Journal of Virology

- 1 Protective Humoral Immunity in the CNS Requires Peripheral CD19-Dependent
- 2 Germinal Center Formation Following Coronavirus Encephalomyelitis
- 3
- 4
- 5 Jeffrey R. Atkinson^{1,2}, Cornelia C. Bergmann¹#
- 6
- ⁷ ¹Department of Neurosciences, Lerner Research Institute, Cleveland Clinic
- 8 Foundation, Cleveland, OH, USA
- 9 ² School of Biomedical Sciences, Kent State University, Kent, OH, USA
- 10
- 11 Running Head: CD19-Dependent Humoral Immunity to CNS Viral Infection
- 12
- 13 #Address correspondence to Dr. Cornelia C. Bergmann, <u>bergmac@ccf.org</u>.
- 14
- 15 Word Count:
- 16 Abstract: 243
- 17 Importance: 149
- 18 Text: 6,549

1

 \leq

19 Abstract

20 B cell subsets with phenotypes characteristic of naïve, non-isotype-switched, 21 memory (B_{mem}), and antibody-secreting cells (ASC) accumulate in various 22 models of central nervous system (CNS) inflammation, including viral 23 encephalomyelitis. During neurotropic coronavirus JHMV infection infiltration of 24 protective ASC occurs after T cell mediated viral control, and is preceded by 25 accumulation of non-isotype switched IgD⁺ and IgM⁺ B cells. However, the 26 contribution of peripheral activation events in cervical lymph nodes (CLN) in 27 driving humoral immune responses in the infected CNS is poorly defined. CD19, 28 a signaling component of the B cell receptor complex, is one of multiple 29 regulators driving B cell differentiation and germinal center (GC) formation by lowering the threshold of antigen-driven activation. JHMV infected CD19^{-/-} mice 30 31 were thus used to determine how CD19 affects CNS recruitment of B cell 32 subsets. Early polyclonal ASC expansion, GC formation, and virus-specific ASC were all significantly impaired in CLN of CD19^{-/-} mice compared to wild type (wt) 33 34 mice, consistent with lower and unsustained virus-specific serum Ab. ASC were 35 also significantly reduced in the CNS resulting in increased infectious virus during 36 persistence. Nevertheless, CD19 deficiency did not affect early CNS IgD⁺ B cell 37 accumulation. The results support that CD19 independent factors drive early B 38 cell mobilization and recruitment to the infected CNS, while delayed 39 accumulation of virus-specific, isotype switched ASC requires CD19 dependent 40 GC formation in CLN. CD19 is thus essential for both sustained serum Ab as well 41 as protective local Ab within the CNS following JHMV encephalomyelitis.

42 Importance

43	CD19 activation is known to promote GC formation and sustain serum Ab
44	responses following antigen immunization and viral infections. However, the
45	contribution of CD19 in the context of CNS infections has not been evaluated.
46	This study demonstrates that antiviral protective ASC in the CNS are dependent
47	on CD19 activation and peripheral GC formation, while accumulation of early-
48	recruited $IgD^+ B$ cells is CD19-independent. This indicates that $IgD^+ B$ cells
49	commonly found early in the CNS do not give rise to local ASC differentiation and
50	that only antigen-primed, peripheral GC-derived ASC infiltrate the CNS, thereby
51	limiting potentially harmful non-specific Ab secretion. Expanding our
52	understanding of activation signals driving CNS migration of distinct B cell
53	subsets during neuroinflammatory insults is critical for preventing and managing
54	acute encephalitic infections, as well as preempting reactivation of persistent
55	viruses during immune suppressive therapies targeting B cells in multiple
56	sclerosis (MS), such as Rituximab and Ocrelizumab.

57 Introduction

58 Infections of the central nervous system (CNS) commonly require a 59 humoral immune component for effective long-term control (1-4). However, little 60 is known about the signals driving B cell activation and differentiation during 61 neurotropic infections or how peripheral factors affect local immunity in the CNS. 62 Following CNS infection with a glial tropic sub-lethal variant of mouse hepatitis 63 virus (MHV), designated JHMV-v2.2-1, both T and B cell priming occurs in 64 draining cervical lymph nodes (CLN) (5-7). While virus specific CD4 and CD8 T 65 cells are essential to clear infectious virus, virus specific ASC and sustained neutralizing IgG antibody (Ab) are required for long term control of persisting 66 67 virus, which is only detectable by the ongoing presence of low levels of viral RNA 68 (5, 8, 9). Virus-specific ASC in CLN are CD4-dependent (10) and reach peak 69 frequencies at ~14 days post infection (p.i.) (7, 11), coincident with germinal 70 center (GC) formation (12). However, their accumulation in the CNS is not robust 71 until day 21 p.i., when more mature GC characterized by dark and light zones 72 become evident (12). Irrespective of the temporal and spatial ASC organization 73 in CLN, chemokine guidance mediated via CXCR3 ligands, predominantly 74 CXCL10, is essential for protective ASC accumulation in the CNS (11, 13). 75 The extent to which peripheral mature GC formation imprints ASC 76 migration to the CNS is still unclear despite the temporal correlation between GC 77 formation and ASC accumulation in the CNS. Key lymphoid chemokines 78 organizing B cell compartmentalization in follicles and GCs are CXCL12, 79 CXCL13, as well as CCL19 and CCL21, which act through their cognate

80	receptors CXCR4, CXCR5, and CCR7, respectively (9, 14). Specifically CXCL13
81	contributes to GC formation by recruiting activated B and follicular helper $CD4^+T$
82	(T_{FH}) cells expressing CXCR5 (15-17). CXCL13 is also associated with lymphoid
83	neogenesis in non-lymphoid tissue, such as joints during rheumatoid arthritis (18)
84	and CNS meninges during some neuroinflammatory diseases, including multiple
85	sclerosis (MS) and Lyme disease (19-23). However, despite impaired GC
86	formation, CXCL13 ^{-/-} mice infected with glia tropic JHMV mounted effective
87	peripheral ASC and serum Ab responses (24). Importantly, the specific deficit in
88	ASC and B_{mem} in the CNS did not affect virus control during persistence.
89	Moreover, initial non-isotype-switched B cell recruitment into the CNS was not
90	affected (24), similar to studies in Sindbis virus infection and experimental
91	allergic encephalomyelitis (EAE) (25).
92	These results questioned the nature of activation signals required not only
93	for effective ASC responses in the CNS, but also to mobilize early activated \mbox{IgD}^{*}
94	cells to the CNS, whose function and specificity is unknown. One critical
95	signaling component promoting B cell receptor (BCR)-mediated activation and
96	GC formation under conditions of low antigen (Ag) dose and/or limited pro-
97	inflammatory stimuli is the BCR co-receptor CD19 (26). Together with CD21, also
98	known as complement receptor type 2 (CR2), and CD81, CD19 forms a
99	multimeric signal transduction complex on mature B cells (27-29). Activation and
100	attachment of complement C3d, a cleavage product of complement C3, to Ag
101	forms a covalent complex, which can lower the threshold for B cell activation by
102	colligation of the BCR and coreceptor complex (28, 30, 31). The C3d-Ag complex

104	(28, 32). Complement-mediated retention of Ag on follicular dendritic cells further
105	promotes clonal selection of activated B cells in GCs. While many studies
106	assessing the role of CD19 have focused on CD19 ^{-/-} mice immunized with protein
107	or inactivated virus, reports describing responses to replicating viruses are
108	limited (26, 31). The latter revealed that CD19 is required for T cell-dependent
109	responses such LCMV infection, but this requirement is overcome by infections
110	associated with high viral dose exemplified by VSV (26). While a direct role of
111	CD19 was not determined following peripheral HSV-1 infection, efficient humoral
112	responses were dependent on complement C3 and CD21 (33). Overall both Ag
113	and viral studies support a co-stimulatory role for CD19 in inducing long-term B
114	cell memory, with CD19 playing a more prominent role in GC formation under
115	limiting Ag conditions (26, 28, 31, 34).
116	The studies above focused largely on ASC and Ab responses to
117	peripheral infections leaving the impact of CD19-dependent activation on B cell
118	migration to inflamed tissue unclear. CNS inflammation is associated with
119	accumulation of B cells in various differentiation and activation stages,
120	independent of the insult, suggesting a common denominator in driving their
121	initial activation (12, 35). Using the JHMV-induced encephalomyelitis model this
122	study set out to identify a role of CD19 in driving early-activated B cells into the
123	CNS as well as promoting antiviral ASC. Coincident with severely impaired GC

also acts directly on activated B cells in follicles and GC to enhance their survival

- 124 formation, virus-specific ASC were significantly reduced in CLN and barely
- detectable in the CNS compared to wild type (wt) mice. While infected CD19^{-/-} 125

103

M

6

126	mice mounted virus-specific serum Ab, they were not sustained. Surprisingly,
127	early polyclonal ASC expansion prior to GC formation was also significantly
128	reduced. However, absence of BCR-CD19 co-ligation did not appear to affect
129	early CNS B cell accumulation. The results further demonstrate that elevated
130	persisting virus in the CNS, as a result of impaired humoral immunity, can still be
131	effectively controlled by re-emerging T cell activity without causing increased
132	clinical disease.

