Accepted Manuscript

Influenza virus but not MERS coronavirus circulation in Iran, 2013–2016: Comparison between pilgrims and general population

Jila Yavarian, Nazanin Zahra Shafiei Jandaghi, Maryam Naseri, Peyman Hemmati, Mohhamadnasr Dadras, Mohammad Mehdi Gouya, Talat Mokhtari Azad

PII: S1477-8939(17)30162-X

DOI: 10.1016/j.tmaid.2017.10.007

Reference: TMAID 1174

To appear in: Travel Medicine and Infectious Disease

Received Date: 21 June 2017

Revised Date: 27 September 2017

Accepted Date: 9 October 2017

Please cite this article as: Yavarian J, Shafiei Jandaghi NZ, Naseri M, Hemmati P, Dadras M, Gouya MM, Mokhtari Azad T, Influenza virus but not MERS coronavirus circulation in Iran, 2013–2016: Comparison between pilgrims and general population, *Travel Medicine and Infectious Disease* (2017), doi: 10.1016/j.tmaid.2017.10.007.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Influenza virus but not MERS coronavirus circulation in Iran, 2013-2016:

2 comparison between pilgrims and general population

3 Background

4 The pilgrimage to Mecca and Karbala bring many Muslims to a confined area.

5 Respiratory tract infections are the most common diseases transmitted during mass

6 gatherings in Hajj, Umrah and Karbala. The aim of this study was to determine and

7 compare the prevalence of Middle East respiratory syndrome coronavirus (MERS-

8 CoV) and influenza virus infections among Iranian general population and pilgrims

9 with severe acute respiratory infections (SARI) returning from Mecca and Karbala

10 during 2013-2016.

11 Methods

During 2013-2016, a total of 42351 throat swabs were examined for presence of influenza viruses and MERS-CoV in Iranian general population and pilgrims returning from Mecca and Karbala with SARI by using one step RT-PCR kit.

15 Results

None of the patients had MERS-CoV but influenza viruses were detected in 12.7%
with high circulation of influenza A/H1N1 (47.1%).

18 Conclusion

19	This study showed the prevalence of influenza infections among Iranian pilgrims
20	and general population and suggests continuing surveillance, infection control and
21	appropriate vaccination especially nowadays that the risk of influenza pandemic
22	threatens the world, meanwhile accurate screening for MERS-CoV is also
23	recommended.
24	Keywords: MERS Coronavirus; Influenza virus; Pilgrims; General population;
25	Iran
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	

1. Introduction

37	The Middle East respiratory syndrome coronavirus (MERS-CoV) was first
38	identified in a patient from Kingdom of Saudi Arabia (KSA) in June 2012 [1].
39	According to World Health Organization (WHO) report, until 21 September 2017,
40	the number of laboratory-confirmed cases of MERS-CoV was 2081, with 722
41	deaths. Most of the cases originated from or had a history of travel to Middle-East.
42	Mecca and Karbala are places in the Middle-East which are visited by Muslims
43	especially during Hajj, Umrah and Arbaeen.
44	KSA hosts about 2.5 million Muslim pilgrims from more than 180 countries during
45	the Hajj pilgrimage annually. Hajj is one of the largest mass gatherings of its kind
46	in the world. Umrah is a visit to the holy sites in KSA the same as Hajj but it can
47	be occurred at any time during the year. During the Hajj, respiratory tract
48	infections are the leading cause of hospitalization in KSA [2];[3].
49	Karbala is a holly place in Iraq which Muslims visit there during the year
50	especially Arbaeen. Arbaeen is a Shia Muslim ritual that occurs forty days after the
51	day of Ashura (10^{th} day of the month of Muharram). It celebrates the death of
52	Hussein ibn Ali, the grandson of Prophet Mohammad, who was killed on the day
53	of Ashura. Arbaeen is the world largest annual pilgrimage as more than 20 millions
54	of Shia Muslims gather in the city of Karbala in Iraq.

