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Abstract
The Middle East respiratory syndrome coronavirus (MERS‐CoV) is an emerging virus that poses a

major challenge to clinical management.

The 3C‐like protease (3CLpro) is essential for viral replication and thus represents a potential

target for antiviral drug development. Presently, very few data are available on MERS‐CoV 3CLpro

inhibition by small molecules. We conducted extensive exploration of the pharmacophoric space

of a recently identified set of peptidomimetic inhibitors of the bat HKU4‐CoV 3CLpro. HKU4‐CoV

3CLpro shares high sequence identity (81%) with the MERS‐CoV enzyme and thus represents a

potential surrogate model for anti‐MERS drug discovery. We used 2 well‐established methods:

Quantitative structure‐activity relationship (QSAR)‐guided modeling and docking‐based compar-

ative intermolecular contacts analysis. The established pharmacophore models highlight struc-

tural features needed for ligand recognition and revealed important binding‐pocket regions

involved in 3CLpro‐ligand interactions. The best models were used as 3D queries to screen the

National Cancer Institute database for novel nonpeptidomimetic 3CLpro inhibitors. The identified

hits were tested for HKU4‐CoV and MERS‐CoV 3CLpro inhibition. Two hits, which share the

phenylsulfonamide fragment, showed moderate inhibitory activity against the MERS‐CoV 3CLpro

and represent a potential starting point for the development of novel anti‐MERS agents. To the

best of our knowledge, this is the first pharmacophore modeling study supported by in vitro val-

idation on the MERS‐CoV 3CLpro.

Highlights:

• MERS‐CoV is an emerging virus that is closely related to the bat HKU4‐CoV.

• 3CLpro is a potential drug target for coronavirus infection.

• HKU4‐CoV 3CLpro is a useful surrogate model for the identification of MERS‐CoV 3CLpro

enzyme inhibitors.

• dbCICA is a very robust modeling method for hit identification.

• The phenylsulfonamide scaffold represents a potential starting point for MERS coronavirus

3CLpro inhibitors development.
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1 | INTRODUCTION

Middle East respiratory syndrome coronavirus (MERS‐CoV; HCoV‐

EMC/2012) is an emerging virus that causes severe pneumonia illness

and exhibits a high mortality rate.1 The first known human MERS‐CoV

cases occurred in Jordan in 2012, before the causative virus was

detected and identified later during the same year in Saudi Arabia.2,3

Since then, over 1900 laboratory‐confirmed cases have been reported

to the WHO in 27 countries across the world.4

MERS‐CoV is an enveloped virus carrying a genome of positive

sense RNA.5 The virus, which is considered primarily as a zoonotic

virus, belongs to the lineage C of Betacoronavirus, thus is closely

related to the bat coronaviruses HKU4 and HKU5.6-8 Several studies

have shown that bats and camels are the most likely animal reservoir

of MERS‐CoV.9-11 Accumulating evidence points to virus transmission

from dromedary camels to humans.12,13

As the case with many viral diseases, effective therapy against

MERS is lacking and supportive care is the only available treatment

option. Attempts to develop an effective vaccine against

MERS‐CoV infection have led to promising results but are still in

early stages.14-16 The high morbidity and mortality rates of

MERS‐CoV as well as its potential to cause epidemics highlight

the need for novel drug discovery to develop effective and safe

anti‐MERS‐CoV therapeutics.

Several efforts have been undertaken to identify selective potent

small molecules with anti–MERS‐CoV activity.17-21 Promising

compounds were identified via screening of FDA‐approved drugs and

drug‐like small molecules using cell‐based systems and in vitro

screening.17-24

Targets homologous to those identified in the severe acute

respiratory syndrome coronavirus (SARS‐CoV) were investigated in

MERS‐CoV (reviewed in Hilgenfeld and Peiris25).26-29 Among these,

MERS‐CoV main proteinase, also known as 3‐chymotrypsin‐like

protease (3CLpro), is considered an important potential target due to

its essential role in the viral life cycle.26,29 The coronavirus genome

encodes an 800‐kDa replicase polyprotein, which is processed by the

3CLpro to yield intermediate and mature nonstructural proteins

responsible for many aspects of virus replication.5,30,31 The enzyme

started to attract interest as a target for anti–MERS‐CoV drug

development. However, data on the enzyme inhibition are scarce.

The SARS‐CoV 3CLpro has been comprehensively explored as a drug

target, and many potent enzyme inhibitors have been identi-

fied.1,25,32,33 Elaborated structure‐ and ligand‐based in silico models

obtained using the SAR‐CoV 3CLpro inhibitors proved fruitless for the

identification of MERS‐CoV 3CLpro inhibitors (modeling studies

conducted by our group, data not published). Interestingly, the 3CLpro

enzymes from different CoV strains are known to share significant

sequence and 3D structure homology providing a strong structural

basis for designing wide‐spectrum anti‐CoV inhibitors.34,35 Sequence

alignment studies showed that the active site residues of the

HKU4‐CoV 3CLpro that participated in inhibitor binding are conserved

in the MERS‐CoV 3CLpro, which has 81.0% sequence identity36 to

HKU4‐CoV 3CLpro (Figure 1). Therefore, the bat HKU4‐CoV 3CLpro

has been investigated as a surrogate model for anti‐MERS

development.36 Novel peptidomimetic inhibitors of MERS‐CoV 3CLpro
have been identified by using the enzyme from HKU4‐CoV as a

model.36

In this study, we used the set of peptidomimetic HKU4‐CoV

3CLpro inhibitors reported in St. John et al36 to conduct extensive

computational modeling studies. These modeling efforts aim at

establishing pharmacophore models to be used as 3D search queries

for virtual screening of potential MERS‐CoV 3CLpro inhibitors. The

methods used here were developed previously by our group: the

QSAR‐guided pharmacophore modeling37,38 and the docking‐based

comparative intermolecular contacts analysis (dbCICA) pharmacophore

modeling.39,40 Both modeling approaches have been used successfully

to identify potent inhibitors against several drug targets.37-41 The

identified hits were tested in vitro for their inhibitory activity against

the 3CLpro enzymes from HKU4‐CoV and MERS‐CoV.
2 | MATERIAL AND METHODS

All chemicals and reagents were purchased from Sigma‐Aldrich

(United States), unless otherwise stated.
2.1 | QSAR‐guided pharmacophore modeling

2.1.1 | Data preparation and pharmacophore exploration

The structures and biological data of 221 previously identified

HKU4‐CoV 3CLpro inhibitors reported in St. John et al36 (1‐221,

Table S1) were used in modeling.