133 Methods

134	Mice, virus infection, and virus titer. C57BL/6 were purchased from the
135	National Cancer Institute (Frederick, MD). B6.129P2(C)-Cd19 ^{tm1(cre)Cgn} /J mice
136	(36) were purchased from The Jackson Laboratory (Bar Harbor, ME) and
137	homozygous mice were utilized as CD19 ^{-/-} mice. Female and male mice were
138	housed at the Cleveland Clinic Lerner Research Institute under pathogen-free
139	conditions. All animal procedures were executed in accordance with approved
140	guidelines by the Cleveland Clinic Lerner Research Institute Institutional Animal
141	Care and Use Committee. Mice of 6-7 weeks of age were infected by intracranial
142	injection with 1,000 PFU of the gliatropic JHMV variant designated v2.2-1 (37).
143	Infected animals were evaluated daily for clinical signs utilizing the following
144	scale: 0, healthy; 1, hunched back and ruffled fur; 2, inability to correct to upright
145	position or partial hind limb paralysis; 3, complete hind limb paralysis and
146	wasting; 4, moribund or deceased. Virus titers within the CNS were determined in
147	clarified supernatants via plaque assay with the murine delayed brain tumor
148	(DBT) astrocytoma as previously described (37). Plaques were quantified
149	following a 48 hour incubation at 37°C.
150	
151	Quantitative real-time polymerase chain reaction (PCR) gene expression
152	analysis. Spinal cords and brains harvested from individual mice were snap-
153	frozen, treated with 1 mL Trizol (Invitrogen, Grand Island, NY) and homogenized
154	using a TissueLyser and stainless steel beads (Qiagen, Valenica, CA). RNA was

155 extracted according to the manufacturer's instructions. DNA contamination was

 \leq

Austin, TX). cDNA was synthesized from RNA using Moloney murine leukemia
virus (MMLV) reverse transcriptase (Invitrogen) and a 1:1 mixture of oligo (dT)
primers and random primers (Promega, Madison, WI). Quantitative real-time
PCR was performed using either SYBR Green Master Mix or Applied Biosystems
Gene Expression Assays with Universal Taqman Master Mix on a 7500 Fast
Real-Time PCR System (Applied Biosystems, Foster City, CA). Primers used for
transcripts encoding glyceraldehyde 3-phosphate dehydrogenase (GAPDH),
Tumor necrosis factor (TNF), a proliferation-inducing ligand (APRIL, TNFSF13),
IL-21, CXCL9, CXCL10, viral nucleocapsid, and C3 (5'-
AAGCATCAACACCCCAACA-3', 5'-CTTGAGCTCCATTCGTGACA-3') were
used in conjunction with SYBR Green Master mix as described previously (8, 24,
38). GAPDH, activation-induced cytidine deaminase (AID), immunoglobulin
gamma (IgG), gamma interferon (IFNγ), CXCR5, CCL19, CCL21, CXCL13, B-
cell activating factor (BAFF, TNFSF13B), and IL-10 mRNA levels were

eliminated via DNase I treatment for 30 minutes at 37°C (DNA-free kit; Ambion,

- determined using Taqman primers (Applied Biosystems). Transcript levels were
- calculated relative to the housekeeping gene GAPDH using the following
- formula: 2^[CT(GAPDH) CT(Target Gene)] x 1000.

Mononuclear cell isolation and flow cytometric analysis

- Cells were isolated from the CNS as described (24, 39). Briefly, brains harvested
- from PBS-perfused mice were mechanically homogenized in Dulbecco's PBS
- using ice-cold Tenbroeck grinders. The resulting suspension was centrifuged at

179	450 x g for 7 minutes at 4°C, supernatants stored at -80°C for subsequent
180	analysis, and cells resuspended in RPMI medium. Cells were adjusted to 30%
181	percoll (Pharmacia, Piscataway, NJ), underlayed with 1 ml 70% Percoll and
182	collected from the 30%/70% Percoll interface following centrifugation at 850 xg
183	for 30 minutes at 4°C. After washing cells were resuspended in fluorescence-
184	activated cell sorter (FACS) buffer and incubated with a mixture of mouse, goat,
185	and horse serum (1:1:1) and rat anti-mouse FcyIII/II mAb (2.4G2: BD Bioscience,
186	San Diego, CA) for 20 minutes on ice. Cells were then stained with specific
187	monoclonal Ab (mAb) to determine expression of cell surface markers for CD45
188	(30-F11), CD4 (L3T4), B220 (RA3-6B2), CD138 (281-2), CD95 (Jo2), CXCR4
189	(2B11), T-cell and B-cell activation antigen (GL7) (all from BD Pharmingen), CD8
190	(53-6.7), PD-1 (RMP1-30) (all from eBioscience), and CXCR3 (R&D Systems).
191	Cell surface expression of CXCR5 was determined via staining with biotin rat
192	anti-mouse CXCR5 mAb and streptavidin phycoerythrin (both from BD
193	Bioscience). Cells were then washed with FACS buffer, fixed with 2%
194	paraformaldehyde, and analyzed on a BD LSR II flow cytometer. Resulting data
195	was analyzed with FlowJo software (Tree Star Inc., Ashland, OR).
196	
197	Serum, brain supernatant, and neutralizing Ab quantification
198	JHMV-specific IgG and IgM in serum and brain supernatant was quantified by
199	ELISA using plates coated with serum-free supernatant from infected DBT cells

- 200 and biotinylated goat anti-mouse IgG2a and IgM as detection Ab as described (7,
- 201 38). Ab titers are expressed as the log of the highest dilution with an optical

202 density value exceeding 3 standard deviations above the mean background. 203 Titers for brain supernatants are expressed using the following formula: 204 (absorbance at 450nm / 0.1) x dilution factor x total volume of clarified CNS 205 supernatant. Neutralizing serum Ab was measured by incubation of serial 2-fold 206 dilutions of heat inactivated serum from individual mice with 50 PFU JHMV in 96-207 well plates for 90 min at 37°C. DBT cells were added, and plates incubated at 208 37°C for 48 h. Neutralization titers represent the log of the highest average 209 serum dilution that inhibited cytopathic effect. 210 211 ELISPOT 212 ASC were determined by ELISPOT as described previously (12, 24). Briefly, 213 sterile, white 96-well filter plates with 0.45 µm pore size hydrophobic PVDF 214 membrane (Merck Millipore, Billerica, MA) were stripped with 70% ethanol for 2 215 minutes, washed with 0.1M sodium bicarbonate buffer, and coated with either 216 polyclonal goat anti-mouse Ig (Life Technologies, Eugene, OR) at a 217 concentration of 2 mg/ml or undiluted virus supernatant for approximately 16 218 hours at 4°C. Wells were washed with washing buffer (0.05% Tween20 in 219 1xPBS) and blocked with 5% FCS in RPMI medium for 2 hours at 37°C. 220 Blocking buffer was replaced with cell suspensions at serial dilutions in triplicate 221 in RPMI medium. Plates were incubated at 37°C for 4 hours, then washed 222 thoroughly to remove cells. After addition of biotinylated rabbit anti-mouse IgG 223 (Southern Biotech, Birmingham, AL) at a concentration of 0.5 µg/mL, plates were 224 incubated for ~16 hours at 4°C, subsequently washed with washing buffer, and