55	Mass gathering of people in a confined area specially Hajj and Arbaeen increases
56	the risk of respiratory tract infections which are very common and responsible for
57	most of the hospital admissions. After June 2012 global concern was about the
58	potential for MERS-CoV spreading by travelers returning from the pilgrimage. For
59	early detection of emerging respiratory viruses, the International Health
60	Regulations Emerging Committee established a program for all countries
61	(especially those with returning pilgrims) to strengthen their surveillance to detect
62	and report any new cases.

However KSA has been reported the majority of MERS-CoV cases (>80%) since
2012, but in the 6.5 million pilgrims in Hajj 2012 and 2013 no MERS-CoV cases
were reported [4].

Influenza viruses are important human respiratory pathogens with high morbidity
and mortality that cause both seasonal and endemic infections. Nowadays
emergence of H5N1 and H7N7 is the concern for influenza pandemic. Different
studies have shown a high incidence of influenza virus infection during the Muslim
Hajj pilgrimage [5]; [6] but there is no published data about the prevalence of
respiratory virus infections during Arbaeen.

Among Hajj pilgrims, influenza is the most common vaccine preventable virus
infection, but its epidemiology is poorly understood in mass gatherings [7]. Beside

74	detection of MERS-CoV, we designed this study to investigate about the
75	importance of influenza vaccination in general population and pilgrims.
76	In Iran, the influenza season starts in late November and lasts until late April,
77	peaking in January and February. The National Influenza Center (NIC) in Iran,
78	located at Virology Department, School of Public Health, Tehran University of
79	Medical Sciences, examines clinical samples from patients with severe acute
80	respiratory infections (SARI) for influenza virus surveillance throughout the year
81	in general population and/or pilgrims.
82	After MERS detection in 2012, all suspected cases were tested in NIC and the first
83	MERS case, a 52 year old woman with a history of hypertension, was confirmed in
84	May 2014, Iran [8]. With continues surveillance totally six MERS cases were
85	identified in Iran which the last one was in March 2015.
86	The study's primary aim was screening the Iranian pilgrims and general population
87	with SARI for detection of MERS-CoV during 2013-2016. The second aim was to
88	assess the prevalence of influenza virus infections in these patients and the final
89	aim was to comparison of influenza and MERS-CoV circulation between general
90	population and pilgrims.

91 2. Materials & Methods

92 2.1. Respiratory specimens

93	Throat swab specimens according to Ministry of Health protocol were collected
94	from a total of 42351 patients with SARIs. Of them, 38511 specimens were
95	collected from general population and 3840 specimens were taken from arriving
96	pilgrims at Emam Khomeini Airport in Tehran, 2013-2016. Throat swabs were
97	collected in viral transport media and immediately transported to NIC, School of
98	Public Health, Tehran University of Medical Sciences.
99	2.2. Molecular diagnosis
100	Total nucleic acids were purified from a 200µl sample using High Pure Viral
101	Nucleic Acid kit (Roche, Germany) according to the manufacturer's instructions.
102	Each sample was tested independently in a 25 μ l reaction for influenza A/B and
103	MERS-CoV using QuantiFast Probe RT-PCR Kit (Qiagen,Germany). MERS-CoV
104	was tested with targeting the upstream region of the E gene (UpE) for screening
105	and the open reading frame 1b for confirmation [9].

106 **3. Results**

In total 42351 patients with SARIs were included in this study which 3840 were
returning Iranian pilgrims from Mecca and Karbala and 38511 were patients with
SARI who admitted to local hospitals. Iranian pilgrims had symptoms upon arrival
or a week later, thereby indicating that the respiratory infections were acquired
during the pilgrimage.