The bioactivities of these inhibitors were expressed as the

concentration of the test compound that inhibited the activity of

HKU4‐CoV 3CLpro by 50% (IC50, μM). In cases of unavailable IC50

values (ie, 20‐25 and 48‐221, Table S1), the corresponding IC50

estimates were extrapolated based on reported inhibitory percentages

at 100μM assuming linear dose‐response relationships. The logarithms

of measured IC50 (μM) values were used in QSAR‐guided

pharmacophore modeling to correlate bioactivity data linearly to free

energy change. Chiral centers with unknown configuration were

marked as “unknown” so that the inversion these chiral centers is

sampled during conformation generation.

These compounds were used to explore the pharmacophoric

space of HKU4‐CoV 3CLpro through a series of established modeling

steps as has been described previously.38,42-46 The modeling workflow

is detailed in Sections S1 to S5.

2.1.2 | QSAR modeling

QSAR‐guided selection of optimal pharmacophores was conducted

to find an optimal combination of pharmacophore models capable

of explaining bioactivity variation across the whole set of collected

training compounds (1‐221, Table S1).36 QSAR modeling was done

using the genetic function algorithm (GFA) to generate combinations

of descriptors (physicochemical and pharmacophores) (Sections S6

and S7). Subsequently, multiple linear regression (MLR) analyses

were used to assess the qualities of selected descriptor combina-

tions, ie, to explain bioactivity variations within collected inhibitors.

This QSAR modeling was performed using a training set of 177

compounds of the total set of HKU4‐CoV 3CLpro inhibitors and



FIGURE 1 Comparison of the binding site of 3CLpro from HKU4‐CoV and MERS‐CoV. (A) A ribbon presentation of the superimposition of the
HKU4‐CoV 3CLpro complex with a potent inhibitor (blue ribbons and green carbon atoms, 1.8 Å, PDB code 4YOI) and the MERS‐CoV enzyme
(red ribbons and gray carbon atoms, 2.1 Å, PDB code 4YLU), showing the high similarity in protein folding and a close‐up view of the main residues
interacting with inhibitors in HKU4‐CoV and MERS‐CoV 3CLpro binding pockets. The figure was prepared using the DS visualizer. (B) Amino acid
sequence alignment of the 3CLpro from HKU4‐CoV and MERS‐CoV enzyme. The sequence alignment was generated by using Clustal Omega.
Residues strictly conserved have a red background; similar residues are indicated by black bold letters with a yellow background according to a
Risler matrix implemented in ESPript. The symbols above the sequence correspond to the secondary structure of MERS‐CoV3CLpro (PDB code
4YLU; Tomar et al30). The blue stars indicate residues in the binding pocket the enzymes. MERS‐CoV, Middle East respiratory syndrome
coronavirus; PDB, Protein Data Bank
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validated using leave‐one‐out r2 (r2LOO) and predictive r2 (r2PRESS)

against a randomly selected testing set of 44 inhibitors as described

in Sections S6, S7, and S8. The test set was selected by ranking the

total 221 inhibitors according to their IC50 values, and then every

fifth compound was selected for the testing set starting from the

high‐potency end.
2.2 | Docking‐based comparative intermolecular
contacts analysis

Docking studies were performed using a subset of 27 compounds of

the peptidomimetic HKU4‐CoV 3CLpro inhibitors with known

(absolute) stereochemistries (1‐27, Table S1). The 3D coordinates of

HKU4‐CoV 3CLpro were retrieved from the Protein Data Bank (PDB

code: 4YOI, 1.8 Å).36 The protein structure was modified by adding

hydrogen atoms and Gasteiger‐Marsili charges to the protein atoms

using the Discovery Studio (version 2.5.5; Accelrys Inc, San Diego). It

was then used in subsequent docking experiments without energy

minimization.

Docking was conducted using both LibDock47 and CDOCKER.48

LibDock is a site‐feature docking algorithm that docks ligands (after

removing hydrogen atoms) into an active site guided by binding

hotspots.47 While, CDOCKER is a CHARMm‐based simulated
annealing/molecular dynamics method that implements simulated

annealing to search for the most stable docked ligand poses.48 These

docking engines consider the flexibility of the ligand while treat the

receptor as rigid. Details of each docking engine and the corresponding

docking settings are described in Sections S9 to S10. The highest‐

ranking docked conformers/poses were scored using 7 scoring

functions: Jain, LigScore1, LigScore2, PLP1, PLP2, PMF, and PMF04

(Section S11).49-53 The docking‐scoring cycles using both engines were

repeated to cover all possible docking combinations resulting from the

presence (or absence) of crystallographically explicit water molecules

within the binding site.

Taking into account each scoring function in turn, the highest

scoring docked conformer/pose of each inhibitor was chosen to be

used in subsequent comparative intermolecular contacts analysis

(dbCICA) modeling.39,40 This step resulted in 7 docking/scoring

combinations of the 27 compounds each of them scored with a

corresponding scoring function. The docking and scoring cycle was

repeated 2 times to cover all combinations of docking conditions, ie,

the presence or absence of explicit water molecules. The resulting 14

docking/scoring sets were used in dbCICA modeling as described

previously.39,40 Sections S12 to S13 describe details of dbCICA

modeling. Successful dbCICA models were used to guide the manual

building of pharmacophores (Section S14).
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2.3 | Validation and steric refinement of
pharmacophore models

Optimal pharmacophores (both structure and ligand based) were

validated using the receiver operating characteristic (ROC) curve

analysis to assess the ability of each model to correctly classify a group

of compounds into actives and inactives (Section S15).39,40,54

Matthews correlation coefficient (MCC) was also undertaken as an

additional validation.55 Additionally, exclusion spheres were added

using HIPHOP‐REFINE module of Discovery Studio to improve the

ROC properties of QSAR‐guided pharmacophore (Section S8).

2.4 | Virtual screening for new HKU4‐CoV 3CLpro

inhibitors

The selected pharmacophores were used as 3D search queries to

screen the National Cancer Institute (NCI) database56 for new 3CLpro

inhibitors.

