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Ventilation of general hospital
wards for mitigating infection
risks of three kinds of viruses
including Middle East respiratory
syndrome coronavirus

H.C. Yu, K.W. Mui, L.T. Wong and H.S. Chu

Abstract
This study investigates the effectiveness of ventilation design strategies for general hospital wards in terms of
virus removal capacity. A typical semi-enclosed six-bed general ward of Hong Kong hospitals and three
respiratory viruses, namely Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respira-
tory syndrome coronavirus (SARS-CoV) and H1N1 influenza virus, were chosen for the computational fluid
dynamics (CFD) simulation of airflow field and virus dispersion inside the ward. The results demonstrated that
the location of an infected patient would affect the infection risks to other occupants and healthcare workers
inside the same hospital ward, and an increased air change rate in the ward could reduce the risk of infection
from direct contact and inhalation. It was found that an air change rate of 9 h�1 could effectively minimize the
deposition and floating time of respiratory virus particles while maximizing energy efficiency. This study
should provide a useful source of reference for the hospital management to mitigate the risk of infection
with MERS or other airborne transmitted viruses through better ventilation design strategies.
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Introduction

According to a statistical report by the Hong Kong
Hospital Authority,1 the in-patient discharges and
deaths were continuously increasing from 2003 to
2013. The 2012/2013 overall number of in-patient dis-
charges and deaths was 1,027,005, and that of day-
patient was 516,127 in Hong Kong. Among all patients,
33.4% were day-patients.

To prevent nosocomial or healthcare-associated
infections, especially airborne ones, hospital hygiene
and infection control are necessary. The Centres for
Disease Control and Prevention (CDC) provides guid-
ance to help healthcare personnel to follow standard,
contact, and airborne precautions when caring for hos-
pitalized patients with known or suspected viral infec-
tions.2 Effective prevention measures, e.g. an airborne
infection isolation room (AIIR), are especially crucial
for control of acute respiratory infectious threats.

Proper ventilation also plays a key role in infection
control by minimizing airborne bacteria and viruses.
Both the spread of severe acute respiratory syndrome
coronavirus (SARS-CoV) during the largest nosoco-
mial SARS outbreak in Hong Kong and the recent out-
break of Middle East respiratory syndrome (MERS) in
the South Korean hospitals revealed that airborne dis-
ease transmission through inefficient hospital ward ven-
tilation systems can lead to dire health consequences.3–5

For a balanced ventilation that delivers indoor air
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quality and energy efficiency, general hospital wards
have been designed to meet certain air change require-
ments.2,6–10 For instance, an air change rate (ach) ran-
ging from 2 to 6 h�1 is suggested to help decrease local
mean age of air,11 while 4 h�1 is recommended for
energy savings.12,13 However, as new information
becomes available, current air change requirements
for hospital wards should be re-evaluated and updated.

This study investigates the effectiveness of ventila-
tion design strategies for general hospital wards in
terms of virus removal capacity. A computational
fluid dynamics (CFD) simulation of a typical general
ward of Hong Kong hospitals was conducted and three
respiratory viruses, namely MERS-CoV, SARS-CoV
and H1N1 influenza virus, were chosen. The findings
can be used by the hospital management to minimize
cross-infection risk while reducing energy consumption
of ventilation.

Bioaerosol drag force

The motions of spherical and non-spherical bioaerosols
in a ventilated space can be calculated using equation
(1) by integrating the force balance on the bioaerosols
in terms of the drag force per unit particle mass per
relative velocity FD (N s kg�1 m�1), where g is gravita-
tional acceleration (m s�2), Fx is the additional acceler-
ation force per unit particle mass (N kg�1) if any, vb
and va are the velocities of the virus and air (m s�1),
respectively, �a is the molecular viscosity of air
(kgm�1 s�1), db is the equivalent bioaerosol diameter
(�m), Reb is the Reynolds number for bioaerosols in
an airflow field, �a is the air density (kg m�3) and �b is
the virus density (¼1100 kg m�3).14

dvb
d�
¼ FD va � vbð Þ þ

g �b � �að Þ

�b
þ Fx;

FD ¼
18�a

d2b�b
�

CDReb
24

; Reb ¼
�adb vb � vaj j

�a

ð1Þ

The drag coefficient CD for the bioaerosols is defined
by equation (2)

CD ¼
KD

Reb
; Reb 5 1 ð2Þ

Equations (1) and (2) are used in the CFD simula-
tion to determine the motions of droplet nuclei under a
Lagrangian scheme.

