefferle S, Steffen I,
646		Tsegaye TS, He Y, Gnirss K, Niemeyer D, Schneider H, Drosten C, Pohlmann S.
647		2011. Evidence that TMPRSS2 activates the severe acute respiratory syndrome
648		coronavirus spike protein for membrane fusion and reduces viral control by the humoral
649		immune response. J Virol 85:4122-4134.
650	21.	Gallaher WR. 1996. Similar structural models of the transmembrane proteins of Ebola
651		and avian sarcoma viruses. Cell 85: 477-478.
652	22.	Hernandez LD, White JM. 1998. Mutational analysis of the candidate internal fusion
653		peptide of the avian leukosis and sarcoma virus subgroup A envelope glycoprotein. J
654	22	Virol 72:3259-3267.
655	23.	Delos SE, Gilbert JM, White JM. 2000. The central proline of an internal viral fusion
656	24	peptide serves two important roles. J Virol 74:1686-1693.
657 658	24.	Sanchez A, Yang ZY, Xu L, Nabel GJ, Crews T, Peters CJ. 1998. Biochemical analysis of the secreted and virion glycoproteins of Ebola virus. J Virol 72: 6442-6447.
658 659	25.	Cross KJ, Langley WA, Russell RJ, Skehel JJ, Steinhauer DA. 2009. Composition
660	23.	and functions of the influenza fusion peptide. Protein Pept Lett 16:766-778.
661	26.	Gallaher WR. 1987. Detection of a fusion peptide sequence in the transmembrane
662	20.	protein of human immunodeficiency virus. Cell 50 :327-328.
663	27.	Martin I, Ruysschaert JM. 2000. Common properties of fusion peptides from diverse
664	27.	systems. Bioscience reports 20: 483-500.
665	28.	Guillen J, de Almeida RF, Prieto M, Villalain J. 2008. Structural and dynamic
666	20.	characterization of the interaction of the putative fusion peptide of the S2 SARS-CoV
667		virus protein with lipid membranes. The journal of physical chemistry. B 112: 6997-7007.
668	29.	Guillen J, Kinnunen PK, Villalain J. 2008. Membrane insertion of the three main
669	_>.	membranotropic sequences from SARS-CoV S2 glycoprotein. Biochimica et biophysica
670		acta 1778: 2765-2774.
671	30.	Guillen J, Perez-Berna AJ, Moreno MR, Villalain J. 2005. Identification of the
672	- ••	membrane-active regions of the severe acute respiratory syndrome coronavirus spike
673		membrane glycoprotein using a 16/18-mer peptide scan: implications for the viral fusion
674		mechanism. J Virol 79: 1743-1752.