Hits captured by the QSAR‐guided pharmacophore were filtered

by the Lipinski criteria to ensure good pharmacokinetic properties57

and the SMILES arbitrary target specification (SMARTS) filter (Section

S16) to remove reactive ligands (ie, alkyl halides or Michael

acceptors).58 Remaining hits were fitted against the corresponding

individual pharmacophores. The fit values were then substituted in

the MLR‐based QSAR models to predict hits' bioactivities (−log(IC50)).

The highest‐ranking hits were selected for in vitro testing using a

voting system to minimize the influence of QSAR‐based predictions

on hit prioritization. In this system, each hit fit value and the hit's

overall QSAR predictions cast a vote of “one” if the value is within

the top 20% of all captured hits, otherwise the vote is “zero.”

Similarly, hits captured from all successful dbCICA‐derived

pharmacophores were pooled together and filtered according to the

Lipinski criteria57 and SMARTS filter.58 The hits were then docked into

HKU4‐CoV 3CLpro binding pocket (4YOI) using the same docking/

scoring conditions of each successful dbCICA model. The resulting

docked poses were then analyzed for critical contacts (according to

successful dbCICA models), and the sums of critical contacts for each

hit compound were used for the prediction of their corresponding

IC50 values. The highest‐ranking hits were selected for in vitro testing

using a similar voting system to that described above: Each docking

solution casts a vote of “one” if the predicted value is within the top

10% of all captured hits, otherwise it casts a vote of “zero.”

2.5 | Protein expression and purification

MERS‐CoV 3CLpro was expressed through auto‐induction in

Escherichia coli BL21‐DE3 cells in the presence of 100 μg/mL of

carbenicillin as described previously.30,59 Cells were harvested by

centrifugation at 5000g for 20 minutes at 4°C, and the pellets were

stored at −80°C until further use. MERS‐CoV 3CLpro purification was

performed using consecutive steps of hydrophobic‐interaction

chromatography, DEAE anion‐exchange chromatography, Mono S

cation‐exchange chromatography, and size‐exclusion chromatography

as described previously.30 HKU4‐CoV 3CLpro was produced and

purified using a modified protocol from Agnihothram et al.60 Final

protein yield was calculated based on the measurement of total
activity units (μM product/min), specific activity (units/mg), and

milligrams of protein obtained (BioRad protein assay) after each

chromatographic step.

2.6 | Inhibition assays

Inhibition assays were conducted as described previously.36 Each of

the acquired hits was screened for inhibition of HKU4 3CLpro and

MERS 3CLpro at a concentration of 40μM in duplicate assays

containing the following assay buffer (50mM HEPES, 0.1 mg/mL

BSA, 0.01% TritonX‐100, 2mM DTT). Compound 1 (the most potent

compound in the training set; Table S1; St. John et al36,table 1A) was

used as a positive control. The assays were conducted in Costar

3694 EIA/RIA 96‐Well Half Area, Flat Bottom, Black Polystyrene

plates (Corning, New York). A total of 1 μL of 100X inhibitor stock

in dimethyl sulfoxide (DMSO) was added to 79 μL of enzyme in

assay buffer, and the enzyme‐inhibitor mixture was incubated for

5 minutes. The reaction was initiated by the addition of 20 μL of

10μM UIVT3 substrate, a custom synthesized Förster resonance

energy transfer substrate peptide with the following sequence:

HilyteFluor 488‐ESATLQSGLRKAK‐QXL520‐NH2, producing final

concentrations of 250nM HKU4‐CoV 3CLpro, 500nM MERS‐CoV

3CLpro, and 100μM UIVT3 substrate. The fluorescence intensity of

the reaction was then measured over time as relative fluorescence

units (RFUt) for a period of 10 minutes, using an excitation wave-

length of 485 nm and bandwidth of 20 nm and monitoring emission

at 528 nm and bandwidth of 20 nm using a BioTek Synergy H1 mul-

timode microplate reader. The inhibition of the HKU4‐CoV 3CLpro

and MERS‐CoV 3CLpro by hit compounds was monitored by follow-

ing the change in RFUs over time, using the initial slope of the prog-

ress curve to determine the initial rate (Vi). The percent inhibition of

each 3CLpro enzyme was determined using the following equation:

%Inhibition ¼ 1−
Inhibited3CLProRFU=s−BackgroundRFU=s

� �

Uninhibited3CLProRFU=s−BackgroundRFU=s
� �

2
4

3
5×100:

(1)

The IC50 values were determined at an ambient temperature from

100‐μL assays performed in triplicate in the following buffer: 50mM

HEPES, 0.1 mg/mL BSA, 0.01% TritonX‐100, 2mMDTT. Kinetic assays

were conducted in Costar 3694 EIA/RIA 96‐Well Half Area, Flat

Bottom, Black Polystyrene plates (Corning, NY). Each inhibitor was

tested at concentrations ranging from 2.5μM to 400μM. A total of

1 μL of 100X inhibitor stock in DMSO was added to 79 μL of enzyme

in assay buffer, and the enzyme‐inhibitor mixture was incubated for

5 minutes. The reaction was initiated by the addition of 20 μL of

10μM UIVT3 substrate, producing final concentrations of 250nM

HKU4‐CoV 3CLpro, 500nM MERS‐CoV 3CLpro, and 2μM UIVT3

substrate. The fluorescence intensity of the reaction was then

measured over time as RFUt for a period of 10 minutes, using an

excitation wavelength of 485 nm and bandwidth of 20 nm and

monitoring emission at 528 nm and bandwidth of 20 nm using a BioTek

Synergy H1 multimode microplate reader. The percent inhibition of the

3CLpro enzymes was then plotted as a function of inhibitor concentra-

tion. The SigmaPlot Enzyme Kinetics Wizard was used to fit the
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triplicate percent inhibition data and associated standard error to a

nonlinear Michaelis‐Menten type regression model and determine

the IC50 for each enzyme using the following equation:

%Inhibition ¼ %Imax× Inhibitor½ �
IC50 þ Inhibitor½ �

� �
; (2)

where %Imax is the percent maximum inhibition of 3CLpro and the error

in IC50 values was determined as the error in the fitted parameter.