The drag constant for the bioaerosols KD in equation
(2) is given by equation (3)

KD ¼
d2b
2

ð3Þ

Validity of equation (3) was established for equivalent
bioaerosol diameters db¼ 0.69–6.9�m over a bioaerosol
size range and further examined for Bacteriophage Phi
X174 (ATCC 13706-B1) with db¼ 0.054�m. A combined
experimental and simulation method described by Wong
et al.14 was performed. Before the experiment, agar plates
were prepared in such a way that the entire preparation
was covered by the host bacterium Escherichia coli
(ATCC 13706). Plaque assays for bacteriophages were
then conducted. The number of bacteriophages collected
was measured by plate counting.15 Figure 1 shows that
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Figure 1. Bioaerosol drag constant KD against equivalent
bioaerosol diameter db.
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Figure 2. Bioaerosol drag constants and absolute errors for

Bacteriophage Phi X174.
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equation (3) can be extrapolated for predicting the disper-
sion of smaller sized bioaerosols (down to db¼ 0.054�m).
When using KD¼ 0.001458 (Figure 2), the deviation
between simulated and measured fractional counts
inside a ventilated chamber was insignificant (p> 0.99,
paired t-test). The corresponding fractional bias (FB) "1
and normalized mean square error (NMSE) "2 for
KD¼ 0.001458 were 9.2% and �3%, respectively, as illu-
strated in Figure 2.16

Using equation (4), where the projected image area,
length and width are Ab, l1 and l2, respectively, the equiva-
lent bioaerosol diameter db can be determined from elec-
tron micrographs.17,18 Electron micrographs of samples
of MERS-CoV, SARS-CoV, H1N1 influenza virus and
Bacteriophage Phi X174 are shown in Figure 3.19–22

db ¼ 2

ffiffiffiffiffiffi
Ab

�

r
; raspect ¼

max ðl1, l2Þ

min ðl1, l2Þ
ð4Þ

CFD simulation

A typical semi-enclosed six-bed general ward cubicle
(7.5m (L)� 6m (W)� 2.7m (H)) employed for the
CFD simulation is shown in Figure 4. As illustrated
in Figure 5, there were four ceiling air inlets with
mounted diffusers in the cubicle, and the corridor was
the air-outlet. Four different air change rates (i.e.
ach¼ 3, 6, 9 and 13 h�1) were used, while the tempera-
ture and relative humidity (RH) of the supply air were
285K and 80–95%, respectively.23 Six probable viral
emission points, representing the positions of six
patients lying on their respective beds (i.e. Man 1,
Man 2,. . ., Man 6), were chosen as the source locations.
The viruses investigated were MERS-CoV, SARS-CoV
and H1N1 influenza virus. The metabolic rate of a
reclining patient was assumed to be 0.8 MET (i.e.
46.6W m�2).24 Half of the heat (23.3W m�2) trans-
ferred from patient skin surface by convection was
assumed.25 Patient beds were set as rectangular box

Figure 3. Electron micrograph of reference viruses. (a) MERS-CoV19 (b) SARS-CoV20 (c) H1N1 influenza virus21 and (d)

Bacteriophage Phi X174.22
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for the worst scenarios that airflow under the beds was
fully blocked by medical equipment and relation instal-
lations. This arrangement may cause higher numbers of
bioaerosol particle deposited on other patients.

The simulation of airflow field and virus dispersion
inside the ward cubicle was done through the use of
CFD software FLUENT 14. An Eulerian–Lagrangian
framework was used to solve the gas–solid two-phase
flow problem, i.e. an Eulerian scheme for the prediction
of a steady-state airflow field of the ward cubicle, fol-
lowed by a Lagrangian approach for the determination
of virus particle movements.

In the Eulerian framework, a continuous phase of
the induced airflow field was obtained with a second-
order solution scheme. The renormalization group

(RNG) k-e turbulence model was tested to be an appro-
priate choice among the RANS turbulence models, and
therefore, it was adopted to determine the air turbu-
lence in the field. The model offered better accuracy
and stability in cases of low Reynolds number and
near-wall flows, and this model was found suitable for
indoor airflow simulations also.26,27 To couple with the
pressure and velocity fields, the pressure implicit with
splitting of operator (PISO) algorithm was employed,
and the convection term was discretized using a second-
order upwind scheme.