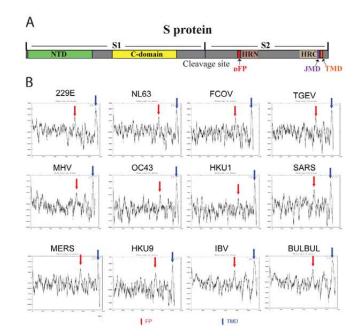
Z

675	31.	Guillen J, Perez-Berna AJ, Moreno MR, Villalain J. 2008. A second SARS-CoV S2
676		glycoprotein internal membrane-active peptide. Biophysical characterization and
677		membrane interaction. Biochemistry 47:8214-8224.
678	32.	Madu IG, Roth SL, Belouzard S, Whittaker GR. 2009. Characterization of a highly
679		conserved domain within the severe acute respiratory syndrome coronavirus spike protein
680		S2 domain with characteristics of a viral fusion peptide. J Virol 83:7411-7421.
681	33.	Sainz B, Jr., Rausch JM, Gallaher WR, Garry RF, Wimley WC. 2005. Identification
682		and characterization of the putative fusion peptide of the severe acute respiratory
683		syndrome-associated coronavirus spike protein. J Virol 79:7195-7206.
684	34.	Luo Z, Weiss SR. 1998. Roles in cell-to-cell fusion of two conserved hydrophobic
685		regions in the murine coronavirus spike protein. Virology 244:483-494.
686	35.	Chambers P, Pringle CR, Easton AJ. 1990. Heptad repeat sequences are located
687		adjacent to hydrophobic regions in several types of virus fusion glycoproteins. J Gen
688		Virol 71 (Pt 12): 3075-3080.
689	36.	Jeffers SA, Tusell SM, Gillim-Ross L, Hemmila EM, Achenbach JE, Babcock GJ,
690		Thomas WD, Jr., Thackray LB, Young MD, Mason RJ, Ambrosino DM,
691		Wentworth DE, Demartini JC, Holmes KV. 2004. CD209L (L-SIGN) is a receptor for
692		severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 101:15748-
693	27	15753.
694	37.	Qian Z, Dominguez SR, Holmes KV. 2013. Role of the spike glycoprotein of human
695		Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia
696	20	formation. PLoS One 8:e76469.
697	38.	Peng G, Sun D, Rajashankar KR, Qian Z, Holmes KV, Li F. 2011. Crystal structure
698 699		of mouse coronavirus receptor-binding domain complexed with its murine receptor. Proc Natl Acad Sci U S A 108 :10696-10701.
700	39.	Zelus BD, Schickli JH, Blau DM, Weiss SR, Holmes KV. 2003. Conformational
700	39.	changes in the spike glycoprotein of murine coronavirus are induced at 37 degrees C
701		either by soluble murine CEACAM1 receptors or by pH 8. J Virol 77:830-840.
702	40.	Qian Z, Wang H, Empig C, Anderson WF, Albritton LM. 2004. Complementation of
704	40.	a binding-defective retrovirus by a host cell receptor mutant. J Virol 78: 5766-5772.
705	41.	Martin I, Schaal H, Scheid A, Ruysschaert JM. 1996. Lipid membrane fusion induced
706		by the human immunodeficiency virus type 1 gp41 N-terminal extremity is determined
707		by its orientation in the lipid bilayer. J Virol 70: 298-304.
708	42.	Chen YH, Yang JT, Chau KH. 1974. Determination of the helix and beta form of
709		proteins in aqueous solution by circular dichroism. Biochemistry 13:3350-3359.
710	43.	Hope MJ, Bally MB, Webb G, Cullis PR. 1985. Production of large unilamellar
711		vesicles by a rapid extrusion procedure: characterization of size distribution, trapped
712		volume and ability to maintain a membrane potential. Biochimica et biophysica acta
713		812: 55-65.
714	44.	Struck DK, Hoekstra D, Pagano RE. 1981. Use of resonance energy transfer to monitor
715		membrane fusion. Biochemistry 20:4093-4099.
716	45.	Gierer S, Bertram S, Kaup F, Wrensch F, Heurich A, Kramer-Kuhl A, Welsch K,
717		Winkler M, Meyer B, Drosten C, Dittmer U, von Hahn T, Simmons G, Hofmann H,
718		Pohlmann S. 2013. The Spike Protein of the Emerging Betacoronavirus EMC Uses a
719		Novel Coronavirus Receptor for Entry, Can Be Activated by TMPRSS2, and Is Targeted
720		by Neutralizing Antibodies. J Virol 87:5502-5511.