Controls were performed, in which the enzyme, the substrate, or

both was/were omitted. Fluorescence attenuation controls were

carried by adding the inhibitors to the cleaved substrate in a reaction

mixture identical to that used in the inhibition assays.
3 | RESULTS AND DISCUSSION

3.1 | Ligand‐based approach: QSAR‐guided
pharmacophore modeling

The pharmacophoric space of 221 HKU4‐CoV 3CLpro inhibitors was

extensively explored through 112 HYPOGEN automatic runs per-

formed on 14 carefully selected training subsets comprising 14 to

22 compounds (Section 2.1 and Tables S1 and S2). The training

compounds in each subset were selected in such a way to ensure

that each set represent a common binding mode and guarantee that

bioactivities differences among its members are attributable to the

presence or absence of pharmacophoric features. Applying this

strategy allows an effective exploration of the pharmacophoric

space of HKU4‐CoV 3CLpro inhibitors and helps to identify

pharmacophoric hypotheses representing all possible binding modes

assumed by 3CLpro.38,42-46 These runs resulted in 677 successful

pharmacophore models, which were then clustered using the hierar-

chical average linkage method available in CATALYST. The best 68

representative models were used in subsequent QSAR modeling

(Section 2.1).
FIGURE 2 Experimental versus predicted bioactivities for the training and
QSAR models: (A) Equation 3 and (B) Equation 4. The solid line is the regre
test compounds, respectively, whereas the dotted lines indicate arbitrary e
The fit values obtained by mapping the 68 representative

pharmacophores against the HKU4‐CoV 3CLpro inhibitors were

enrolled together with a selection of 2D descriptors as independent

variables in QSAR analysis.

Genetic function algorithm combined with MLR analyses was used

to select different combinations of pharmacophores and 2D molecular

descriptors that are capable of explaining bioactivity variation among

collected inhibitors.

However, all attempts to achieve statistically successful QSAR

models failed, prompting the use of ligand efficiency [LE = −log(IC50)/

heavy atom count] as an alternative response variable instead of

−log(IC50).
61-64 The best QSAR models are summarized in Equations 3

and 4. Figure 2A, B show the corresponding scatter plots of experi-

mental versus estimated bioactivities for training and testing inhibitors.

LE ¼ −0:12þ 1:98×10−3 AromaticBondsð Þ þ 5:95×10−4 Dipoleð Þ
−1:22×10−3 DipoleXð Þ −6:64×10−4 DipoleYð Þ
−9:7×10−2 LUMOð Þ þ 2:22×10−3 Hypo K−T5−3ð Þ½ �
þ4:73×10−3 Hypo L−T5−2ð Þ½ �

n ¼ 177; r2 ¼ 0:637; F−statistic ¼ 42:408; r2LOO ¼ 0:572; r2PRESS ¼ 0:675:

(3)

LE ¼ −0:11þ 1:99×10−3 AromaticBondsð Þ−9:53×10−4 DipoleXð Þ
−6:58×10−4 DipoleYð Þ−9:30×10−2 LUMOð Þ
þ4:89×10−3 Hypo L−T5−2ð Þþ2:39×10−3Hypo N−T1−1ð Þ

h i
n ¼ 177; r2 ¼ 0:625; F−statistic ¼ 47:298; r2LOO ¼ 0:584; r2PRESS ¼ 0:647:

(4)

where n is the number of training compounds used to generate this

equation, F is Fisher statistic, r2LOO is the leave‐one‐out

cross‐validation correlation coefficient, and r2PRESS is the predictive r2

determined for 44 randomly selected test compounds. AromaticBonds

is the number of aromatic bonds in the molecule, Dipole, DipoleX,

and DipoleY are dipole moment descriptors that indicate the

strength and orientation behavior of a molecule in an electrostatic

field, LUMO is the energy of the lowest unoccupied molecular

orbital,65 Hypo(L‐T5‐2), Hypo(K‐T5‐3), and Hypo(N‐T1‐1) represent

the fit values of the training compounds against corresponding
testing compounds. Predicted bioactivities calculated using the best
ssion line for the fitted and predicted bioactivities of training and
rror margins.
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pharmacophores (seeTable S3). Figure 3 shows the 3 pharmacophores

and how they fit the most potent training compound

(1, IC50 = 0.33μM36).

The appearance of AromaticBonds descriptor combined with

positive slopes in both QSAR equations indicates that HKU4‐CoV

3CLpro inhibitory activity is directly proportional to the number of

aromatic rings in the inhibitor structure. This is to be expected, as

the binding pocket is rich in aromatic amino acids (His41, His166,

His175, Tyr54, and Phe143). Apparently, ligands' aromatic rings stack

against these aromatic residues in the binding pocket is likely to lead

to a high binding affinity. However, the emergence of several dipole

moment descriptors (Dipole, DipoleX, and DipoleY) combined with

positive and negative regression coefficients in Equations 3 and 4 is
FIGURE 3 Pharmacophoric features of the QSAR‐guided pharmacophores
blue spheres: Hbic; purple‐vectored spheres: HBD; and orange‐vectored sp
Hypo(K‐T5‐3/N‐T1‐1), (D) Refined Merged‐Hypo(K‐T5‐3/N‐T1‐1), and (E)
3CLpro (compound 1, IC50 = 0.33μM, PDB code 4YOI, 1.8 Ǻ). (F) Ligand co‐
co‐crystallized ligand. Arrows point to closely positioned common features
coordinates of these pharmacophores are shown in Table S6. HBA, hydrog
suggestive of an obscure role of ligands' dipole moments in binding

within the enzyme‐binding pocket.

The emergence of LUMO in Equations 3 and 4 combined with

negative slopes suggests that ligand/HKU4‐CoV 3CLpro affinity favors

electrophilic ligands, perhaps due to a π‐stacking against certain

electron‐rich aromatic centers in the binding pocket (eg, the aromatic

rings of Tyr54 and Phe143).