To optimize the simulation quality and speed, three
reference grid sizes namely fine (i.e. 2618 k), moderate
(i.e. 1143 k) and coarse (i.e. 1071 k) were constructed
for determining a suitable mesh size. The fine gird

Figure 4. A six-bed general ward cubicle (dimensions in mm).
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size was with a mesh skewness less than 0.25 to ensure
an excellent cell quality. The moderate and coarse grid
sizes were doubled and quadrupled by a second-order
method for increasing the simulation speed. To assess
the mesh quality using linear grid stretching, the
asymptotic range of convergence casymp applied
was based on the grid convergence indexes (GCIs)
with a relative error of computed average mass flow
rate "rms.

28

If the value of casymp in equation (5), where fs is the
safety factor, rr is the refinement ratio and co is the
theoretical order of convergence, is approximately 1,
then the grid quality is fine.

GCIfine ¼
fs "rmsj j

ðrcor � 1Þ
; GCIcoarse ¼

fs "rmsj jrcor
ðrcor � 1Þ

;

casymp ¼
GCIcoarse
ðGCIfineÞr

co
r

ð5Þ

The GCI analysis results from the simulation were
51%, 37% and 1.187 for GCIcoarse, GCIfine and casymp,
respectively.

In the CFD simulation, the transmission pathway
of virus-laden respiratory droplets expelled by
sneezing was predicted (i.e. di, initial virus-laden
respiratory droplets diameter¼ 8.3�m, vb¼ 50m s�1,
�b¼ 1100 kg m�3 and ns, amount of virus particles
expelled by sneezing¼ 10,000 virus particles).14,29–31

General patient wards are recommended at an RH

30–60%.6 Within a short period of time (<0.1 s) after
emission, the droplets would evaporate to droplet
nuclei.32 These nuclei were the dried-out residual of
droplets possibly containing infectious pathogens.33

Only a small proportion (<10%) of the virus-laden
droplets of a total number of 73,000–1,000,000 droplets
expelled by a vigorous sneeze was assumed; neither
aggregation with other particles nor cluster of virus
would be formed from the dried-out nuclei at such
low concentration.34,35 Lipid-enveloped human corona-
virus 299E would remain alive by a half-life of 67 h at
an RH of 50% and an air temperature of 20�C.36 The
survival rate of the three virus was expected to be 100%
in simulation times less than 100 s. Other details for
simulations and boundary conditions are summarized
in Table 1.

Table 2 exhibits the equivalent bioaerosol diameters
db for the virus droplet nuclei examined in this study.
A one-way coupling was applied in the prediction to
prevent the effect of particles on the continuum airflow.
Each virus particle was tracked separately for its pos-
ition and velocity by a discrete phase model (DPM).
A previous study confirmed that the isotropic dis-
crete random walk (DRW) model was effective and
accurate in modelling bioaerosol dispersion and distri-
bution due to turbulent fluctuations in the flow.37 For a
coagulation effect of bioaerosol particles in this study, a
very low volume fraction (<3000 cm�3) was kept in the
ward cubicle to reduce collisions of the virus particles in
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Figure 5. CFD configurations of a six-bed general ward cubicle.
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a turbulent flow.38,39 Both the amounts of virus par-
ticles exhausted to the corridor ne and deposited on
the ward room surfaces nd were counted.40 A perfect
sink boundary condition was applied to the ward room
surfaces in order that the virus particles impinged onto

the solid surfaces would be perfectly trapped with no
reflection and desorption.41

Deposited ratio

Direct contact with the viruses deposited on ward room
surfaces and inhalation of the viruses suspended in the
air are two potential transmission routes of virus-laden
airborne particles expelled by sneezing.42 The deposited
ratio rd is selected as a measure for evaluating the con-
tact transmission; the movement of sneeze particles can
be represented by equation (6), where re is the exhausted
ratio for particles exhausted to the corridor and ra is the
elapsed ratio for particles suspended in the air

re þ ra þ rd ¼ 1 ð6Þ

Ratios re, ra and rd are given by equation (7), where
ns, ne, na and nd are the amounts of virus particles
expelled by sneezing, exhausted to the corridor, elapsed

Table 1. CFD simulations and boundary conditions.

Computational domain 7.5m (L)� 6m (W)� 2.7m (H),

RNG k-" turbulence model,

standard wall function.

Mesh configuration 1,143,766 cells

Total supply airflow rate 1.24 kg s�1 (for ach¼ 3), 2.48 kg

s�1 (for ach¼ 6), 3.72 kg s�1 (for

ach¼ 9) and 5.37 kg s�1 (for

ach¼ 13), 285K (air

temperature)

Each inlet airflow rate

(0.6m� 0.6m)

0.31 kg s�1 (for ach¼ 3), 0.62 kg

s�1 (for ach¼ 6), 0.93 kg s�1 (for

ach¼ 9) and 1.34 kg s�1 (for

ach¼ 13), 285K (air

temperature)

Four diffuser

(0.6m� 0.6m)

Four-way spread-type, supply jets

had an angle of 15� from ceiling,

adiabatic and reflect boundary

type.