226 washes with washing buffer and 1xPBS, respectively, diaminobezadine (DAB) 227 solution was added to visualize spots. Once spots had developed sufficiently, the 228 reaction was stopped by flushing wells with H_20 and plates left to dry in the dark. 229 Plates were scanned and spots quantified via Immunospot (Cellular 230 Technologies Ltd., Shaker Heights, OH). Threshold criteria for spot size was 231 defined as between 0.0009 and .2257 mm². 232 233 Immunohistochemistry 234 CLN from PBS-perfused mice were snap-frozen in Tissue-Tek OCT compound 235 (Sakura Finetex, Torrance, CA) and sectioned at 10 µm using a Thermo 236 Shandon cryostat. Slide-mounted tissue sections were fixed with ice cold 70% 237 acetone for 5 min, blocked with 5% bovine serum albumin and 10% goat serum 238 for 1 h, and stained with rat anti-mouse B220 mAb (BD biosciences), and rabbit 239 anti-mouse CD3 polyclonal Ab (Abcam, Cambridge, MA), and rat anti-mouse 240 FITC conjugated GL7 mAb (BD Biosciences) overnight at 4°C. Sections were 241 then incubated with secondary Ab using Alexa Fluor 594 goat anti-rat (Life Technologies, Grand Island, NY) and Cy5 goat anti-rabbit (Life Technologies, 242 243 Grand Island, NY) Ab for 1 h at room temperature. Sections were mounted with 244 Vectashield Hard Set Mounting Medium with DAPI (40,6-diamidino-2-245 phenylindole) (Vector Laboratories, Burlingame, CA) and examined using a Leica 246 TCS SP5 II confocal microscope (Leica Microsystems, Exton, PA). 247

incubated with streptavidin horseradish peroxidase for 1 hour at 25°C. Following

225

12

248 Statistical analysis

- All results are expressed as the mean ± standard error of the mean (SEM). Data
- were plotted and statistical significance determined utilizing GraphPad Prism 6
- software. Statistically significant differences are denoted by *p < 0.05, **p < 0.01,
- 252 ***p < 0.001, unless otherwise noted.

Journal of Virology

254 CD19 deficiency abrogates peripheral GC formation following CNS

255 infection

256 CLN are the predominant site of both T cell and ASC expansion following 257 JHMV infection, consistent with CLN as the draining site for CNS-derived Ag (5, 258 40-42). Temporal analysis of GC formation in CLN following JHMV infection 259 using GL7 to identify GC B cells previously showed formation of GL7⁺ foci as 260 early as day 7 p.i., more defined structures by day 14 p.i., and segregation into 261 light and dark zones by day 21 p.i. (12). To assess whether accumulation of ASC 262 within the CNS is dependent on CD19 signaling and GC formation in the periphery, JHMV infected CD19^{-/-} and wt mice were initially compared for GC 263 264 formation in CLN. In wt CLN, defined structures of GL7⁺ B220⁺ B cells started to 265 form at day 14 p.i. and were robust by day 21 p.i. (Fig. 1A), confirming previous 266 results (12). By contrast, in the absence of CD19, GL7⁺ cells were very sparse 267 and scattered at day 14 p.i. Although GC were evident in some follicles by day 268 21.p.i., they were small in size and disorganized compared to those in wt mice 269 (Fig. 1A). GL7⁺ B cells were scattered within the follicle (white arrows) without forming structures resembling GC architecture. Quantitative evaluation of GL7⁺ 270 271 area by immunofluorescence highlights significantly reduced reactivity in CD19^{-/-} 272 compared to wt mice, especially at day 21 p.i., when pixels per frame were 18-273 fold reduced (Fig. 1B). Impaired GC formation could not be attributed to disrupted 274 lymphoid organization as B cell follicle formation and lymphoid architecture is 275 intact in naïve CD19^{-/-} mice (43).

277	cytometry using the B220 ⁺ GL7 ⁺ CD95 ⁺ phenotype to identify GC B cells (Fig.
278	1C). The population of GL7 ⁺ CD95 ⁺ B cells in CLN of both naive wt and CD19 ^{-/-}
279	mice was below 0.5%, consistent with no or sparse GC activity. In wt mice ${\rm GL7}^+$
280	CD95 ⁺ B cells started to emerge at day 5 and continued to increase to \sim 3% by
281	day 14.p.i., consistent with anatomical GC formation. The frequency of GC
282	phenotype B cells was maintained at \sim 3-4% throughout days 21 and 28 p.i. In
283	contrast, GL7 ⁺ CD95 ⁺ B cells were only slightly elevated to <1% in CD19 ^{-/-} mice
284	and remained barely detectable throughout infection (Fig. 1C). Functionally, GC
285	B cells are characterized by upregulation of activation-induced cytidine
286	deaminase (AICDA), an enzyme required for somatic hypermutation and class
287	switch recombination to increase Ab diversity and affinity. As B cell maturation
288	can occur in the absence of GC (24, 25, 44), we also assessed transcript levels
289	of the gene encoding AICDA (aicda). In CLN of infected wt mice, the progressive
290	increase of aicda mRNA levels from day 7 to 21 p.i. correlated with GC formation
291	and maturation (Fig. 1D). While CD19 ^{-/-} mice exhibited modestly increased aicda
292	mRNA levels in CLN between days 7 and 21 p.i., these levels did not significantly
293	differ from naïve CD19 ^{-/-} mice until day 21 p.i. (Fig. 1D). These results

276

294 demonstrate a retarded and diminished capacity to initiate GC reactions in JHMV-infected CD19^{-/-} relative to wt mice. Nevertheless, the relative population 295 of GL7⁺ CD95⁺ B cells in CD19^{-/-} CLN only reached ~15% of wt levels at day 21 296 297 p.i., while aicda mRNA levels reached ~40% of wt levels, suggesting that CD19^{-/-}

The extent of impaired GC formation was further confirmed by flow

Accepted Manuscript Posted Online

Journal of Virology

298 B-cells exhibit modest maturation capacity despite severely impaired GC

299 formation.

300 To support the notion that deficient GC formation is a result of poor B cell 301 activation in the absence of CD19 rather than extrinsic factors related to GC 302 formation, we assessed transcript levels for several chemokines and cytokines 303 regulating B cell migration and differentiation (Fig. 2). Compared to infected wt 304 mice, CD19^{-/-} mice exhibited no significant changes in relative levels or kinetics of 305 mRNAs encoding CXCL13, CCL19 or CCL21, lymphoid chemokines regulating B 306 cell migration within follicles (14) (Fig. 2). The CXCL13 chemokine receptor 307 CXCR5 is up-regulated on B cells migrating to and forming GC (15, 45). It is also 308 highly expressed by follicular helper T cells (T_{FH}), which are essential for GC 309 formation, maintenance, B cell differentiation and survival by producing IL-21. Although cxcr5 transcripts were elevated in CLN of CD19^{-/-} mice throughout 310 311 infection, differences only reached statistical significance at day 21 p.i. (Fig. 2). 312 II21 mRNA levels were not significantly altered in the absence of CD19 (Fig. 2), 313 consistent with similar T_{FH} cell frequencies characterized by their PD-1⁺CXCR5⁺ phenotype using flow cytometry in both wt and CD19^{-/-} mice (data not shown). 314 315 Furthermore, transcript levels of the Tnfsf13b gene, which encodes the survival 316 factor B-cell activation factor (BAFF), were also similar between both groups 317 suggesting no deficits in retaining B cell viability. We also assessed upregulation 318 of transcripts encoding complement protein C3. C3-Ag adducts not only lower the 319 threshold for B cell activation by co-ligation of the CD21/CD19/CD81 BCR co-320 receptor, but also enhance B cell survival in follicles and GC (32). CNS infection

indeed resulted in significant upregulation of *c*3 mRNA in both groups at day 7 to
14 p.i. and remained elevated to day 21 p.i. Overall these results suggested that
the absence of CD19 did not impair cues for B cell localization to and trafficking
between anatomical structures of the CLN. The deficit in GC formation more
likely resides in deficient CD19 engagement either directly or indirectly via the
complement C3d binding receptor CD21 (27, 32).

327 Impaired GC formation is associated with induction of, but reduced and

328 rapid decline in, virus-specific humoral responses in the periphery

Impaired GC formation in CLN was also a hallmark of CXCL13^{-/-} mice
 infected with JHMV. However, differentiation of B cells into virus specific IgG

ASC was only reduced by ~25% in the CLN and 50% in in the CNS (24).

332 Modestly impaired, but not abrogated, virus-specific serum Ab in the absence of

333 CXCL13 confirmed that formation of mature GC in CLN is not an absolute

334 requirement for development of peripheral or CNS humoral immunity. We

therefore assessed how severely impaired GC formation in CD19^{-/-} affects JHMV-

336 specific serum Ab throughout infection. Virus-specific IgM levels were below

detection at day 7 p.i. in CD19^{-/-} mice, but reached similar levels to wt mice by

338 day 14 p.i. (Fig. 3A). However, while wt mice sustained virus-specific IgM levels

339 out to day 28 p.i., they were progressively lost after day 14 p.i. in CD19^{-/-} mice.