Σ

721	46.	Waring AJ, Mobley PW, Gordon LM. 1998. Conformational mapping of a viral fusion
722		peptide in structure-promoting solvents using circular dichroism and electrospray mass
723		spectrometry. Proteins Suppl 2:38-49.
724	47.	Nelson JW, Kallenbach NR. 1986. Stabilization of the ribonuclease S-peptide alpha-
725	40	helix by trifluoroethanol. Proteins 1:211-217.
726 727	48.	Gao J, Lu G, Qi J, Li Y, Wu Y, Deng Y, Geng H, Li H, Wang Q, Xiao H, Tan W, Yan J, Gao GF. 2013. Structure of the fusion core and inhibition of fusion by a heptad
727		repeat peptide derived from the S protein of Middle East respiratory syndrome
729		coronavirus. J Virol 87:13134-13140.
730	49.	Lu L, Liu Q, Zhu Y, Chan KH, Qin L, Li Y, Wang Q, Chan JF, Du L, Yu F, Ma C,
731		Ye S, Yuen KY, Zhang R, Jiang S. 2014. Structure-based discovery of Middle East
732		respiratory syndrome coronavirus fusion inhibitor. Nature communications 5:3067.
733	50.	Bosch BJ, Martina BE, Van Der Zee R, Lepault J, Haijema BJ, Versluis C, Heck
734		AJ, De Groot R, Osterhaus AD, Rottier PJ. 2004. Severe acute respiratory syndrome
735		coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived
736	7 1	peptides. Proc Natl Acad Sci U S A 101:8455-8460.
737	51.	Xu Y, Liu Y, Lou Z, Qin L, Li X, Bai Z, Pang H, Tien P, Gao GF, Rao Z. 2004.
738 739		Structural basis for coronavirus-mediated membrane fusion. Crystal structure of mouse hepatitis virus spike protein fusion core. J Biol Chem 279: 30514-30522.
740	52.	Xu Y, Lou Z, Liu Y, Pang H, Tien P, Gao GF, Rao Z. 2004. Crystal structure of severe
741	52.	acute respiratory syndrome coronavirus spike protein fusion core. J Biol Chem
742		279: 49414-49419.
743	53.	Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. 2003. The coronavirus spike
744		protein is a class I virus fusion protein: structural and functional characterization of the
745		fusion core complex. J Virol 77:8801-8811.
746	54.	Kaufman G, Liu P, Leibowitz JL. 2014. Identification of novel functional regions
747		within the spike glycoprotein of MHV-A59 based on a bioinformatics approach. Virus
748 740	55	Res 189:177-188. McBay WC Baria BS 2008 Aming acid substitutions in the S2 subunit of mayor
749 750	55.	McRoy WC, Baric RS. 2008. Amino acid substitutions in the S2 subunit of mouse hepatitis virus variant V51 encode determinants of host range expansion. J Virol
751		82: 1414-1424.
752	56.	Liao Y, Zhang SM, Neo TL, Tam JP. 2015. Tryptophan-dependent membrane
753		interaction and heteromerization with the internal fusion peptide by the membrane
754		proximal external region of SARS-CoV spike protein. Biochemistry 54:1819-1830.
755	57.	Li L, Vorobyov I, MacKerell AD, Jr., Allen TW. 2008. Is arginine charged in a
756		membrane? Biophysical journal 94:L11-13.
757	58.	Lai AL, Park H, White JM, Tamm LK. 2006. Fusion peptide of influenza
758		hemagglutinin requires a fixed angle boomerang structure for activity. J Biol Chem
759	50	281: 5760-5770.
760 761	59.	Li J, Das P, Zhou R. 2010. Single mutation effects on conformational change and membrane deformation of influenza hemagglutinin fusion peptides. The journal of
761 762		physical chemistry. B 114: 8799-8806.
762	60.	Li Y, Han X, Lai AL, Bushweller JH, Cafiso DS, Tamm LK. 2005. Membrane
764	00.	structures of the hemifusion-inducing fusion peptide mutant G1S and the fusion-blocking
765		mutant GIV of influenza virus hemagglutinin suggest a mechanism for pore opening in
766		membrane fusion. J Virol 79: 12065-12076.