Corridor (6m� 2.7m) Pressure-outlet, 295K (backflow

temperature), adiabatic, escape

boundary type.

Walls, ceiling, floor and

beds

No slip wall boundary, 295K

(surface temperature), adia-

batic, trap boundary type.

Patients No slip wall boundary, 23.3W

m�2, trap boundary.

Patient mouths

(0.05m� 0.05m)

Single-shot release with an upward

exhalation velocity of vb¼ 50m

s�1, initial virus-laden respira-

tory droplet diameter

di¼ 8.3 mm, ns¼ 10,000 virus

particles, density of bioaerosol

particle �b¼ 1100 kg m�3

RNG: renormalization group.

Table 2. Virus information.

Species ATCC

Equivalent

bioaerosol

diameter db (mm)a

Aspect

ratio

(raspect)

Drag

constant KD

Evaporation

time at 0%

RH (s)

Evaporation

time at 50%

RH (s)

Evaporation

time at 90%

RH (s)

MERS-CoV – 0.167� 0.012 1.27 0.013945 3.48� 10�2 9.55� 10�2 1.82� 10�1

SARS-CoV – 0.1375� 0.009 1.052 0.009453 3.48� 10�2 9.55� 10�2 1.82� 10�1

H1N1 influenza virus – 0.124� 0.0001 1.203 0.0199 3.48� 10�2 9.55� 10�2 1.82� 10�1

Bacteriophage Phi X174 13706-B1 0.054� 0.014 1.012 0.001458 – – –

MERS-CoV: Middle East respiratory syndrome coronavirus; SARS-CoV: severe acute respiratory syndrome coronavirus.
aStandard errors shown.
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Figure 6. Description of the bioaerosol removal process in
a general ward.
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Figure 7. Simulation results of the ward with ach¼ 6 h�1. (a) Temperature distribution, (b) air velocity distribution and (c)
flow pathlines from air supply inlets.

Figure 8. MERS-CoV pathways for six source locations with ach¼ 6 h�1. (a) Man 1, (b) Man 2, (c) Man 3, (d) Man 4,
(e) Man 5 and (f) Man 6.
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(with respect to air suspension) and deposited on ward
room surfaces, respectively

re ¼
ne
ns

; ra ¼
na
ns

; rd ¼
nd
ns

ð7Þ

Figure 6 graphs the ratios re, ra and rd against time.
The elapsed time �a (s) required for all virus particles to be
exhausted or to deposit on ward room surfaces can be
determined from the figure as represented by equation (8).

ra �að Þ ¼ 0 ð8Þ

Results and discussion

Airflow field

Figure 7 shows the simulated temperature, air velocity
distribution and the flow pathlines inside the ward with
ach¼ 6h�1. An increasing temperature gradient was
found from the ceiling to the floor inside the ward. As
shown in Figure 7(a), warmer air observed near the
patients (due to body temperature) was diffusing out to
the corridor. The average room temperature was about
296K. Stagnant air, with velocity less than 0.05m s�1,
was found near the window side (i.e. Wall 2) and the
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4, (e) Man 5 and (f) Man 6.
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lower floor level (i.e. below 0.3m) as presented in
Figure 7(b). The flow pathlines in Figure 7(c) confirm
that there was insufficient ventilation to remove any
virus particles in those areas. Generally, the airflow dir-
ection was from the inner part of the ward to the
corridor.

Cross-infection from surface deposition

Figure 8 indicates the potential risks of cross-
infection with MERS-CoV through air pathways from
different infected patients inside the ward. Patients stay-
ing on the same side of an infected patient, especially
the one located next to the corridor (i.e. Man 1 or
Man 2), would have a higher chance of cross-
infection. Two different virus pathway flows in the
simulation due to the asymmetric diffuser locations
are highlighted. Cases exhibited in Figure 8(c) and (e)
show the virus moved along floor surface of the
ward but in cases shown in Figure 8(d) and (f), virus
would pass over nearby patients’ heads, then flew to
the corridor.

Figure 9 exhibits the values of deposited ratio rd and
exhausted ratio re of MERS-CoV on all surfaces inside
the ward with ach¼ 3, 6, 9 and 13 h�1. The results sug-
gested that the deposition of virus particles was depend-
ent on the location of an infected patient, and the virus
particles would deposit mainly back on the source
patient. If the infected patient was located near the cor-
ridor (i.e. Man 1 or Man 2), the virus particles would
likely be exhausted to the corridor. On the contrary, if
the infected patient was located in the inner part of the
ward (i.e. Man 5 or Man 6), the possibility that the
virus particles would deposit on the wall surfaces or
other patients was higher.