340 Virus-specific IgG2a was induced in both mouse groups by day 7 p.i. and

341 increased by day 14 p.i. (Fig. 3A). However, the levels were lower in the absence

342 of CD19 reaching \sim 3 log₁₀ relative to \sim 4-4.5 log₁₀ in wt mice. Furthermore, while

343 virus-specific serum IgG2a increased slightly in wt mice by day 21 p.i. and then

Journal of Virology

344	stabilized, it already started to decline by day 28 p.i. in CD19 ^{-/-} mice. Importantly,
345	although neutralizing serum Ab was initially reduced in infected CD19 ^{-/-} relative to
346	wt mice at day 7 p.i, it reached levels found in wt mice by day 14 p.i. However,
347	distinct from the gradual increase of neutralizing Ab throughout infection in wt
348	mice, it significantly declined by day 28 p.i. in CD19 ^{-/-} mice (Fig. 3A). Thus,
349	despite impaired GC formation in the absence of CD19, virus-specific serum Ab
350	responses were induced, albeit with delayed kinetics, at lower levels, and shorter
351	longevity. The inability of serum Ab to be maintained supported a critical role for
352	CD19 in generation of both IgM and isotype switched long-lived ASC (31).
353	Induction, but not maintenance of virus-specific serum Ab prompted us to
354	investigate the kinetics of virus-specific IgG ASC accumulation in CLN and bone
355	marrow (BM) by ELISPOT analysis (Fig. 3B, C). Virus specific IgG ASC emerged
356	at day 7 in CLN of wt mice, reached peak frequencies at day 14 p.i., and declined
357	by day 21 p.i., consistent with previous data (7, 11, 46). Although virus-specific
358	IgG ASC followed similar kinetics in CD19 ^{-/-} mice, peak frequencies were
359	reduced by ~70% compared to wt mice and dropped to barely detectable levels
360	by day 21 p.i. Furthermore, contrasting the modest increase in virus-specific ASC
361	in BM by day 21 p.i., virus-specific IgG ASC remained at baseline levels in BM of
362	CD19 ^{-/-} mice (Fig. 3C). Impaired ASC maturation was supported by assessment
363	of spot size as an indicator for ASC Ab secretion rate (Fig. 3B, C). On average,
364	ASC derived from WT CLN and BM at day 14 and 21 p.i., respectively, formed
365	more intense spots with an increased diameter compared to CD19 ^{-/-}
366	counterparts, suggesting higher rates of IgG secretion. Sparse GC formation

 $\overline{\leq}$

specific ASC maturation and longevity. These results indicated CD19 is essential
to drive activation and differentiation of high affinity virus-specific ASC competent
to egress CLN and migrate to survival niches in BM (47).

following JHMV infection of CD19^{-/-} mice thus coincides with reduced virus-

371 CD19 deficiency severely diminishes peripheral ASC expansion following
372 CNS infection

373 Impaired virus-specific ASC and serum responses as early as day 7 p.i. 374 were consistent with a defect in early activation potentially due to the absence of 375 complement mediated costimulation through CD21. Moreover, the peak of virus-376 specific ASC at day 14 p.i. in CLN following JHMV infection is preceded by a 377 peak in polyclonal ASC expansion at day 7 p.i. (11, 12). To assess whether 378 CD19 deficiency specifically affected virus-specific ASC, overall ASC expansion 379 in CLN was monitored by flow cytometry using CD138 as a phenotypic marker 380 (Fig. 4A, B). The frequency of CD138⁺ B cells was reduced by ~70 % relative to 381 wt mice at day 7 p.i. prior to expansion of virus specific ASC and remained low 382 throughout days 14 to 28 p.i. (Fig. 4). Similar numbers of B220⁺ B cells in CLN of 383 both groups during infection indicated no overall deficiencies in the B cell 384 compartment or recruitment to CLN following infection (data not shown). These 385 data were consistent with a polyclonal defect in early B cell activation in CD19^{-/-} 386 mice following JHMV infection preceding impaired generation of virus specific 387 ASC. Taken together, these results demonstrate a diminished capacity to initiate 388 GC reactions resulting in impaired differentiation of long-lived ASC in the 389 absence of CD19 in the periphery.

367

390 CD19 deficiency severely diminishes CNS humoral responses

391 ASC expanding prior to GC formation in CLN appear not to have egress or 392 migration capacity, as ASC do not emerge in the CNS until 14 days p.i. and only 393 prominently increase thereafter (7, 11, 24, 46). This observation suggests 394 accumulation of ASC in the CNS is dependent on differentiation in GCs. 395 Moreover, unlike CXCR4 driven migration of ASC to BM, ASC accumulation in 396 the CNS is dependent on CXCR3 expression (11). We therefore assessed whether the few ASC primed in CLN of CD19^{-/-} mice nevertheless traffic to the 397 infected CNS, as observed in CXCL13^{-/-} mice (21). Measurement of virus-specific 398 399 IgG ASC by ELISPOT revealed similar frequencies at day 14 p.i. when comparing brain or spinal cords of wt and CD19^{-/-} mice, respectively (Fig. 5A). 400 401 However, while frequencies in wt mice increased by day 21 p.i. and remained steady at day 28 p.i., they never increased in the CNS of CD19^{-/-} mice. Overall, 402 403 virus-specific ASC frequencies were significantly higher in spinal cords than 404 brains in wt mice at day 21 and 28 p.i., consistent with their preferential 405 accumulation at the site of persistence and elevated inflammation (48). The 406 differences between ASC frequencies were therefore especially pronounced in 407 spinal cords, amounting to an almost 10-fold disparity, whereas differences were 408 only 3-4 fold in the brain (Fig. 5A). Similar to CLN, average spot sizes of virusspecific CD19^{-/-} ASC were also reduced at days 21 and 28 p.i. compared to wt 409 410 ASC, reflecting poor affinity maturation and differentiation. The paucity in virus-411 specific ASC in the brain was supported by direct analysis of supernatants from 412 brain homogenates for virus-specific IgG2a Ab, the most abundant and protective

413 Ab isotype during JHMV infection (7, 49, 50). Compared to the progressive 414 increase of virus-specific IgG2a from day 14 to 28 p.i. in wt mice, the levels were barely above background in CD19^{-/-} mice (Fig. 5B). 415 416 To ascertain that CD19 deficiency affected overall ASC CNS migration 417 independent of specificity we monitored accumulation of ASC via expression of 418 mRNA encoding IgG and IgM heavy chains, which are expressed highly in ASC 419 compared to non Ab secreting B cells (8). Both brains and spinal cords of 420 infected wt mice exhibited a significant increase in IgG heavy chain mRNA by 14 421 days p.i., which was further elevated at days 21 through 28 p.i. (Fig 6A). As anticipated CD19^{-/-} mice exhibited significantly decreased transcript levels 422 423 throughout days 14 p.i. to 28 p.i. (Fig. 6A). Although a slight trend towards 424 elevated transcript levels was noted in spinal cords, the levels at day 28 p.i. did 425 not even reach those of wt mice at day 14 p.i. To delineate potential factors abrogating accumulation of ASCs within the CNS of CD19^{-/-} mice, we used flow 426 427 cytometry to assess CXCR3 expression on CD138⁺ ASCs in the CLN (Fig. 6B). 428 CXCR3 is upregulated by IFNy and essential in driving ASC migration to and entry into the CNS parenchyma (11). CD19^{-/-} mice expressed significantly 429 430 reduced frequencies of CXCR3⁺ ASCs in the CLN throughout infection, with 431 differences most prominent at day 14 p.i. (Fig. 6B). However, the mean fluorescent intensity (MFI) of CXCR3⁺ was similar between wt and CD19^{-/-} ASCs 432 433 (Fig. 6C). These data suggest that there is no inherent deficit in the ability of CD19^{-/-} ASCs to express CXCR3. Similarly to CXCR3, CXCR4 is upregulated 434 435 during ASC differentiation (11, 51). Interactions with its ligand, CXCL12, are

Journal of Virology

throughout infection (data not shown). As was the case with CXCR3, the MFI of
CXCR4 on ASCs did not differ between wt and CD19 ^{-/-} mice (data not shown).
We further assessed how CD19 deficiency affects overall B cell
recruitment using CD45 ^{hi} and B220 as expression markers of infiltrating B cells.
There were no differences in total CNS cell yields or frequencies of CD45 ^{hi}
infiltrating bone marrow derived cells. $CD8^+$ and $CD4^+$ T cells were also similar
between the groups (data not shown), confirming no overall deficits in leukocyte
trafficking to the CNS. Although a ~40% reduction in the frequency of $B220^+ B$
cells in the CNS was noted at 7 days p.i., frequencies were similar to wt mice by
days 14 and 21 (Fig. 7). Moreover, ~60% of B220 ⁺ B cells expressed IgD^+ in both
groups at days 7 and 14 p.i., indicating that a majority of these B cells are
undifferentiated. By day 21 p.i., the proportions decreased similarly to ~25%.
These results suggest that CD19 has a minor impact on migration of IgD^+ early-
activated B cells into the CNS following JHMV infection, but specifically affects

The deficit in CNS humoral immunity is associated with increased

infectious virus balanced by reactivation of T cell responses

overall ASC accumulation at day 14 p.i. and thereafter.