Σ

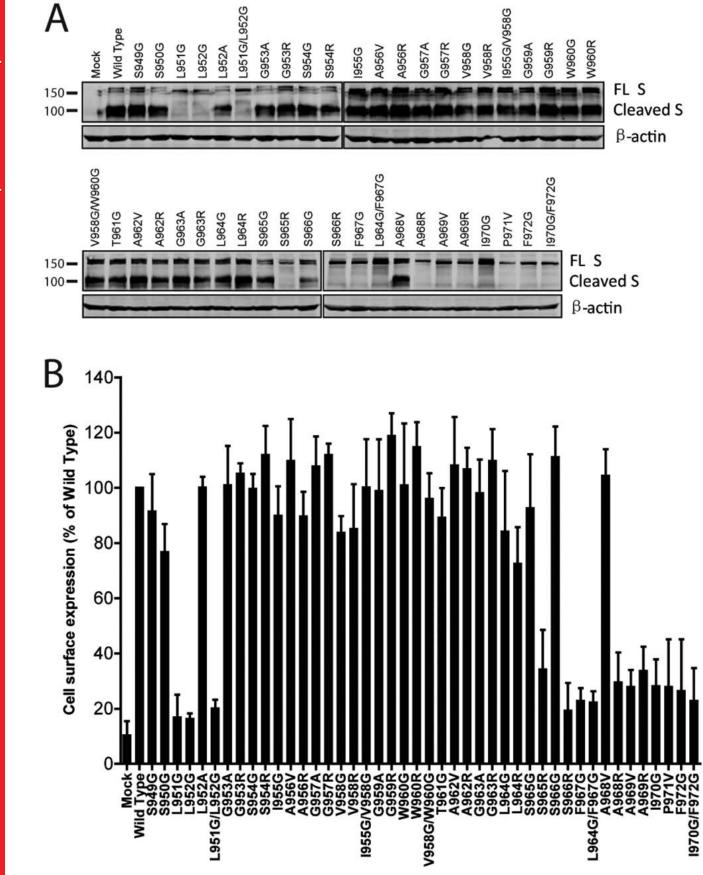

767	61.	Lai AL, Freed JH. 2014. HIV gp41 fusion peptide increases membrane ordering in a
768		cholesterol-dependent fashion. Biophysical journal 106: 172-181.
769	62.	Fuhrmans M, Marrink SJ. 2012. Molecular view of the role of fusion peptides in
770		promoting positive membrane curvature. Journal of the American Chemical Society
771		134: 1543-1552.
772	63.	Gregory SM, Harada E, Liang B, Delos SE, White JM, Tamm LK. 2011. Structure
773		and function of the complete internal fusion loop from Ebolavirus glycoprotein 2. Proc
774		Natl Acad Sci U S A 108:11211-11216.
775	64.	Lau WL, Ege DS, Lear JD, Hammer DA, DeGrado WF. 2004. Oligomerization of
776		fusogenic peptides promotes membrane fusion by enhancing membrane destabilization.
777		Biophysical journal 86: 272-284.
778	65.	Yang J, Prorok M, Castellino FJ, Weliky DP. 2004. Oligomeric beta-structure of the
779		membrane-bound HIV-1 fusion peptide formed from soluble monomers. Biophysical
780		journal 87: 1951-1963.
781	66.	Chang DK, Cheng SF, Kantchev EA, Lin CH, Liu YT. 2008. Membrane interaction
782		and structure of the transmembrane domain of influenza hemagglutinin and its fusion
783		peptide complex. BMC biology 6:2.
784	67.	Donald JE, Zhang Y, Fiorin G, Carnevale V, Slochower DR, Gai F, Klein ML,
785		DeGrado WF. 2011. Transmembrane orientation and possible role of the fusogenic
786		peptide from parainfluenza virus 5 (PIV5) in promoting fusion. Proc Natl Acad Sci U S A
787		108:3958-3963.
788	68.	Reuven EM, Dadon Y, Viard M, Manukovsky N, Blumenthal R, Shai Y. 2012. HIV-
789		1 gp41 transmembrane domain interacts with the fusion peptide: implication in lipid
790		mixing and inhibition of virus-cell fusion. Biochemistry 51:2867-2878.
791	69.	Teese MG, Langosch D. 2015. Role of GxxxG Motifs in Transmembrane Domain
792		Interactions. Biochemistry 54:5125-5135.
793	70.	Faingold O, Cohen T, Shai Y. 2012. A GxxxG-like motif within HIV-1 fusion peptide
794		is critical to its immunosuppressant activity, structure, and interaction with the
795		transmembrane domain of the T-cell receptor. J Biol Chem 287:33503-33511.
796	71.	Chang DK, Cheng SF, Chien WJ. 1997. The amino-terminal fusion domain peptide of
797		human immunodeficiency virus type 1 gp41 inserts into the sodium dodecyl sulfate
798		micelle primarily as a helix with a conserved glycine at the micelle-water interface. J
799		Virol 71: 6593-6602.
800	72.	Sackett K, Shai Y. 2005. The HIV fusion peptide adopts intermolecular parallel beta-
801		sheet structure in membranes when stabilized by the adjacent N-terminal heptad repeat: a
802		13C FTIR study. Journal of molecular biology 350: 790-805.
803	73.	Lorieau JL, Louis JM, Bax A. 2010. The complete influenza hemagglutinin fusion
804		domain adopts a tight helical hairpin arrangement at the lipid:water interface. Proc Natl
805		Acad Sci U S A 107: 11341-11346.
806	74.	Haria NR, Monticelli L, Fraternali F, Lorenz CD. 2014. Plasticity and conformational
807		equilibria of influenza fusion peptides in model lipid bilayers. Biochimica et biophysica
808		acta 1838: 1169-1179.
809		