The emergence of 3 pharmacophores—Hypo(K‐T5–3), Hypo

(N‐T1–1), and Hypo(L‐T5–2)—in Equations 3 and 4 suggests possible

multiple or complementary binding modes exhibited by ligands within

the binding pocket. Receiver operating characteristic analysis of the 3

pharmacophores shows that Hypo(K‐T5‐3) and Hypo(N‐T1‐1) are sig-

nificantly superior to Hypo(L‐T5‐2) (Table 1). Furthermore, MCC of the
and the corresponding merged model: green‐vectored spheres: HBA;
heres: RingArom, (A) Hypo(N‐T1‐1), (B) Hypo(K‐T5‐3), (C) Merged‐
Hypo(L‐T5‐2) fitted against co‐crystallized ligand within HKU4‐CoV
crystallized within HKU4‐CoV 3CLpro and the chemical structure of the
in Hypo(N‐T1‐1) and Hypo(K‐T5‐3) allowing for merging. The 3D
en bond acceptor; HBD, hydrogen bond donor



TABLE 1 ROC and MCC performances of QSAR‐guided
pharmacophores

Pharmacophore Model ROC‐AUC ACC SPC TPR MCC

Hypo(L‐T5‐2) 0.78 0.09 0.05 1.00 0.048

Hypo(K‐T5‐3) 0.78 0.52 0.50 0.74 0.099

Hypo(N‐T1‐1) 0.81 0.63 0.63 0.63 0.109

Hypo(K‐T5‐3/N‐T1‐1) 0.93 0.88 0.90 0.52 0.263

Refined Hypo(K‐T5‐3/N‐T1‐1) 0.94 0.89 0.91 0.48 0.262

Abbreviations: ACC, overall accuracy; AUC, area under the curve; MCC,
Matthews correlation coefficient; ROC, receiver operating characteristic;
SPC, overall specificity; TPR, overall true positive rate.
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3 pharmacophores reflects the very weak classification abilities of

Hypo(L‐T5‐2) (Table 1).

The very poor classification power of Hypo(L‐T5‐2) prompted us

to exclude it from subsequent modeling efforts. However, Hypo(K‐

T5‐3) and Hypo(N‐T1‐1) (Figure 3A,B) have 3 pharmacophoric features

in common: hydrophobic (Hbic), ring aromatic (RingArom), and hydro-

gen bond acceptor (HBA) features. The close resemblance between

these 2 pharmacophores combined with their equivalent contributions

to bioactivity (as indicated by their slopes in QSAR Equations 3 and 4)

suggest that they might represent a common binding mode assumed

by ligands within the HKU4‐CoV 3CLpro binding pocket. Therefore,

these 2 pharmacophores were merged in a single binding model

(Hypo(K‐T5‐3/N‐T1‐1) (Figure 3).

Interestingly, Hypo(K‐T5‐3/N‐T1‐1) showed noticeable improve-

ment in distinguishing actives from decoys as indicated by the ROC

analysis and MCC values (Table 1). Merging pharmacophores that

share common features has been reported to improve the perfor-

mance of pharmacophores in capturing active molecules.66 Addition-

ally, Hypo(K‐T5‐3/N‐T1‐1) was further modified by adding exclusion

spheres (Section S8 and Table S6) to further enhance its ROC profile

(Table 1). Exclusion volumes resemble inaccessible regions within the

binding site. Figure 3D shows the sterically refined version of

Hypo(K‐T5‐3/N‐T1‐1) complemented with eight exclusion volumes.

Moreover, Hypo(K‐T5‐3/N‐T1‐1) maps the most potent ligand 1

(IC50 = 0.33μM) in a way that closely resembles the interactions

observed in the co‐crystallized structure of the same compound with

HKU4‐CoV 3CLpro (4YOI) (Figure 3). The close proximity between

the ligand's thiophenoyl moiety and the sulfide of Met25 (Figure 3F)

suggests the presence of a mutual hydrophobic interaction, which

correlates with mapping the same ring against a Hbic feature in

Hypo(K‐T5‐3/N‐T1‐1) (Figure 3C). Similarly, mapping the carbonyl

of the same thiophenoyl moiety against HBA feature in Hypo(K‐T5‐3/

N‐T1‐1) (Figure 3C) agrees with the hydrogen bonding interaction

connecting this carbonyl to the thiol of Cys145 (Figure 3F). Likewise,

the hydrogen bonding interaction connecting the amidic NH of the

ligand to the peptidic carbonyl of His41 via bridging water molecule

agrees with mapping the same NH against hydrogen bond donor

(HBD) features in Hypo(K‐T5‐3/N‐T1‐1) (Figure 3F). Mapping the

ligand's benzotriazole ring against RingArom feature in Hypo(K‐T5‐3/

N‐T1‐1) (Figure 3C) correlates with stacking this ring system against

the peptide amide connecting Cys145 and Leu144 in the binding

pocket (Figure 3F). Finally, the hydrogen bonding interaction anchoring

the ligand's tertiary amide carbonyl to the peptide NH of Glu169
corresponds to fitting the same carbonyl against HBA feature in

Hypo(K‐T5‐3/N‐T1‐1) (Figure 3C). These findings showed that

Hypo(K‐T5‐3/N‐T1‐1) represents a valid binding mode exhibited by

the ligands within the binding pocket of HKU4‐CoV 3CLpro. These

interactions, highlighted by the pharmacophoric features within this

model, are very likely to be critical for ligand‐binding affinity.
3.2 | Structure‐based approach: dbCICA modeling

Structure‐based pharmacophore models for HKU4‐CoV 3CLpro were

obtained by using dbCICA. In this approach, a subset of inhibitors

(1‐27, Table S1) were docked into the HKU4‐CoV 3CLpro binding

pocket using LibDock,47 and CDOCKER48 (Section 2.2). The highest‐

ranking conformers/poses based on each scoring function were

aligned together to construct a corresponding dbCICA model. Genetic

algorithm was then used to search for the best combination of ligand‐

receptor intermolecular contacts capable of explaining bioactivity

variation across the training compounds. Table 2 shows the contacts

distance thresholds, number of positive and negative contacts, and

statistical criteria of the best dbCICA models. Table 3 shows the critical

binding site contact atoms proposed by optimal dbCICA models. The

highest‐ranking dbCICA models exhibited excellent statistical criteria

and were anticipated to act as good templates for building correspond-

ing pharmacophore models (Table 2). Figure 4 shows how dbCICA

model SB‐1 (Tables 2 and 3) was converted into its corresponding

pharmacophore model Hypo(SB‐1) as an example. The emergence of

significant positive contact atoms at Pro45 and HOH225 (Figure 4A)

combined with the consensus among potent docked ligands to

position hydrophobic alkyl, cycloalkyl, or aromatic rings nearby

(within 3.5 Å from Pro45 and HOH225, Figure 4C) prompted us to

place Hbic feature onto these ligand groups (Figure 4D). It is likely that

hydrophobic fragments of the ligands interact with the side chain of

Ala46.