The severe deficit in virus-specific ASC and antiviral IgG2a in the CNS of JHMV-infected mice predicted loss of virus control during the persistent phase of infection, which requires local ASC (7, 49, 50, 52). Infectious virus load was

important in mediating ASC homing to, and retention within, the BM (47, 51).

expressing CXCR4 in the CLN, beginning at day 14 p.i. and continuing

CD19^{-/-} mice also demonstrated a significant reduction in the frequency of ASCs

Journal of Virology

459	similar and even lower in the CNS of CD19 ^{-/-} compared to wt mice at day 7 and
460	14 p.i. (Fig. 8A), consistent with T cell-mediated control. However, whereas wt
461	mice reduced infectious virus to below detection by day 21 p.i., it remained
462	detectable between day 14 and 28 p.i. in the absence of CD19 (Fig. 8A). The
463	inability to maintain effective virus control was confirmed by elevated, and even
464	increasing, transcript levels of viral RNA encoding nucleocapsid protein in both
465	brain and spinal cord comparing day 21 and 28 p.i. (Fig. 8B), although the
466	increase was modest. Importantly however, mice also did not show signs of
467	increased clinical disease (data not shown), distinct from mice totally deficient in
468	virus specific Ab production, in which vastly increasing virus is associated with
469	worsening clinical disease (52-54). Although T cells did not increase in the CNS
470	during persistence in CD19 ^{-/-} mice (data not shown), we assessed reemergence
471	of T cell effector activity to explain partial ongoing viral control during persistence.
472	IFN γ is the most critical cytokine essential for JHMV control (5, 55, 56). IFN γ
473	transcripts peaked to similar levels at day 7 p.i. in both the brain and spinal cord
474	of CD19 ^{-/-} and wt mice, confirming effective T cell stimulation by virus Ag
475	presentation (Fig. 8C). IFNγ mRNA levels dropped by days 10 and 14 p.i.
476	coincident with viral control and were similarly low in both groups at day 21 p.i.,
477	implying minimal in vivo stimulation and antiviral T cell activity. However, by day
478	28 p.i. IFNγ mRNA levels were significantly elevated in both brains and spinal
479	cords of CD19 ^{-/-} mice. These results indicated that elevated persisting viral load
480	triggers retained or reemerging T cells to produce $IFN\gamma$ and exert antiviral
481	activity.

Z

ript Posted Or		
epted Manusci		
Acc		

482

483

484

ine

484	screened for expression of factors associated with increased T cell function (Fig.
485	9). IL-21 not only enhances B cell differentiation in CLN, but also enhances and
486	prolongs CD8 T cell function within the CNS (10). While IL-21 was similarly
487	regulated in the CNS of wt and CD19 ^{-/-} mice out to day 14 p.i., it was sustained
488	and even increased in both brain and spinal cord of CD19 ^{-/-} compared to wt mice
489	during persistence, reaching statistically significant differences by day 28 p.i.
490	Surprisingly, transcript levels of the lymphoid chemokine CXCL13, which
491	regulates migration of IL-21 expressing CXCR5 ⁺ T cells was also notably
492	elevated at day 28 p.i. in the CNS of CD19 $^{\prime -}$ mice. Increased functional IFN γ
493	activity in the CNS of CD19 ^{-/-} mice in vivo was supported by elevated IFN γ
494	inducible <i>Tnfsf13b</i> and <i>cxcl9</i> mRNA relative to wt mice, specifically at day 28 p.i.
495	By contrast, C3 mRNA as an activation marker peaked in the brain at day 7, and
496	was only marginally increased at day 28 p.i. in the absence of CD19.
497	Surprisingly, spinal cords revealed increasing C3 mRNA levels throughout
498	persistence on both groups. Lastly, IL-10 mRNA, expressed most prominently by
499	CD4 T cells during JHMV infection (57), peaked in both groups and organs at
500	day 7 p.i., and declined during persistence, but was sustained at higher levels in
501	CD19 ^{-/-} mice, indicative of elevated regulatory T cell activity (58, 59). Assessment
502	of the CCR7 binding lymphoid chemokines CCL19 and CCL21, known to be
503	expressed in the inflamed CNS (60), revealed surprisingly distinct patterns
504	between wt and CD19 ^{-/-} mice. Compared to wt mice, CCL19 mRNA was

To provide evidence for reemergence of other T cell functions as well as

IFNy-dependent activities, both brains and spinal cords were temporally

 \sum

505	consistently elevated in brains of CD19 ^{-/-} mice throughout infection, whereas it
506	was mainly increased at day 28 in spinal cords. Unexpectedly, CCL21 mRNA
507	levels were vastly increased at basal levels in the CNS of CD19 ^{-/-} mice, but
508	remained unaltered by infection, similar to naïve wt mice. Overall the data imply
509	that re-triggering of T cell activity by elevated virus replication in settings of
510	impaired humoral immunity potentially contributes to steady-state viral control
511	during JHMV persistence.

512 Discussion

513	A variety of human viral CNS infections, including those caused by
514	measles, mumps, rubella, polio, varicella zoster, herpes simplex and Japanese
515	encephalitis virus (JEV), are characterized by intrathecal Ab in the cerebral spinal
516	fluid (CSF), consistent with local ASC (2, 61-64). Overall Ab detection is more
517	transient in cases of acute encephalitis, but persists during chronic disease such
518	as measles virus-associated subacute sclerosing panencephalitis (65, 66).
519	Although the role of intrathecal humoral responses in humans is difficult to
520	assess, they correlate with protective functions during JEV encephalitis (67),
521	CNS retrovirus infection (68-70) and HTLV-I-associated myelopathy
522	(70). Experimental CNS infections in rodents support an essential local
523	protective role of ASC, as evidenced by infections established by Sindbis, rabies,
524	and neurotropic coronaviruses (3, 11, 54, 71-75). Sustained Ab output by local
525	ASC provides a potent non-lytic mechanism of immune control potentially
526	beneficial for a variety of neurotropic infections prone to persist. However, little is
527	known about peripheral activation signals and the necessity of GC formation in
528	regulating B cell migration and accumulation to the CNS.
529	Expression of the lymphoid chemokines CXCL13 and CCL19/21 within the
530	CNS has been associated with formation of ectopic follicle-like structures
531	harboring multiple B cell differentiation phenotypes giving rise to de novo local Ab
532	production (76-78). Upregulation of B cell survival factors (8, 79, 80) is thought to
533	contribute to clonal B cell expansion and local humoral responses distinct from
534	those occurring systemically. However, follicle-like structures have not been

Z

535 observed in experimental viral encephalomyelitis (12, 81) suggesting activation 536 and GC formation in draining lymphoid organs imprints activated B cells for 537 migration to the inflamed site. As CD19 is a key signaling component initiating B 538 cell activation as well as driving GC formation, we assessed the relevance of 539 CD19 in humoral responses to neurotropic JHMV infection. As anticipated, 540 based on sparse peripheral replication and consequently Ag load (82), GC 541 formation was significantly impaired in the absence of CD19. Despite induction of 542 virus-specific serum IgG and neutralizing Ab, both IgM and IgG responses were 543 overall reduced and not sustained. Reduced anti-virus serum Ab, lower virus-544 specific ASC and very scant accumulation of IgG ASC in BM are consistent with lesser differentiation and longevity of isotype-switched CD19^{-/-} ASC compared to 545 546 wt ASC.