Σſ

	Expression in cell lysate	Expression on cell surface	Incorporation in viron	Receptor binding	Cell-cell fusion	Pseudovirio transduction
MERC III.						
MERS wild type		+++	+++	+++	+++	+++
S949G	+++	+++	++++	+++	+++	+++
\$950G	+++	+++	++++	+++	+++	+++
L951G	+	-	-	-	-	-
L952G	+	-	-	-	-	-
L952A	++	+++	++	+++	++	+
L951G/L952G	+	-	-	-	-	-
G953A	+++	+++	++	+++	+++	+
G953R	++++	+++	++	+++	-	-
S954G	++++	+++	+++	+++	++++	+++
S954R	++++	+++	+++	+++	-	-
1955G	++++	+++	+++	+++	-	-
A956V	+++	+++	+++	+++	++	+++
A956R	++++	+++	+++	+++	+++	+++
G957A	++++	+++	+++	+++	+++	++
G957R	++++	+++	+++	+++		-
V958G		+++	+++	+++	+++	+++
V958R		+++	+++	+++	-	
1955G/V958G	++++	+++	++++	+++	-	
G959A	++++	+++	++++	+++	++++	++++
G959R	+++	++++	++++	+++		-
W960G	++++	+++	++++	++++	+++	+
W960G	++++				+	+
V958G/W960G	++++	***	***	+++		:
						-
T961G	++++	+++	+++	+++		-
A962V	++++	+++	+++	++++	+++	+++
A962R		+++	+++	+++	+	-
G963A	++++	+++	+++	+++	++	++
G963R		+++	++	+++	-	-
L964G		+++	+++	+++	++++	++
L964R	+++	+++	+++	+++	-	-
S965G	+++	+++	+++	+++	+++	+++
S965R	+	+	+	+	-	-
S966G	++	+++	+	++	+++	+
S966R	+	-	-	+	-	-
F967G	+	+	-	+	-	-
L964G/F967G	+	+	-	+	-	-
A968V	++++	+++	+++	++	+++	++
A968R	+	+	-	+	-	-
A969V	+	+	-	+	+	-
A969R	+	+	+	+	-	-
1970G	+	+	+	+	-	
P971V	+	+	-		-	
F972G	÷					
1970G/F972G	+	+	-	-		
SARS wild type	++++	++++	++++	++++	++++	++++
W868R	++++	ND	++++	ND	+	
W868G	++++	+++	++++	++++	+++	++++
F870R	++++	ND	++++	ND	++	-
F870G						
F870G W868G/F870G	++++	+++	++++	+++ +++	++	+++
	++++	++++	++++		:	:
L876R	++++	ND	++++	ND		
L876G	+++	+++	+++	++++	++	+
1878R	++	ND	++	ND	-	•
1878G	++	+++	++	++++	+	•
L876G/1878G	++	+++	++	+++	•	•
MHV wild type		++++	++++	+++	+++	+++
M963R	+	+	++	++	+	-
F937R		++++	+++	+++	-	-
P938R	++	++	++++	++++	-	-
P939R	++++	+++	+++	+++	+	-
W940R	++++	+++	+++	+++	-	-

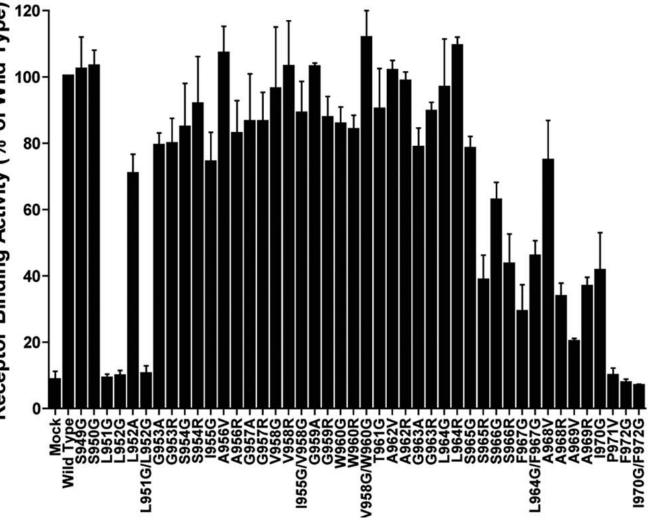
Table I Summary of pFP mutants of betacoronaviruses