Of 3840 pilgrims, 499 (13%) were positive for influenza viruses. Influenza

113	A/H1N1, B and A/H3N2 accounted for 51.7% (258/499), 27% (135/499) and 20%
114	(100/499) of the virus positive samples, respectively.
115	Of 38511 patients in general population, 4868 (12.6%) were positive for influenza
116	viruses. Influenza A/H1N1, B and A/H3N2 accounted for 46.7% (2272/4868),
117	20.1% (981/4868) and 32.7% (1594/4868) of the virus positive samples. MERS-
118	CoV was not detected in these patients.
119	During the years of study in all patients, circulating influenza strains differed but
120	the pattern was similar in both pilgrims and general population.
121	In January 2013, A/H1N1 viruses predominated while since February influenza B
122	viruses were the most common strains until April 2013. At the end of the year,
123	during November and December 2013, A/H3N2 viruses became predominant until
124	February 2014, but in March and April, 2014 influenza B viruses were dominated.
125	In May 2014 besides influenza B, A/H1N1 had a rise and during June and July
126	both influenza A/H1N1 and B viruses had similar circulation.
127	The last month of the year 2014, showed similar circulation of three strains until

- May 2015, but in January 2015 A/H1N1 and in March and April influenza B
- viruses were predominant strains with co-circulation of the other viruses. In

130	October 2015, influenza A/H1N1 and A/H3N2 viruses had similar circulation but
131	in November and December 2015, A/H1N1 became predominant strain.
132	In January 2016, A/H1N1 was common with co-circulation of A/H3N2 and B
133	viruses. In February there was a decrease in A/H1N1 circulation with a slight
134	increase in A/H3N2 and a sharp rise in B viruses. In March 2016 influenza B
135	viruses were common but in April and October A/H3N2 and B viruses had similar
136	circulation while in November and December 2016, A/H3N2 virus was
137	predominant. Figure 1 shows the prevalence of different influenza strains during
138	the months of the years (2013-2016).
139	In 2014 dual infections of influenza A/H1N1and B viruses were detected in three
140	pilgrims returning from Karbala in May and one pilgrim arriving from Karbala in
141	June. Four dual infections of influenza A/H1N1 and B viruses were detected in
142	June and July in non-pilgrim patients.
143	During 2015 six dual infections of influenza A/H3N2 and B viruses were detected

which two were in pilgrims returning from Umrah in February and Hajj in October
and four were detected in February, March, June and October in non-pilgrim
patients.

147	Six dual infections of influenza A/H1N1 and B viruses were identified in general
148	population in February, November and December 2015. Since January until March
149	2015, four dual infections of influenza A/H1N1 and A/H3N2 were detected.
150	In 2016 just in non-pilgrim patients three dual infections of influenza A/H1N1 and
151	A/H3N2 viruses were detected in November.
152	During the years of this study from 3840 Iranian pilgrims, 46.1% (1773/3840)
153	returned from Karbala, 35.2% (1355/3840) came from Umrah and 18.7% arrived
154	from Hajj. We did not have any pilgrims returning from Mecca in 2016 but just
155	4.8% (185/3840) came from Karbala.
156	More information about the prevalence of different influenza strains in Hajj,
157	Umrah, Karbala and general population are shown in Table 1.
158	Table 1. Prevalence of influenza virus strains in non-pilgrim patients and returning
159	Iranian pilgrims from Hajj, Umrah and Karbala during 2013-2016.
160	Figure 1. Prevalence of influenza virus strains in non-pilgrim patients and
161	returning Iranian pilgrims during the months of the years (2013-2016).
162	4. Discussion
163	This paper showed the results of study of MERS-CoV and influenza virus
164	infections among pilgrims and non-pilgrim patients with SARI during 2013-2016.
	9

165	Each year more than 5 million Muslims travel from all over the world to
166	participate in Hajj and Umrah. Approximately more than one million pilgrims
167	travel from Iran to KSA annually. In recent years more than 10 million Iranian
168	pilgrims have been gathering during Arbaeen in Karbala. In this study 46.1 %
169	(1773/3840) of pilgrims returned from Karbala which 13.6% were influenza
170	positive with A/H1N1 predominance. In a study on 177 Iranian pilgrims to Karbala
171	who admitted to Iraqi hospitals, 3.39% suffered from respiratory infections [10]. In
172	another study from a total of 26574 pilgrims admitted to Iranian clinics in Iraq, the
173	main cause was acute respiratory infections (48%) [11].
174	Generally performing the pilgrimage in a confined area is associated with an
175	increased occurrence of respiratory infections in the pilgrims. Transmission of
176	different infectious diseases during mass gatherings in holly places has a global
177	effect when pilgrims return to their country. In 1989 a meningococcal disease
178	outbreak and its global spread during the Hajj lead to this fact that meningococcal
179	vaccine became a mandatory vaccine for all pilgrims [12]. According to the
180	vaccination protocol in Iran, all pilgrims had received meningococcal vaccination,
181	but influenza vaccination is not mandatory and we do not have data about its
182	vaccination in this group. However in a review by Gautret et al. no remarkable
183	effect of influenza vaccination on the influenza infection of pilgrims was found.