Moreover, more virus particles would remain on the
sneezing patient at lower air change rates, especially for
ach¼ 6 h�1 (rd> 0.7 for all source locations), whereas
more virus particles would deposit on the wall surfaces
or be exhausted to the corridor at higher air change
rates (i.e. ach¼ 9 h�1 or 13 h�1). Although the possibil-
ity of cross-infection among patients and healthcare
workers (HCWs) was lower at a higher ach (up to
9 h�1), HCWs should clean all patients and ward sur-
faces regularly, regardless of ach.

Cross-infection from inhalation

Figure 10 graphs the MERS-CoV removal processes in
the ward for the six source locations (i.e. Man 1, Man
2,. . ., Man 6) and ach¼ 3, 6, 9 and 13 h�1. The results
showed that virus particles from an infected patient
located near the corridor were likely to be exhausted
to the corridor. Meanwhile, lower re (i.e. higher rd)
and longer elapsed time �a were associated with the

MERS-CoV particles from the sneezing of an infected
patient located in the inner part of the ward, and that
indicated a higher risk of MERS-CoV infection
through direct inhalation of particles or indirect inhal-
ation of re-suspended particles. Besides, higher re and
shorter �a were found with increasing air change rates.
If ach was increased from 3 to 13 h�1, �a could be shor-
tened by more than 30 s, and the risk of cross-infection
from inhalation could be effectively lowered. Similar
dispersion and deposition results were observed for
SARS-CoV and H1N1 influenza virus particles and pic-
torialized in Figures 11 and 12. The simulation per-
formances demonstrated that virus particles with a
relatively small equivalent bioaerosol diameter
(db� 0.1�m) had similar particle dispersion and depos-
ition characteristics in a general hospital ward.

Figure 13 plots the average elapsed time �a against
ach for MERS-CoV, SARS-CoV and H1N1 influenza
virus. The results showed that �a could be significantly
shortened by increasing the air change rate in the ward
(R2> 0.9). However, the threshold or optimal �a in the
ward could not be determined as the infectious doses
(ID50) of the three viruses varied in wide ranges (i.e.
180, 1800 and 180 virus particles for MERS-CoV,
SARS-CoV and H1N1 influenza virus, respectively, to
cause a 50% infection).43–45 Using the ASHRAE stand-
ard for an AIIR (i.e. ach¼ 12 h�1) as a safety measure,6

the corresponding elapsed time was about 34 s. When
applying the ASHRAE (ach¼ 4 h�1) and CIBSE
(ach¼ 6 h�1) standards for a general patient room, the
average values of �a were found to be 70 s and 61 s,
respectively.6,8 The elapsed time doubled when ach
dropped from 12 to 4 h�1, and thus doubling the poten-
tial inhalation risk. Based on the median value in
accordance with both ASHRAE and CIBSE standards,
the maximum ach in a general hospital ward should be
9 h�1 (�a¼ 48 s) for the needs of maximizing energy effi-
ciency and minimizing infection risk. Furthermore, it
should be noted for other means to minimize the pos-
sibility of cross-contamination in hospital wards, such
as the installation of ultraviolet germicidal irradiation
(UVGI) lamps for the destruction of viral nucleic
acids.46

Conclusion

This study should provide a useful source of reference
for the hospital management to mitigate the risk of
infection with MERS or other airborne transmitted
viruses through better ventilation design strategies.
The results of this study demonstrated that the location
of an infected patient would affect the infection risks to
other occupants and HCWs inside the same hospital
ward, and an increased air change rate in the ward
could reduce the risk of infection from direct contact

Yu et al. 9

 at DREXEL UNIV LIBRARIES on June 5, 2016ibe.sagepub.comDownloaded from 

http://ibe.sagepub.com/


Figure 10. MERS-CoV removal processes for different source locations and air change rates.
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Figure 11. SARS-CoV removal processes for different source locations and air change rates.
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Figure 12. H1N1 influenza virus removal processes for different source locations and air change rates.
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and inhalation. For a typical semi-enclosed six-bed gen-
eral ward of Hong Kong hospitals, an air change rate
of 9 h�1 could effectively minimize the deposition and
floating time of respiratory virus particles while max-
imizing energy efficiency. In order to minimize the pos-
sibility of cross-contamination in hospital wards,
installation of UVGI lamps is also recommended.
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