Journal of Virology



С																									
Co	V																				C	ire	οı	ip	0
229		74	•	Y.	1	-	TC	GI	AT	-		•			-7	170			76	9		alpl		1-	
NLE		92		YT			TC	CM		6				TS	_ 7	A Z		PF	95		1.00	alpl			
FCc		10			- 65	T	TG	GM	AT	C-			SI	7.6350	- A	77		PF	10			alpl			
TGE		10		YT			AG	GT	TT	C-			ΔТ.	ac	GZ		Н			39		alpl			
MHV		92		YT	1.0	A	TA	AA	M	p.			PW	SA	2	Ac	1.0	PF	94				a A		
BCc		97		YT		A	rs.	AS	LF	p.			PL		La	70	101	PF	99				a A		
OC4		96	57 - L	YT	· 69	0		AS		-			PW	1992	L,	ar	100	PF	98		1.0		a A		
HKU		95		YT			PU		M	p.			PW			he	d		97		12		a A		
SAF		85		YT	- 62	5	US	GT		A	Tal	P P	CA	A	L,			PF	88				a B		
MEF		94		YT			LC.	ST	AC	V	W	TA	CI	SS		A	Ħ		97				a C		
HKU		94		YT	1.1		LC	ST	ac	De	Tal	TA	0.00	SS	_	0.00	Ħ		97				aC		
HKU		87		YT		-	IC	~		SSO		TF		TS	1		H		89				a D		
IBV		75		YT	1.2		TA	SM	AL	C-			155	IA	Ā		ī		77				nm		
	bul	73		YT		L	PC	AM		C.			100	TA	L			PF	75			delt		u	
Bul	DUI	13	'	11		211	10	ALM.	VI	0			H	In	1	2.34	-	e r	15	0	1	Jei	ld		
D																									
	MERS S949G		S	L	L	G	S	Т	A	G	V	G	W	Т	A	G	L	s	S	F	A	A	1	Р	F
	\$950G		G	2	2	-			2	-	2	-	2	-	2	2	-	2		2	÷.	2	2	2	
	L951G	-	2	G	ੁ		ੁ		2	2	2		ੁ	2					č.	2	2	2	-		-
	L952G				G	•	2					•	2	\sim		\sim		-	1			-			2
1.000	L952A		-		A	•	-	٠		•	-	•		-	•	-	•			-		•	-		-
1.951	G/L952G		2	G	G		•	•	2	•	÷.	•	÷.	-	•	•	•			•	2	•	2	•	-
	G953A G953R		2	1	8	GR	2		2		2		÷.	1	3	3	34	1	5	3	Ξ.	3	1	1	1
	6953R \$954G		5		5		G		5		5		5	5		2	2	5	2	5	Ξ.	1	Ξ.		2
	S9540				2		R				2		÷.	2				2	2		Ξ.		2		
	1955G				÷.			G						-		2		÷.				-	÷.		
	A956V	-	-	-	2		2	-	V		2	-	2	2		-		2	÷.	-	2	2	-	-	ੂ
	A956R		2	2	÷	-	-		R	-			4	Ξ.				-		-	4	2	-		2
	G957A			-		٠		•		A		•			•	Ξ.		5		•	2	\mathbf{x}_{i}	2	•	-
	G957R		2	•		•	1	•		R	٠.	•		2	•	2	•	*		•		5	2	•	
	V958G V958R		•	•		•	•	•	•	•	GR	•		•	•	•	•	•	3	•	٠.	•	•	•	
19550	G/V958G		5		2		5	G	-		G	-	5	2		2		-		2	2		5		2
10000	G959A						2					A				2						2			2
	G959R											R								-					-
	W960G	-	-		-		2		-		-	-	G	-		2		-	4	-	-	2	-		2
	W960R		4		-		-				-	1	R	-				-			-	-			
V9580	G/W960G					٠		•	÷	•	G	•	G	۰.	•	•	•	*		Ξ.		•2		•	
	T961G			•	٠	•		•	÷.	•	•	•	•	G	v	1	*	*	1	•		2	÷.	•	
	A962V A962R		2	1	÷.		÷.	1	÷.	÷.			<u> </u>	÷.	R	<u>.</u>	0	5	5	3	÷.	5	1	÷.	÷.
	G963A		2	125	2		2		2					÷.		A		2		2	2		÷.		÷.
	G963R				÷	+	-		-	•	-					R						+			
	L964G		-		-	+	-		-	+	-		-	-			G			•		*			
	L964R					•		•	•		•		-		•	•	R	۰.	э.	•				٠	
	5965G		-					٠	-		-			-	•	•	*	G		•		•	-		-
	\$965R \$966G		•		*	*	•	٠	•	•	•	٠	*	•	•	•		R	G	*		+ 1			-
	S966R		1		÷.	•	1		-					2		÷.	-	*	R			2			÷
	F967G		਼	-	਼		1		਼	2		1	਼	ੁ		2	2	2		G	2	2	2		2
1.964	G/F967G																G		G.	G					
	A968V	(e)	×		÷			۲	-		-					\mathbf{e}		\mathbf{x}			v	\mathbf{x}_{i}		(e)	2
	A968R		1			*		*	*		*					5		5	2	*	R	51	2		
	A969V				2	•		•				•	2	•	•	•	•	•	2	•	3	V	-	•	3
	A969R 1970G					•	1				•	•			1		-	1			2	R	G		
	P971V				2	•	0						2		1	2		2	2	2	÷.	2	-	G	÷.
	F972G								-				-	-						2		-		-	G
1970	G/F972G						-					-				2			-			-	G		G