547 Contrasting scant migration to BM, virus-specific ASC trafficking to the 548 CNS was initially similar to wt mice. However, their ongoing accumulation was 549 significantly impaired after day 14 p.i. The more prominent defect in spinal cord 550 reflects the overall enhanced ASC accumulation in spinal cord relative to brain 551 associated with increased and sustained expression of ASC promoting factors 552 (Fig. 9), as shown previously in wt mice (48). Initial recruitment of virus-specific 553 ASC to the CNS, but not BM, supports the notion that CXCR3 driven recruitment 554 to the inflamed site overrides CXCR4 driven recruitment to BM (46). Similar CXCR3 expression levels on CD19^{-/-} vs wt ASC in CLN, irrespective of their low 555 556 numbers, implies that defective progressive accumulation of ASC is due to their 557 less differentiated, short-lived phenotype as a result of impaired GC formation,

Journal of Virology

Σ

rather than an inherent defect in migration or ASC promoting factors in the CNS
of CD19^{-/-} mice.

JHMV infection of CXCL13^{-/-} mice also revealed impaired GC formation 560 with reduced frequencies of GL7⁺ B cells (24). Nevertheless, distinct from CD19^{-/-} 561 562 mice, virus-specific serum Ab responses were not significantly impaired 563 throughout day 21 p.i., consistent with similar ASC in BM and only slightly 564 reduced ASC in CLN. Although ASC in the CNS were reduced by 50% in CXCL13^{-/-} mice they were sufficient to control persisting viral RNA. Potential 565 differences may reside in lymphoid structure. While CXCL13^{-/-} mice are devoid of 566 567 most lymph nodes, they retain cervical lymph nodes (45). However, the absence 568 of B cell follicles and disrupted lymphoid architecture likely alters typical migration patterns. By contrast, CD19^{-/-} mice exhibit normal lymphoid architecture with 569 intact B cell follicles (34), which may put more restraints on CD4 T cell-B cell 570 571 interactions. Irrespectively, the absence of CD19 leads to more severely impaired generation of protective ASC during JHMV infection compared to CXCL13^{-/-} 572 573 mice. An early defect in B cell activation was already noted by reduced overall 574 expansion of ASC, prior to detection of virus-specific ASC. While the early 575 increase in ASC was previously attributed to IFNα/β-induced bystander activation 576 similar to influenza virus and WNV (83, 84), our results implicate a role for CD19 577 co-receptor activation via CD21 co-ligation by virus/C3d adducts. JHMV infection 578 resulted in a robust increase of C3 mRNA in both CLN and the CNS. Viral 579 Ag/C3d mediated activation of the BCR co-receptor can thus reduce the 580 threshold for B cell activation in the periphery as well as the CNS, where

581 astrocytes, microglia, and potentially neurons and oligodendrocytes are likely 582 sources of C3 (85-87). Surprisingly however, early-activated IgD⁺ B cells 583 recruited to the CNS were not altered by CD19 deficiency, suggesting BCR 584 independent signals drive their trafficking to the CNS. In vitro stimulation to 585 assess virus specificity in this population provided no evidence for these early B 586 cells as precursors of ASC (88). The nature of signals driving IgD⁺ B cells to the 587 CNS during infection, as well as their role, thus remains to be determined, but 588 likely involves TLR driven signals (89, 90).

589 The biological impact of significantly impaired ASC within the CNS was manifested by the inability of CD19^{-/-} mice to control infectious virus during 590 591 persistence. Surprisingly, elevated viral load triggered T cell re-activation as 592 evidenced by reemerging IFNy mRNA in both brains and spinal cords. Biological 593 IFNy function was directly reflected by coincidently increased expression of IFNy 594 inducible CXCL9 and CXCL10 mRNA (8). Although retention of both CD4 and 595 CD8 T cells in the CNS during persistence make them likely sources of IFNy, de 596 novo recruitment of T cells cannot be excluded. In this context it is interesting to 597 note that IL-21 mRNA levels were also increased, suggesting IL-21 contributes to 598 reinvigorating local CD8 T cell effector function (10). Together these data 599 suggest that persisting viral replication in the absence of protective ASC is kept 600 in check by reemerging T cell activity. The significantly higher constitutive levels 601 of the CCR7 binding chemokine CCL21 in both the brain and spinal cord, but not 602 CLN, of CD19^{-/-} mice is also of interest. Elevated CCL21 mRNA was also noted 603 in CXCL13^{-/-} and CXCR3^{-/-} mice (11, 24). Following infection with the JHMV

29

604	heterologous MHV-A59 strain, CCR7 ligands produced by CNS stromal cells
605	were crucial to support recruitment and local re-activation of antiviral CD8+ T
606	cells (91). The latter studies indicated that CNS stromal cells generate confined
607	microenvironments that control T cell immunity and protect the host from lethal
608	neuroinflammatory disease. Surprisingly CD19 ^{-/-} mice did not exhibit increased
609	clinical symptoms or disability at day 28.p.i., suggesting CNS pathology
610	manifested in demyelination and axonal damage was not significantly worsened.
611	Possible explanations reside in CCR7-mediated restraint of T cell function to
612	perivascular spaces and or elevated protective IL-10. In summary, the effect of
613	CD19 deficiency on JHMV-induced humoral responses was overall similar to
614	reduced GC formation in peripheral infection models associated with limited viral
615	antigen (26, 31). Moreover, the results are the first to demonstrate that protective
616	ASC in the CNS are dependent on CD19 activation. By contrast, CD19-
617	independent accumulation of early recruited IgD^+B cells to the CNS suggests
618	independent activation mechanisms drive the emergence of early versus more
619	differentiated, isotype-switched B cells accumulating in the CNS as GCs are
620	formed in the periphery. A better understanding of distinct B cell subsets in the
621	CNS is essential to preempt reactivation of persistent viruses in the CNS during
622	immune suppressive therapies (92, 93) as well as combat disease susceptibility
623	to acute encephalitic arboviral infections.

624 Acknowledgements

- This work was supported by US National Institutes of Health grant NS086299.
- 626 The funding source had no involvement in the study design, writing of the
- 627 manuscript, decision to submit, or collection, analysis, and interpretation of data.
- 628 We sincerely thank Dr. Mi-Hyun Hwang for viral CNS infection.

Journal of Virology

629

Figure 1. Infected CD19^{-/-} mice exhibit diminished GC in CLN. WT and CD19⁻ 630 ^{/-} mice were infected with sublethal JHMV and CLN harvested at indicated times 631 632 for histology, flow cytometric analysis and gene expression. A) Representative images of fluorescent immunohistochemistry performed at days 14 and 21 p.i.. 633 634 Sections were stained for T cells (CD3, blue), B cells (B220, red), and activated 635 GC B cells (GL7, green). Images were taken at 40x magnification. B) Percentage 636 of pixels per image frame resulting from GL7⁺ staining in CLN follicles. Bars represent the mean percentage + SEM of GL7⁺ pixels per frame from 2-3 frames 637 per mouse from 2-6 mice per time point. C) Flow cytometry of CLN suspensions 638 639 stained for B220, GL7, and CD95, and gated as indicated. The bar graph shows 640 percentages of GL7⁺ CD95⁺ cells within total B cells over time. Data represent 641 the mean ± SEM of 2-4 individual mice per time point per group from 4 separate 642 experiments. D) CLN tissue was assessed for Aicda RNA transcript levels by rt-643 PCR over time. Data represent the mean + SEM transcript levels relative to 644 gapdh mRNA of individual mice from 2 separate experiments, each comprising 3-

645	5 individual mice per time point and group. Statistically significant differences
646	between wt and CD19 ^{-/-} mice denoted by *p < 0.05, ***p < 0.001.

Downloaded from http://jvi.asm.org/ on September 21, 2017 by FUDAN UNIVERSITY

 \leq

 \leq

647

Figure 2. CD19 deficiency does not impair expression of factors promoting

649 **GC formation within CLN.** CLN harvested from infected wt and CD19^{-/-} mice at 650 the indicated times p.i. were analyzed for mRNA expression levels of Cxcl13,

651 Ccl19, Ccl21, Cxcr5, II-21, Tnfsf13b (BAFF), and complement C3. Data represent

the mean <u>+</u> SEM transcript levels relative to *gapdh* mRNA of individual mice from

2 separate experiments, each comprising 3-5 individual mice per time point and

group. Statistically significant differences between wt and CD19^{-/-} mice,

determined by unpaired *t* test, are denoted by *p < 0.05, ** p < 0.01.