184	Apparently this lake of efficiency of influenza vaccine might be the result of
185	mismatch between circulating influenza viruses with vaccine strains [2].
186	Influenza viruses are common respiratory viruses with high mortality and
187	morbidity especially in young children and elderly. In Iran influenza viruses are
188	circulating throughout the year with a big peak during cold months. Since 2012
189	besides influenza virus screening NIC examines clinical samples for MERS-CoV
190	detection from suspected patients throughout the year in general population and/or
191	pilgrims.
192	We previously reported that a cluster of MERS-CoV was detected in Kerman/Iran
193	in 2014 among nonpilgrims [8]. Current study showed that among the population
194	screened, no cases were positive for MERS-CoV. These results were in accordance
195	with previous studies which have performed among pilgrims of different countries.

196 A cohort of 5235 pilgrims attending the 2013 Hajj showed the lack of MERS-CoV

in nasal carriage [13]. In a study on 154 French Hajj pilgrims in 2012, in spite of

198 high rate of respiratory infections, MERS-CoV was not detected [14]. These

199 findings suggest that MERS-CoV in its current form has poor interhuman

transmission and may not have the pandemic potential as seen in influenza

A/H1N1 in 2009. However investigation about a highly fatal human coronavirus is

necessary as it is a challenge and little is known about its importance,

203 epidemiology and zoonotic transmission.

204	In pilgrims of this study influenza B accounted for 27% (135/499) and influenza A
205	for 71.7% (358/499) of positive influenza results in contrast to findings by Balkhy
206	et al. in 2003, that 90% of pilgrims had influenza B and 10% had influenza A [15].
207	The results of a UK study with paired serum samples collected before and after the
208	Hajj using hemagglutination inhibition test, showed that 38% of UK pilgrims had
209	influenza infection during the Hajj 2003 [16]. In another study during Hajj 2005,
210	14% of UK pilgrims with respiratory infections had influenza virus [17].
211	Rashid et al. in 2008 performed a comparative study in symptomatic UK and Saudi
212	pilgrims which found infections in 25% and 13% of their pilgrims respectively.
213	Rhinoviruses were detected in half of UK pilgrims, followed by influenza virus but
214	in Saudi pilgrims 78.5% had influenza virus infection [18].
215	In 2009, Alborzi et al. reported that 32.5% of Iranian Hajj pilgrims with respiratory
216	infections had influenza [19]. In 2012, 305 Iranian pilgrims with respiratory
217	infections returning from Hajj were assessed for detection of A/H1N1pdm which
218	just five patients (1.69%) were positive [20]. In a survey on serum samples of 338
219	Iranian pilgrims before and after Hajj with ELISA, 3.6% were influenza positive
220	[21].

In another Iranian study on serum samples of Hajj pilgrims in 2004-2005, before
departure and two weeks after respiratory infections, there was a 21.5%