	nline
(S
(Posted
•	anuscript l
2	\geq
	Accepted

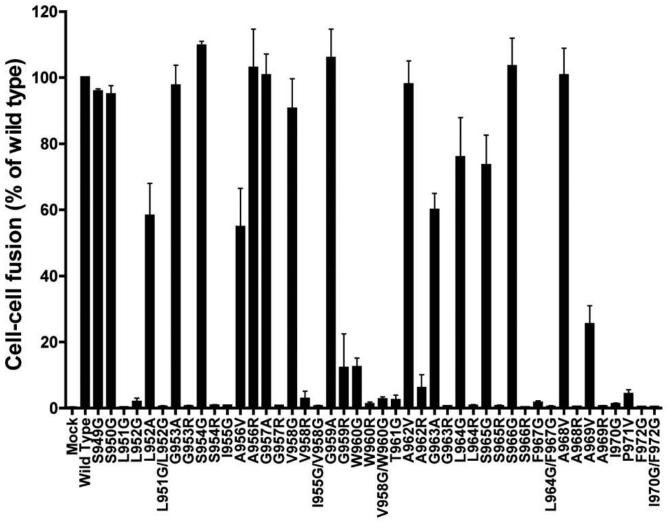

Z

Accepted Manuscript Posted Online

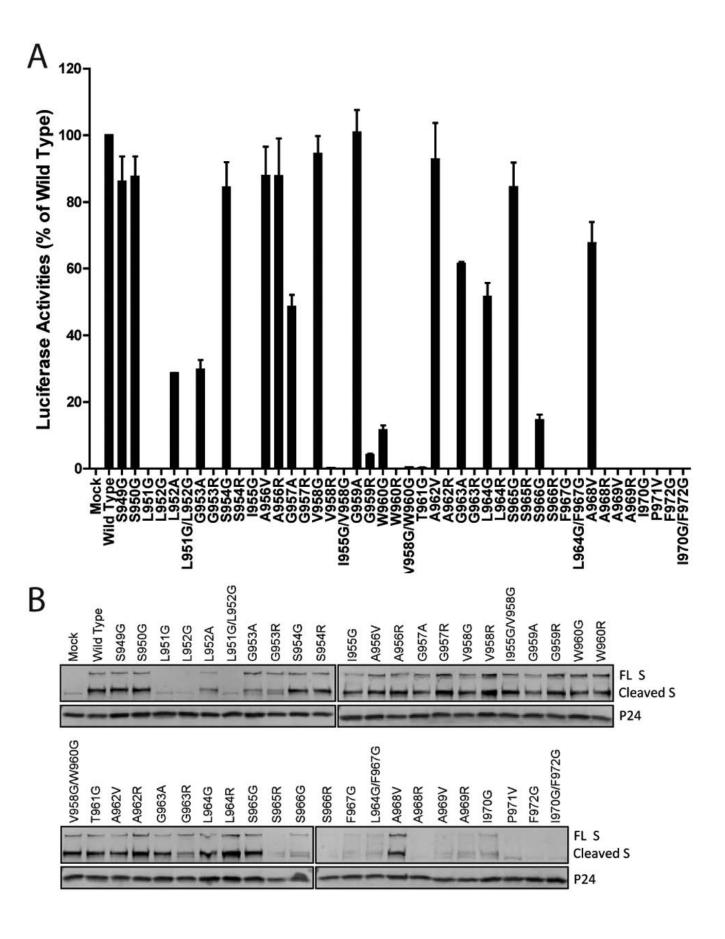
 $\overline{\leq}$

 \leq

Receptor Binding Activity (% of Wild Type)