Similarly, the emergence of the amidic NH of Gln192 as significant

positive contact in SB‐1 combined with agreement among docked

potent training compounds on placing their central benzene rings near

to this contact suggested placing an Hbic feature onto these benzene

ligand fragments. Clearly, these rings are involved in hydrophobic

interaction with the nearby thiol of Cys145 instead of π‐stacking

(as the nearest aromatic amino acid residue is His41 at about 4.5 Ǻ

away). This explains our decision to place Hbic feature onto this region

of the ligands (ie, rather than RingArom feature).

Likewise, the appearance of His166 and HOH241 as positive

contact points combined with agreement among potent hits to

position their benzotriazoles close by suggested placing a hydropho-

bic aromatic (HbicArom) feature onto these benzotriazole moieties

(Figure 4E). The reason for adding an HbicArom feature onto these

rings instead of a vectored RingArom feature is because the

benzotriazoles, although docked near to the imidazole of His166, it

did not exhibit typical π‐stacking alignment with this residue. In

contrast, the appearance of positive contacts at His41 and ASP190

combined with a consensus among docked potent inhibitors to pro-

ject their thiophene rings close to the nearby imidazole of His41

suggests a mutual π‐stacking interaction involving the electron‐rich

ligands' thiophenes and electron‐deficient His41 imidazole. This



TABLE 2 The highest ranking dbCICA models and their corresponding parameters and statistical criteriaa

Model Docking Engine Scoring Function Positive Contactsb Negative Contactsc r227
d r2LOO

e r25‐fold
f F statistic

SB‐1 CDOCKER PMF 9 10 0.92 0.91 0.91 291.39

SB‐2 CDOCKER PMF 5 5 0.88 0.86 0.83 180.4

SB‐3 LibDock PLP2 5 10 0.90 0.88 0.87 221.48

SB‐4 LibDock PLP2 8 5 0.91 0.89 0.89 239.61

SB‐5 LibDock Lig2 5 5 0.86 0.84 0.84 147.68

Abbreviation: dbCICA, docking‐based comparative intermolecular contacts analysis.
aAll successful models listed herein were generated by docking the ligands into the binding site in the presence of crystalographically explicit water mole-
cules and at ligand/binding site contact distance thresholds of 3.5 Ǻ (Section S12).
bOptimal number of combined (ie, summed) bioactivity‐enhancing ligand/binding site contacts.
cOptimal number of bioactivity‐disfavoring ligand/binding site contacts.
dNon–cross‐validated correlation coefficient for 27 training compounds.
eCross‐validation correlation coefficients determined by the leave‐one‐out technique.
fCross‐validation correlation coefficients determined by the leave‐20%‐out technique repeated 5 times.

TABLE 3 Critical binding site contact atoms proposed by optimal dbCICA models

dbCICA
Modela

Favored Contact Atoms
(Positive Contacts)b

Disfavored Contact Atoms
(Negative Contacts)e

Amino acids and
atom identitiesc Weightsd

ASP190:CB 2 CYS145:CB; CYS145:HB2; GLN167:O; GLN192:HA; GLN192:HG1;
LEU144:C; LEU144:HD22; MET168:SD; HOH216:H1; HOH234:H1

SB‐1 CYS145:HB1 1
GLN192:HE21 2
GLU169:HN 2
HIS166:NE2 3
HIS41:CB 1
PRO45:CA 1
HOH225:H1 3
HOH241:O 3

SB‐2 PRO45:CA 1 LEU144:C; LYS191:HN; MET168:SD; MET25:SD; CYS145:HG
ASP190:O 3
GLU169:OE1 3
HIS166:NE2 1
PHE143:C 2

SB‐3 ASP190:C 3 CYS44:HB1; CYS44:HB2; GLN195:HB1; HIS41:O; LYS191:C; LYS191:HN;
MET25:CG; MET25:N; PRO52:HD1; HOH116:H1HIS194:HN 1

MET168:HB2 3
PHE143:CA 3
SER24:HB2 2

SB‐4 ASP190:C 3 GLN192:CD; GLU169:O; LEU49:CG; LEU49:HB2; MET168:HE2
HIS41:HD2 3
LEU144:Ha 2
MET168:HB2 3
MET168:SD 2
PHE143:C 1
THR193:N 3
HOH217:O 2

SB‐5 ALA46:CB 2 ASP190:CB; CYS44:HB2; GLN167:O; HIS175:CD2; THR193:C
ASP190:C 1
PHE143:O 2
PRO52:HG2 3
HOH401:H1 3

Abbreviation: dbCICA, docking‐based comparative intermolecular contacts analysis.
aAs in Table 2.
bBioactivity‐proportional ligand/binding site contacts.
cBinding site amino acids and their atomic contacts. Atom codes are as provided by the PDB file except for hydrogen atoms, which were coded by Discovery
Studio.
dDegree of significance (weight) of corresponding contact atom. It points to number of times it emerged in the final dbCICA model (see Section S12).
eBioactivity‐disfavoring ligand/binding site contacts.
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FIGURE 4 Steps used in the manual generation of binding model Hypo(SB‐1) as guided by dbCICA model SB‐1 (Tables 2 and 3): (A) The
binding site moieties selected by dbCICA model SB‐1 with significant contact atoms shown as spheres. (B) The docked pose of the potent
training compound 3 (IC50 = 1.2μM) within the binding pocket. (C) The docked poses of the potent compounds 3, 4, 5, 6, and 8. (D) Manually
placed pharmacophoric features onto chemical moieties common among docked potent compounds 3, 4, 5, 6, and 8. (E) The docked pose of 3
and how it relates to the proposed pharmacophoric features. (F) Exclusion spheres fitted against binding site atoms showing negative
correlations with bioactivity (dbCICA model SB‐1). Green vectored spheres: HBA, blue spheres: Hbic, violet spheres: HbicArom, and orange‐
vectored spheres: RingArom. Exclusion spheres are shown in gray. dbCICA, docking‐based comparative intermolecular contacts analysis; HBA,
hydrogen bond acceptor
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observation supported placing a RingArom feature onto the thio-

phene rings.

The emergence of positive contact on the amidic NH of GLN169

and agreement of docked compounds on placing their central amide

oxygen close to the NH of GLN169 indicated the presence of

hydrogen bonding interaction and suggested placing HBA feature onto

the ligand amidic carbonyl groups (Figure 4E). This interaction is very

likely to involve hydrogen bonding with the peptide amidic NH of

GLU169.