223	seroconversion for influenza viruses. While virus culture on their sputum was
224	13.3% influenza positive [22]. In a study on 275 symptomatic Iranian Hajj
225	pilgrims, 25(9.1%) were influenza positive by virus culture whereas 33(12%) had
226	influenza with RT-PCR test [23].
227	The findings of this research showed that influenza virus infection was the cause of
228	respiratory infections in 499 of 3840 (13%) of Iranian pilgrims. In a similar study
229	in Kashmir, north India during 2014-15 among returning Hajj and Umrah pilgrims
230	with respiratory illness, none of the 300 participants tested positive for MERS-
231	CoV; however, 33 (11%) tested positive for influenza viruses [24].
232	In general population, of 38511 SARI patients, 4868 (12.6%) were influenza
233	positive during the years of this study with different circulation of the subtypes as
234	seen in other studies:
235	Timmermans et al performed a study on 586 outpatients with influenza-like-illness
236	in western Cambodia between May 2010 and December 2012. Influenza was
237	found in 168 cases (29%). Dominant influenza subtypes were A/H1N1 in 2010,
238	influenza B in 2011 and influenza A/H3N2 in 2012 [25].
239	In a study by Mancinelli, et al. a total of 133 respiratory specimens positive for the
240	influenza A and B viruses were subtyped during the 2012–2013 influenza season

in Italy. Influenza B was slightly more prevalent (53.38 %) than influenza A (46.62
%) and the most common subtype was A/H1N1 (87.1 %) while only 12.9 % were
A/H3N2 [26]

244	In a ten year (2004–2014) study of influenza surveillance in northern Italy, the
245	same as our study influenza A/H3N2 was prominent during 2013-2014 [27].

246 The results of this study showed similar pattern of virus circulation in pilgrims and

247 non-pilgrims SARI patients. As influenza has high morbidity and mortality, its

vaccination is recommended for general population especially for high risk groups

249 and pilgrims before going to pilgrimage.

Finally accurate screening and testing for MERS-CoV and other respiratory viruses
including influenza, is necessary for early diagnosis to prevent virus transmission
and to do effective treatment. As a final point lack of demographic and clinical
data was the most important limitation of this study.

254 Author contributions

Jila Yavarian performed the analyses of the data and wrote the paper. Nazanin
Zahra Shafiei Jandaghi reviewed the paper critically, and comments were included.
Maryam Naseri performed the tests. Peyman Hemmati, Mohammadnasr Dadras
were responsible for epidemiological investigation and data collection. Mohammad
Mehdi Gouya and Talat Mokhtari Azad were responsible for study design.

260	Conflicts	of interest
-----	-----------	-------------

261 None

262	Acknowledgments
-----	-----------------

- 263 We thank all staff in National Influenza Center, Virology Department, School of
- 264 Public Health, Tehran University of Medical Sciences.

265 **References**

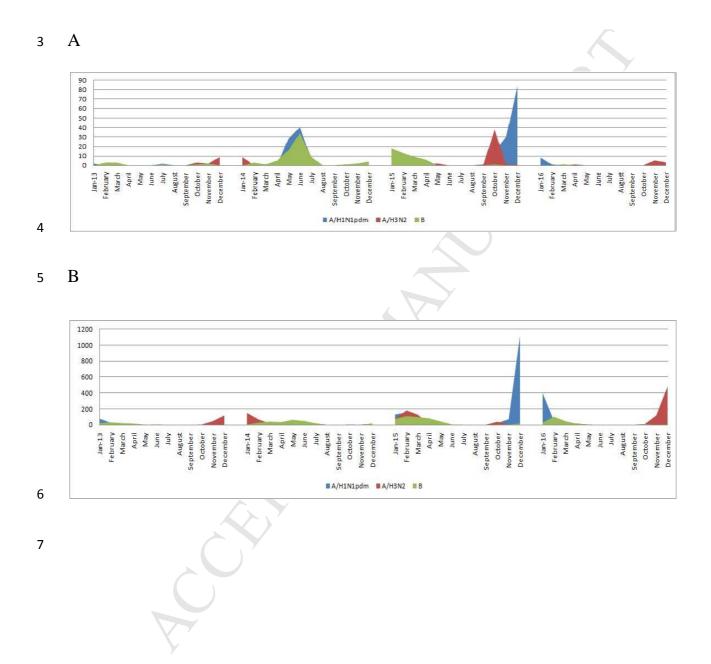
- [1] Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA.
- Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia.
- 268 N Engl J Med 2012; 367:1814-20.
- [2] Gautret P, Benkouiten S, Al-Tawfiq JA, Memish ZA. Hajj-associated viral
- respiratory infections: A systematic review. Travel Med Infect Dis 2016;14:
- **271 92-109**.
- [3] Al-Ghamdi SM, Akbar HO, Qari YA, Fathaldin OA, Al-Rashed RS. Pattern of
- admission to hospitals during Muslim pilgrimage (Hajj). Saudi Med J 2003;
- 274 24(10):1073-6.
- [4] Memish ZA, Al-Rabeeah AA. Public health management of mass
 - 15