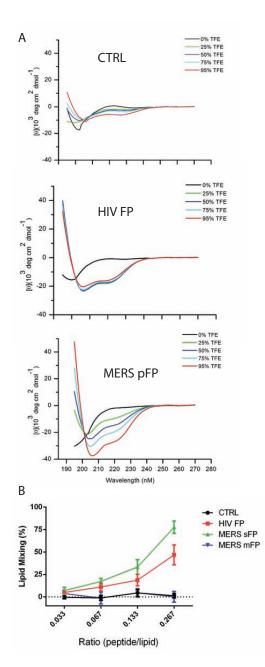

	≻
	တ
	<u>o</u>
	0
2	5
2	
	5
	ō
	nal ol
	ba
	Jrnal (
	urnal (

1970G/F972G

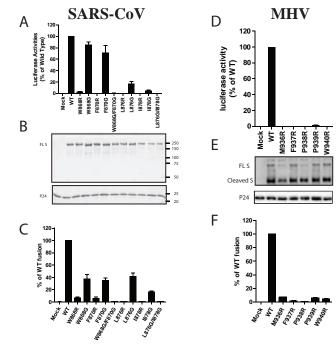

-	_	
	-	
M		
-		

	A Carlos			
	Marine Part	1. 18		
Mock	Wild Type	S949G	S950G	L951G
	12 20 17		A.1. 88.	
L952G	L952A	L951G/L952G	G953A	G953R
100	a tana a tana a		1. S. 4. 1.	
19-1 - 5 -			Printer Sol	
\$954G	\$954R	1955G	A956V	A956R
3 A 4 16 80	AND AND A			1. 1. 1. C. B.
1. 2. 0 . 5		100		Contraction of the
G957A	G957R	V958G	V958R	I955G/V958G
MOINT ON				A CONTRACTOR
Stat al	18-18-18-18-18-18-18-18-18-18-18-18-18-1			State State
G959A	G959R	W960G	W960R	V958G/W960G
Geogl	Geogra	VV960G	VV90UK	vapoG/vvapoG
			and the state of the	
		A March 1993	Card And	19.19
(T961G	A962V	A962R	C963A	G963R
				Charles 1
L964G	Ľ964R	\$965G	\$965R	\$966G
和"我"的话。			Sector Sector	
\$966R	F967G	L964G/F967G	A968V	A968R
		Sector Se		
1. A. A. A.		1999 - 1999 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 -		
A969V	A969R	1970G	P971V	F972G

 \leq



Journal of Virology



Journal of Virology

 $\overline{\leq}$

Σ

	<u></u> . <u>.</u> <u> </u> <u>. </u> . <u></u>
229E	WLCISVVLIFVVSMLLLCCCSTGC
NL63	WLIISVVFVVLLSLLVFCCLSTGC
FCoV	WLLIGLVIVFCIPLLLFCCLSTGC
TGEV	WLLIGLVVIFCIPLLLFCCCSTGC
MHV	WLLIGLAGVAVCVLLFFICCCTGC
BCoV	WLLIGFAGVAMLVLLFFICCCTGC
OC43	WLLICLAGVAMLVLLFFICCCTGC
HKU1	WLLISFSFIIFLVLLFFICCCTGC
SARS	WLGFIAGLI <mark>AIVMVTILLCCM</mark> TSC
MERS	WLGFIAGLVALALCVF <mark>F</mark> ILCCTGC
HKU4	WLGFIAGLVALLLCVF <mark>F</mark> LLCTGC
HKU9	WLAMIAGIVGLVLAVIMLMCMTNC
IBV	WLAIAFATIIFILI <mark>L</mark> GWLFFMTGC
Bulbul	WLAIFLAIA <mark>A</mark> FACIIVTIFL <mark>CTGC</mark>

Z