658 **Ab coincides with decreased virus-specific ASC in the absence of CD19.** A) 659 Virus-specific IgM, IgG, and neutralizing Ab in sera of uninfected (Day 0 p.i.) and

660	infected mice at indicated times p.i. CLN (B) and bone marrow (C) were analyzed
661	for virus specific IgG ASC by ELISPOT. Representative wells are shown for CLN
662	at day 14 and bone marrow (BM) at day 21 p.i Graphs show frequencies of
663	virus-specific IgG ASC spots and spot diameter. Data represent the mean + SEM
664	of individual mice from 3 separate experiments, each comprising 2-4 individual
665	mice per time point and group. Statistically significant differences between WT
666	and CD19 ^{-/-} mice, determined by unpaired t test, are denoted by $*p < 0.05$, $**p < 0.05$
667	0.01, ***p < 0.001. Significant differences between time-points within the same
668	group are denoted by $\# p < 0.05$.
(()	

669

Σ

670

Figure 4. CD138⁺ ASCs are decreased in CLN of CD19^{-/-} mice following

infection. Pooled CLN cells from infected wt and CD19^{-/-} mice (n=2-3 mice per
 time point per group from 3 separate experiments) were stained for B220 and the

ASC marker CD138. A) Representative density plots depicting CD138⁺ and B220⁺ B cells at 7 and 14 days p.i. (gated on live cells). Numbers represent

percentages of CD138⁺ B220⁺ ASCs within total cells. B) The bar graph shows

677 mean ± SEM. percentages of CD138⁺ B220⁺ ASCs within total CLN cells over

or o time. Statistically significant differences between wit and CD19 Thice ar	678	time. Statistically significant differences between wt and CD19 ^{-/-} mice are
--	-----	---

denoted by *p < 0.05, *** p < 0.001.

679 680 681

 \leq

Journal of Virology

Ŋ

682

Figure 5. Virus-specific ASC and Ab are severely decreased in the CNS of
CD19^{-/-} mice. A) Brain and spinal cord of infected wt and CD19^{-/-} were analyzed
for virus-specific IgG ASC by ELISPOT. Representative wells are shown from
day 28 p.i.. Graphs show frequencies of virus-specific IgG ASC spots as well as
spot diameter. Statistically significant differences between WT and CD19^{-/-} mice
(n=individual brains and pooled spinal cords from 2-6 mice per group per time

690	point from 4 separate experiments), determined by unpaired t test, are denoted
691	by *p < 0.05, ** p < 0.01, *** p < 0.001. B) Virus-specific IgG2a in brain
692	supernatants. Individual titers from 2-6 mice per group per time point from 2
693	separate experiments are shown. Statistically significant differences between WT
694	and CD19 ^{-/-} mice, determined by unpaired <i>t</i> test, are denoted by *p < 0.05, ** p <
695	0.01, *** p < 0.001.
696	

696

Σ

697

Figure 6. Total CXCR3⁺ ASC are reduced in CLN of CD19^{-/-} mice. A) Brains
 (BR) and spinal cords (SC) harvested from infected wt and CD19^{-/-} mice at the
 indicated times p.i. were analyzed for expression of IgG heavy chain (*Ighg*)
 mRNA. Data represent the mean <u>+</u> SEM transcript levels relative to *gapdh* mRNA
 of individual mice from 2 separate experiments, each comprising 2-6 individual

703	mice per time point and group. B) CLN cells pooled from infected mice were
704	stained for CD138 and CXCR3. Representative histograms gated on B220 ⁺
705	CD138 ⁺ ASCs at 21 days p.i. are shown for wt (blue, solid line) and CD19 ^{-/-} mice
706	(red, dotted line); the graph depicts mean <u>+</u> SEM percentages of CXCR3 ⁺ cells
707	within ASC (n= 2-4 individual mice per group per time point from 3 separate
708	experiments). Statistically significant differences between WT and CD19 ^{-/-} mice
709	are denoted by *p < 0.05, **p < 0.01. C) Mean fluorescent intensity (MFI) of
710	CXCR3 ⁺ ASCs from cells depicted in B).
711	

Day p.i.

712 713 Figure 7. CD19 deficiency does not impair recruitment of IgD⁺ B cells into the CNS. Brains from infected wt and CD19^{-/-} mice were analyzed for

714 715 accumulation of total CD45^{hi} expressing cells, as well as undifferentiated IgD⁺ B220⁺ B cells by flow cytometry. A) Representative density plots showing CD45 716 717 staining and side scatter (SSC) pattern and gating strategy for B220⁺ cells within infiltrating CD45hi cells. Bar graphs depicts percentages of B220⁺ cells within the 718 719 CD45^{hi} infiltrating population (B) and percentages of IgD⁺ cells within CD45^{hi} B220⁺ B cells (C) over time. Data represent the mean + SEM of individual mice 720 721 from 2 separate experiments, each comprising 2-4 individual mice per time point 722 and group. Statistically significant differences between wt and CD19^{-/-} mice are 723 denoted by **p < 0.01.

Ŋ

 \sum

736 737 Figure 9. CD19 deficiency leads to re-emergence of T cell associated

738 functions. Brains and spinal cords harvested from uninfected (Day 0 p.i.) and infected wt and CD19^{-/-} mice at the indicated times p.i. were analyzed for mRNA 739 encoding cytokines and chemokines associated with regulation of humoral 740 741 responses. Data represent the mean + SEM transcipt levels relative to gapdh 742 mRNA of individual mice from 2-3 separate experiments, each comprising 2-6 individual mice per time point and group. Statistically significant differences 743 between wt and CD19^{-/-} mice, determined by unpaired t test, are denoted by *p < 744 0.05, **p < 0.01, *** p < 0.001. 745 746

747

748

749	1.	Sedgwick JD, Dörries R. 1991. The immune system response to viral
750		infection of the CNS. Seminars in Neuroscience 3:93-100.
751	2.	Phares TW, Stohlman SA, Bergmann CC. 2013. Intrathecal humoral
752		immunity to encephalitic RNA viruses. Viruses 5:732-752.
753	3.	Griffin D, Levine B, Tyor W, Ubol S, Despres P. 1997. The role of antibody
754		in recovery from alphavirus encephalitis. Immunol Rev 159:155-61.
755	4.	Griffin DE. 2010. Recovery from viral encephalomyelitis: immune-
756		mediated noncytolytic virus clearance from neurons. Immunol Res 47:123-
757		133.
758	5.	Bergmann CC, Lane TE, Stohlman SA. 2006. Coronavirus infection of the
759		central nervous system: host-virus stand-off. Nat Rev Microbiol 4:121-
760		132.
761	6.	Marten NW, Stohlman SA, Zhou J, Bergmann CC. 2003. Kinetics of virus-
762		specific CD8+-T-cell expansion and trafficking following central nervous
763	_	system infection. J Virol 77:2775-2778.
764	7.	Tschen S-I, Bergmann CC, Ramakrishna C, Morales S, Atkinson R,
765		Stohlman SA. 2002. Recruitment kinetics and composition of antibody-
766		secreting cells within the central nervous system following viral
767		encephalomyelitis. J Immunol 168:2922-2929.
768	8.	Phares TW, Marques CP, Stohlman SA, Hinton DR, Bergmann CC. 2011.
769		Factors supporting intrathecal humoral responses following viral
770	•	encephalomyelitis. J Virol 85:2589-98.
771	9.	Okada 1, Cyster JG. 2006. B cell migration and interactions in the early
772	4.0	phase of antibody responses. Curr Opin Immunol 18:278-285.
773	10.	Phares I W, DISano KD, Hinton DR, Hwang M, Zajac AJ, Stoniman SA,
774		Bergmann CC. 2013. IL-21 optimizes 1 cell and humoral responses in the
775		central nervous system during viral encephalitis. J Neuroimmunoi 263:43-
//6	11	94. Marguas CD, Kanil D, Hinton DD, Hindinger C, Nutt SL, Denschaff DM
770	11.	Marques CP, Kapir P, Hinton DK, Hindinger C, Nutt SL, Kansonon RM,
770		Phares TW, Stohiman SA, Bergmann CC. 2011. CACR3-dependent
790		encentralomyelitis 1 Virol 85:6136-47
700	12	DiSano KD, Stohlman SA, Bergmann CC, 2017, Activated GL7+ B cells
701	12.	are maintained within the inflamed CNS in the absence of follicle formation
702		during viral encephalomyelitis. Brain Behay Immun 60:71-83
703	13	Deares TW/ Stophman SA Hinton DP Bergmann CC 2013 Actrocyte
704	15.	derived CYCL10 drives accumulation of antibody-secreting cells in the
705		control nonvous system during viral onconholomyolitic. 1 Viral 97:2292
700		
707	11	Cystor IC 2005 Chamakings sphingssing 1 phosphata and call
700	14.	migration in secondary lymphoid organs. Annu Rey Immunol 23:127-159
790	15	Victora GD Nussenzweig MC 2012 Germinal centers Annu Rev
791	15.	Immunol 30.429-457
792	16	Zotos D. Tarlinton DM. 2012. Determining germinal centre B cell fate
793	10.	Trends Immunol 33.281-288
70 <i>1</i> .	17	Crotty S 2012 The $1 - 1$ fallacy Immunol Rev 2/7.133-1/2
194	17.	Grony G. 2012. The F - F - Flanacy. Infinution (CV 247.133-142.