276	gatherings: the Saudi Arabian experience with MERS-CoV. Bull World Health
277	Organ 2013; 91:899-899.
278	[5] Balkhy HH, Memish ZA, Bafaqeer S, Almuneef MA. Influenza a
279	common viral infection among Hajj pilgrims: time for routine surveillance and
280	vaccination. J Travel Med 2004;11: 82-6.
281	[6] Shafi S, Rashid H, Ali K, Sheikh A. Enhanced surveillance of influenza and
282	Other respiratory viruses among UK pilgrims to Hajj 2005. HPA Annual
283	Conference, September 2005. Warwick, UK. (abstract available from URL:
284	http://www.iccuk.org/media/articles/misc/study_of_influenza.htm).
285	[7] Rashid H, Haworth E, Shafi S, Memish ZA, Booy R. Pandemic influenza:
286	mass gatherings and mass infection. Lancet Infect Dis 2008; 8:526-7.
287	[8] Yavarian J, Rezaei F, Shadab A, Soroush M, Gooya MM, Mokhtari Azad T.
288	Cluster of Middle East Respiratory Syndrome Coronavirus Infections in
289	Iran, 2014. Emerg Infect Dis 2015; 21(2): 362-4.
290	[9] Corman VM, Eckerle I, Bleicker T, Zaki A, Landt O, Eschbach-Bludau M, et

291	al. Detection of a novel human coronavirus by real-time reverse-transcription
292	polymerase chain reaction. EuroSurveill 2012; 17(39): pii=20288.
293	[10] Sadeghi S, Heidari A, Fazli H, Rezaei M, Sheikhzadeh J. The most frequent
294	causes of hospitalization of Iranian pilgrims in Iraq during a 5-month period in
295	2012, and their outcome. Iran Red Crescent Med J 2015; 17(11): e12862.
296	[11] Mousavi J, Jafari F. Prevalence of Diseases in Pilgrims Referring to Iranian
297	Clinics in Iraq. Int J Travel Med Glob Health 2016;4(1): 31-3.
298	[12] Memish ZA, Venkatesh S, Ahmed QA. Travel epidemiology: the Saudi
299	perspective. Int J Antimicrob Agents 2003; 21: 96–101.
300	[13] Memish ZA, Assiri A, Almasri M, Alhakeem RF, Turkestani A, Al Rabeeah
301	AA, et al. Prevalence of MERS-CoV nasal carriage and compliance with the
302	Saudi Health recommendations among pilgrims attending the 2013 Hajj. J
303	Infect Dis 2014; 210(7):1067-72.
304	[14] Gautret P, Charrel R, Belhouchat K, Drali T, Benkouiten S, Nougairede A,
305	Et al. Lack of nasal carriage of novel corona virus (HCoV-EMC) in French
306	Hajj pilgrims returning from the Hajj 2012, despite a high rate of respiratory
	17

307	symptoms. Clin Microbiol Infect 2013; 19: 315-7.
308	[15] Balkhy HH, Memish ZA, Bafaqeer S, Almuneef MA. Influenza a
309	common viral infection among Hajj pilgrims: time for routine surveillance
310	and vaccination. J Travel Med 2004 11: 82-6.
311	[16] Bashir H. El, Haworth E, Zambon M, Shafi S, Zuckerman J, Booy R.
312	Influenza among UK pilgrims to Hajj, 2003. Emerg Infect Dis 2004;10: 882-
313	3.
314	[17] Rashid H, Shafi S, Booy R, El Bashir H, Ali K, Zambon MC, et al. Influenza
315	and respiratory syncytial Virus infections in British Hajj pilgrims. Emerg
316	Health Threats J 2008;1: e2.
317	
318	[18] Rashid H, Shafi S, Haworth E, El Bashir h, Memish ZA, Sudhanva S,
319	et al. Viral respiratory infections at the Hajj:comparison between UK and
320	Saudi pilgrims. Clin Microbiol Infect 2008; 14(6); 569-74.
321	[19] Alborzi A, Aelami MH, Ziyaeyan M, Jamalidoust M, Moeini M, Pourabbas
322	B, et al. Viral etiology of acute respiratory infections among Iranian
323	Hajj pilgrims. J Travel Med 2009;16(4):239-42.