Finally, all contacts points of negative correlation with bioactivity

were assumed to represent areas of steric clashes with the bound

ligand. Therefore, such contacts were used to define exclusion

volumes within the vicinity of the binding pocket, as shown in

Figure 4E.

The same strategy was used to translate all other optimal dbCICA

models in Tables 2 and 3 into their corresponding pharmacophore

models (Figure 5). The X, Y, and Z coordinates of the resulting

pharmacophores are shown in Table S7. Subsequent validation using

ROC analysis (Table 4).illustrated the excellent classification powers

of these pharmacophores in distinguishing actives from decoys.

Matthews correlation coefficient values indicate that the structure‐
based dbCICA models are superior in their classification ability to the

QSAR‐guided pharmacophores.
3.3 | In silico screening

The QSAR‐guided, sterically refined, merged pharmacophore Hypo(K‐

T5‐3/N‐T1‐1) and 5 dbCICA‐based pharmacophores (Hypo(SB‐1) to

Hypo(SB‐5)) were used as 3D search queries to screen the NCI virtual

database for small molecule inhibitors of 3CLpro. Captured hits were

filtered by the Lipinski criteria57 and SMARTS filter as described58 in

Section 2.4.

The QSAR‐guided hits were fitted against component

pharmacophores (ie, Hypo(K‐T5‐3), Hypo(N‐T1‐1), and Hypo(L‐T5‐2))

and their fit values were substituted in MLR‐QSAR Equations 3 and

4 to predict their bioactivities. The top 39 compounds (of the

highest‐ranking hits; prioritized using the voting system described in

Section 2.4) that were available in the NCI Open Chemicals Repository

were acquired for in vitro testing.

On the other hand, filtered dbCICA‐derived hits were docked into

HKU4‐3CLpro protein using the same docking conditions of each



FIGURE 5 dbCICA pharmacophores derived
from successful dbCICA models in Tables 2
and 3. (A) Hypo(SB‐1) mapped against training
compounds 5 and 6 (IC50 = 1.5μM and 1.6μM,
respectively, (Table S1), (B) Hypo(SB‐2)
mapped against 5 and 6, (C) Hypo(SB‐3) fitted
against 5, (D) Hypo(SB‐4) mapped against 6,
and (E) Hypo(SB‐5) mapped against 5. Green
vectored spheres: HBA, purple‐vectored
spheres: HBD, blue spheres: Hbic, violet
spheres HbicArom, and orange‐vectored
spheres: RingArom. Exclusion spheres are
shown in gray. dbCICA, docking‐based
comparative intermolecular contacts analysis;
HBA, hydrogen bond acceptor; HBD,
hydrogen bond donor
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successful dbCICA model (SB1, SB‐2, SB‐3, SB‐4, and SB‐5, Tables 2

and 3) to predict their corresponding inhibitory IC50 values (Section

2.4). The hits were ranked and prioritized using the voting system

described in Section 2.4, and the top 39 compounds were acquired

for in vitro testing. Thus, the total of 78 compounds from the NCI

Open Chemicals Repository were acquired for testing.

3.4 | In vitro validation

A total of 78 NCI (Figure S1), 39 QSAR‐guided derived hits and 39

dbCICA derived hits, compounds were acquired and screened in vitro
TABLE 4 ROC and MCC performances of the dbCICA‐based
pharmacophores

Pharmacophore Model ROC‐AUC ACC SPC TPR MCC

Hypo(SB‐1) 0.946 0.495 0.726 0.815 0.241

Hypo(SB‐2) 0.976 0.632 0.944 0.666 0.713

Hypo(SB‐3) 0.932 0.573 0.854 0.666 0.283

Hypo(SB‐4) 0.971 0.615 0.918 0.666 0.384

Hypo(SB‐5) 0.897 0.425 0.611 0.963 0.254

Abbreviations: ACC, overall accuracy; AUC, area under the curve; MCC,
Matthews correlation coefficient; ROC, receiver operating characteristic;
SPC, overall specificity; TPR, overall true positive rate.
to determine their inhibitory activity against HKU4‐CoV‐3CLpro and

MERS‐CoV‐3CLpro at 40μM hit concentration. The 3CLpro enzyme

assay used in this study was carefully designed to avoid misleading

false positives and to prevent wasted follow‐up on promiscuous

compounds (by adding albumin, DTT, and triton‐100 to the reaction

mixture). Tables S8 and S9 show the %inhibition against 3CLpro of

the hits captured by the QSAR‐guided and the dbCICA derived

pharmacophores, respectively.

Only a single compound (NCI code 134140) of the 39 tested hits,

captured by the QSAR‐guided pharmacophores, showed inhibitory

activity ≥50% against both HKU4‐CoV 3CLpro and MERS‐CoV 3CLpro.

However, this compound has a molecular fragment known to cause

pan assay interference (PAINS‐like; Baell67) and therefore was not con-

sidered as a hit in further characterizations. Three compounds of the

same ligand‐based hits (NCI codes: 12156, 22906, and 28562; Table

S8) showed unexpectedly high negative values of their activity against

MERS‐CoV 3CLpro (−633.2%, −203.4%, and −662.6% at 40μM; Table

S8). Several controls were performed in which either the substrate or

the enzyme or both were omitted from the assay (data not shown).

None of these hits showed evidence of fluorescence interference. It

might be possible that these compounds act as activators of the

enzyme. However, further evidence is still needed to support this
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hypothesis. It was previously observed that designed reversible

peptidomimetic inhibitors acted as activators at a low compound con-

centration as a result of induced dimerization.30 Therefore, these 3 hits

will not be discussed in the current publication.

Only a single compound (222; NCI code 120178) of the dbCICA

derived hits showed inhibitory activity ≥50% (at 40μM) against

MERS‐CoV 3CLpro (51.9%; Table S9 and Figures 5). This activity is

comparable to that of the positive control against the MERS‐CoV

enzyme (compound 1; 63.8% Figure 6). However, the compound 222

failed to show significant inhibitory activity against HKU4‐CoV 3CLpro.

The purity of 222 was confirmed using nuclear magnetic resonance

and mass spectroscopy (Figure S2). Another compound, 223, was

found to exhibit a bit lower activity against the MERS‐CoV enzyme

(28% inhibition at 40μM). The purity of 223 was confirmed using

nuclear magnetic resonance and mass spectroscopy (Figure S3).