324	[20] Ziyaeyan M, Alborzi A, Jamalidoust M, Moeini M, Pouladfar GR, Pourabbas B,
325	et al. Pandemic 2009 influenza A (H1N1) infection among 2009 Hajj Pilgrims
326	from Southern Iran: a real-time RT-PCR-based study. Influenza Other Respir
327	Viruses 2012; 6: e80-4.
328	[21] Imani R, Karimi A, Habibian R. Acute respiratory viral infections among
329	Tamattu' Hajj pilgrims in Iran. Life Sci J 2013;10: 449-53.
330	[22] Razavi SM, Ziaee H, Mokhtari-Azad T, Hamkar R, Doroodi T, Mirsalehian A, et
331	al. Surveying respiratory infections among Iranian Hajj pilgrims. Iran J Clin Infect
332	Dis 2007;2(2): 67-70.
333	[23] Moattari A, Emami A, Moghadami M, Honarvar B. Influenza viral infections
334	among the Iranian Hajj pilgrims returning to Shiraz, Fars province, Iran.
335	Influenza Other Respir Viruses 2012;6: 77-9.
336 337	[24] Koul PA, Mir H, Saha S, Chadha MS, Potdar V, Widdowson M-A, et al.
338	Influenza not MERS CoV among returning Hajj and Umrah pilgrims with
339 340 341	respiratory illness, Kashmir, north India, 2014-15. Travel Med Infect Dis 2017;
342	15:45-7.
343 344	[25] Timmermans A, Melendrez MC, Se Y, Chuang I, Samon N, Uthaimongko N,
511	


345	et al. Human Sentinel Surveillance of Influenza and Other Respiratory Viral
346	Pathogens in Border Areas of Western Cambodia. Plos One 2016;
347	11(3):e0152529.
348	[26] Mancinelli L, Onori M, Concato C, Sorge R, Chiavelli S, Coltella L. Clinical
349	features of children hospitalized with influenza A and B infections during the
350	2012–2013 influenza season in Italy. BMC Infectious Diseases 2016;16:6.
351	[27] Mosnier A, Caini S, Daviaud I, Bensoussan JL, Stoll-Keller F, Bui TT, et al. Ten
352	influenza seasons in France: distribution and timing of influenza A and B
353	circulation, 2003–2013. BMC Infectious Diseases 2015; 15:357.
354	CERTE

1 Table 1. Prevalence of influenza virus strains in general population (GP) and

2 returning Iranian pilgrims from Hajj, Umrah and Karbala during 2013-2016.

3	<u>2013, Total no= 9274</u>				2014	2014, Total no= 7611				2015, Total no= 16174				<u>2016, Total no= 9292</u>	
4		Hajj	Umrah	Karbala	GP	Hajj	Umrah	Karbala	GP	Hajj	Umrah	Karbala	GP	Karbala	GP
5	Total patients	544	141	268	8321	87	366	528	6630	724	205	792	14453	185	9107
6	Influenza positive	3	6	21	392	2	137	34	653	54	49	168	2430	19	1372
7	A/H1N1	-	1	5	116	-	73	6	125	15	16	133	1577	9	454
8	A/H3N2	1	3	10	173	1	8	10	272	38	5	15	432	9	717
9	В	2	2	6	103	1	56	18	256	1	28	20	421	1	201

- 1 Figure 1. Prevalence of influenza virus strains in general population (A) and
- 2 returning Iranian pilgrims (B) during the months of the years (2013-2016).