Compounds 222 and 223 (NCI code 128947) share a common

phenylsulfonamide fragment, which is amenable to chemical

modifications. Both compounds were captured by Hypo(SB‐3) and
FIGURE 6 The chemical structures, inhibitory activities, and apparent IC50

dbCICA‐derived pharmacophores (222 and 223). dbCICA, docking‐based c

FIGURE 7 dbCICA‐based pharmacophores derived from successful dbCICA
(SB‐1), (B) Hypo(SB‐2), (C) Hypo(SB‐3), (D) Hypo(SB‐4), and (E) Hypo(SB‐5
spheres: Hbic, violet spheres: HbicArom, violet spheres: HbicArom, and ora
dbCICA, docking‐based comparative intermolecular contacts analysis; HBA
Hypo(SB‐5) pharmacophores (Table 4). Figure 7 shows how 222 hit

maps the dbCICA pharmacophore models.

Further controls were conducted (same as described above) to

rule out fluorescence interference. None of these hits showed

significant flourescence in the assay buffer (no enzyme and no

substrate), in the presence of the enzyme (no substrates) or in the

presence of the substrate (no enzyme) (data not shown). However,

at concentrations >100μM, 222 showed approximately 10%

attenuation of the cleaved substrate fluorescence (data not shown).

Both 222 and 223 showed moderate apparent IC50 values against

the MERS‐CoV 3CLpro of 98.7μM and 131.1μM, respectively

(Figure 5). The shape of the activity curve of compound 222, where

a linear inhibition of fluorescence up to a maximum inhibition,

indicates the influence of the inner filter effect (Figure S4).68,69 Inner

filter effect is one of the major challenges usually encountered in

FRET‐based enzyme assays.69

The low hit rate observed in this study can be justified by the

limited availability of many of the top‐ranked hits in the NCI Open
values of the positive control 1, and the 2 tested hits captured by the
omparative intermolecular contacts analysis

models (Tables 2 and 3) mapped against hit compound 222. (A) Hypo
). Green‐vectored spheres: HBA, purple‐vectored spheres: HBD, blue
nge‐vectored spheres: RingArom. Exclusion spheres are shown in gray.
, hydrogen bond acceptor; HBD, hydrogen bond donor
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Chemicals Repository and hence limited number of tested hits

(only 78 hits).

There was also a limitation in the availability of published potent

MERS‐CoV 3CLpro inhibitors to be used as training set in modeling

enzyme inhibition. Obviously, the prediction ability of the computa-

tional models is very much dependent on the compounds used in

modeling. The training compounds used in the current study are all

peptide‐like compounds, and only 14% of them exhibited IC50 values

<10μM. The effect of the starting training set was prominent on the

ligand‐based modeling (QSAR‐guided model), hence, explaining the

poor quality of these models as indicated by their low MCC values.

Clearly, the quality of the training set is a pivotal factor in

determining the predictive validity of the obtained pharmacophores.

It is also worth noting that the active site‐directed design of

nonpeptidomimetic small molecule inhibitors of proteases is often

challenging because of the unique chemistry of the peptide‐bond

cleavage transition state and because some proteases cleave their

substrates through an induced fit mechanism.70
4 | CONCLUSIONS

Recently, special attention has been paid to bat coronaviruses. Two

deadly emerging coronaviruses, which have caused unexpected human

disease outbreaks, SARS‐CoV and MERS‐CoV, are suggested to be

originated from bats. MERS‐CoV is now considered a threat to global

public health. While its human‐to‐human transmission is so far limited,

serious concerns over its pandemic potential have been raised.

Therefore, there is an urgent need for the development of effective

and safe anti–MERS‐CoV treatment.

In this study, we have explored the pharmacophoric space of the

recently identified peptidomemic HKU4‐3CLpro inhibitors36 by 2

independent approaches; the QSAR‐guided pharmacophore modeling

and the dbCICA‐based pharmacophore construction. Both approaches

have successfully resulted in the identification of novel potent

inhibitors on a wide variety of targets. QSAR‐guided pharmacophore

modeling is a ligand‐based method, in which pharmacophores are

derived by extensive exploration of the 3D space of a carefully

selected variable small subset of the inhibitors. These pharmacophores

are then allowed to compete within the context of classical QSAR

using GFA and MLR to identify combinations that result in finest

estimation of the bioactivities. dbCICA modeling, on the other hand,

is a structure‐based pharmacophore construction method, which relies

on the accurate selection of the most successful docking/scoring

conditions combinations. The success criterion is the ability of the

docking run to align potent ligands in a way that would allow them

to form contacts unattainable by low‐potency ligands. dbCICA can be

considered a 3D QSAR that correlates ligands' affinities to their

contacts with certain binding site spots by using GFA and MLR.

Successful dbCICA models can then be translated into binding models

(pharmacophores) to be used as in silico screening tools of virtual

databases.

We have applied these robust computational methods to model

HKU4‐CoV 3CLpro inhibitors as a tool to identify inhibitors of

MERS‐CoV 3CLpro. These models assisted the identification of 2 hit
compounds with moderate apparent activity against MERS‐CoV

3CLpro. The identified inhibitors share a novel nonpeptidomimetic

scaffold that is amenable to medicinal chemistry optimization efforts.

Despite the fair inhibitory activity of this scaffold, it represents a

potential starting point in the discovery of novel MERS‐CoV antivirals.

There are several successful examples in the history of drug discovery

in which the starting hits showed low‐to‐moderate enzyme inhibition.

For example, the millimolar inhibitor Neu5Ac was the starting point in

the development of zanamivir, the first influenza neuraminidase

inhibitor introduced to the market.71

Most importantly, the established ligand‐based and structure‐

based pharmacophore models aid as tools for advancing our

understanding of small molecule recognition of the coronavirus 3CLpro

enzymes. The pharmacophores obtained by modeling the HKU4‐CoV

3CLpro inhibitors revealed structural features needed for potent 3CLpro

enzyme inhibitors design. While, dbCICA models (structure‐based

models) highlighted potential hot‐spot regions in the 3CLpro pocket

that could be targeted using small nonpeptidomimetic molecules. Such

knowledge is valuable for the successful development of 3CLpro

inhibitors as anti‐MERS drugs.
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