Σ

795	18.	Wengner AM, Höpken UE, Petrow PK, Hartmann S, Schurigt U, Bräuer R,
796		Lipp M. 2007. CXCR5 - and CCR7 - dependent lymphoid neogenesis in a
797		murine model of chronic antigen - induced arthritis. Arthritis Rheumatol
798		56:3271-3283.
799	19.	Krumbholz M, Theil D, Cepok S, Hemmer B, Kivisäkk P, Ransohoff RM,
800		Hofbauer M, Farina C, Derfuss T, Hartle C. 2005. Chemokines in multiple
801		sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to
802		CNS immune cell recruitment. Brain 129:200-211.
803	20.	Haas J, Bekeredjian-Ding I, Milkova M, Balint B, Schwarz A, Korporal M,
804		Jarius S, Fritz B, Lorenz H-M, Wildemann B. 2011. B cells undergo unique
805		compartmentalized redistribution in multiple sclerosis. J Autoimmun
806		37:289-299.
807	21.	Finch DK, Ettinger R, Karnell JL, Herbst R, Sleeman MA. 2013. Effects of
808		CXCL13 inhibition on lymphoid follicles in models of autoimmune disease.
809		Eur J Clin invest 43:501-509.
810	22.	Kowarik MC, Cepok S, Sellner J, Grummel V, Weber MS, Korn T, Berthele
811		A, Hemmer B. 2012. CXCL13 is the major determinant for B cell
812		recruitment to the CSF during neuroinflammation. J Neuroinflammation
813		9:93.
814	23.	Rupprecht TA, Plate A, Adam M, Wick M, Kastenbauer S, Schmidt C,
815		Klein M, Pfister H-W, Koedel U. 2009. The chemokine CXCL13 is a key
816		regulator of B cell recruitment to the cerebrospinal fluid in acute Lyme
817		neuroborreliosis. J Neuroinflammation 6:42.
818	24.	Phares TW, DiSano KD, Stohlman SA, Segal BM, Bergmann CC. 2016.
819		CXCL13 promotes isotype-switched B cell accumulation to the central
820		nervous system during viral encephalomyelitis. Brain Behav Immun
821		54:128-139.
822	25.	Rainey-Barger EK, Rumble JM, Lalor SJ, Esen N, Segal BM, Irani DN.
823		2011. The lymphoid chemokine, CXCL13, is dispensable for the initial
824		recruitment of B cells to the acutely inflamed central nervous system.
825		Brain Behav Immun 25:922-931.
826	26.	Fehr T, Rickert RC, Odermatt B, Roes J, Rajewsky K, Hengartner H,
827		Zinkernagel RM. 1998. Antiviral protection and germinal center formation,
828		but impaired B cell memory in the absence of CD19. J Exp Med 188:145-
829	07	155. Carter Bld. Warry V. Bracks C. 2000. Bala of CD40 simulation structure in
830	27.	Carter RH, Wang Y, Brooks S. 2002. Role of CD19 signal transduction in
831	00	B cell blology. Immunol Res 26:45-54.
832	28.	Rickert RC. 2005. Regulation of B lymphocyte activation by complement
833	20	C3 and the B cell coreceptor complex. Curr Opin Immunol 17:237-243.
834	29.	Del Nagro CJ, Otero DC, Anzelon AN, Omori SA, Kolla RV, Rickert RC.
835		2005. CD 19 function in central and perpheral B-cell development.
836 027	20	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Ծე/ 020	30.	Baiu DC, Frechi J, Tchorbanov A, Molina HD, Erder A, Sulica A, Capel PJ,
030 020		antibody-mediated antigen targeting to complement recentors and Eq.
039		animouy-mediated aningen targeting to complement receptors and FC
84U		

 \leq

841	31.	Ochsenbein AF, Pinschewer DD, Odermatt B, Carroll MC, Hengartner H,
842		Zinkernagei RM. 1999. Protective T cell-independent antiviral antibody
843	00	responses are dependent on complement. J Exp Med 190:1165-1174.
844	32.	Fischer MB, Goerg S, Shen L, Prodeus AP, Goodnow CC, Keisoe G,
845		Carroll MC. 1998. Dependence of germinal center B cells on expression of
846		CD21/CD35 for survival. Science 280:582-585.
847	33.	Verschoor A, Brockman MA, Knipe DM, Carroll MC. 2001. Cutting edge:
848		myeloid complement C3 enhances the humoral response to peripheral
849		viral infection. J Immunol 167:2446-2451.
850	34.	Rickert RC, Rajewsky K, Roes J. 1995. Impairment of T-cell-dependent B-
851		cell responses and B-1 cell development in CD19-deficient mice. Nature
852		376:352.
853	35.	Meinl E, Krumbholz M, Hohlfeld R. 2006. B lineage cells in the
854		inflammatory central nervous system environment: migration,
855		maintenance, local antibody production, and therapeutic modulation. Ann
856		Neurol 59:880-892.
857	36.	Rickert RC, Roes J, Rajewsky K. 1997. B lymphocyte-specific, Cre-
858		mediated mutagenesis in mice. Nucleic Acids Res 25:1317-1318.
859	37.	Fleming J, Trousdale M, El-Zaatari F, Stohlman S, Weiner L. 1986.
860		Pathogenicity of antigenic variants of murine coronavirus JHM selected
861		with monoclonal antibodies. J Virol 58:869-875.
862	38.	Phares TW, Stohlman SA, Hinton DR, Atkinson R, Bergmann CC. 2010.
863		Enhanced antiviral T cell function in the absence of B7-H1 is insufficient to
864		prevent persistence but exacerbates axonal bystander damage during
865		viral encephalomyelitis. J Immunol 185:5607-5618.
866	39.	Bergmann CC, Altman JD, Hinton D, Stohlman SA. 1999. Inverted
867		immunodominance and impaired cytolytic function of CD8+ T cells during
868		viral persistence in the central nervous system. J Immunol 163:3379-3387.
869	40.	Zhao J, Zhao J, Perlman S. 2014. Virus-specific regulatory T cells
870		ameliorate encephalitis by repressing effector T cell functions from priming
871		to effector stages. PLoS Pathog 10:e1004279.
872	41.	Stern JN, Yaari G, Vander Heiden JA, Church G, Donahue WF, Hintzen
873		RQ, Huttner AJ, Laman JD, Nagra RM, Nylander A. 2014. B cells
874		populating the multiple sclerosis brain mature in the draining cervical
875		lymph nodes. Sci Transl Med 6:248ra107-248ra107.
876	42.	Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD,
877		Derecki NC, Castle D, Mandell JW, Kevin SL, Harris TH, Kipnis J. 2015.
878		Structural and functional features of central nervous system lymphatics.
879		Nature 523:337.
880	43.	Engel P, Zhou L-J, Ord DC, Sato S, Koller B, Tedder TF. 1995. Abnormal
881		B lymphocyte delevopment, activation, and differentiation in mice that lack
882		or overexpress the CD19 signal transduction molecule. Immunity 3:39-50.
883	44.	Berkowska MA, Driessen GJ, Bikos V, Grosserichter-Wagener C,
884		Stamatopoulos K, Cerutti A, He B, Biermann K, Lange JF, van der Burg
885		M, van Dongen JJM, van Zelm MC. 2011. Human memory B cells

Accepted Manuscript Posted Online

886		originate from three distinct germinal center-dependent and-independent
887		maturation pathways. Blood 118:2150-2158.
888	45.	Ansel KM, Nao VN, Hyman PL, Luther SA, Förster R, Sedawick JD,
889		Browning JL, Lipp M, Cyster JG. 2000. A chemokine-driven positive
890		feedback loop organizes lymphoid follicles. Nature 406:309-314.
891	46.	Tschen SI, Stohlman SA, Ramakrishna C, Hinton DR, Atkinson RD,
892		Bergmann CC. 2006. CNS viral infection diverts homing of antibody -
893		secreting cells from lymphoid organs to the CNS. Eur J Immunol 36:603-
894		612.
895	47.	Radbruch A. Muehlinghaus G. Luger EO. Inamine A. Smith KG. Dörner T.
896		Hiepe F. 2006. Competence and competition: the challenge of becoming a
897		long-lived plasma cell. Nat Rev Immunol 6:741-750.
898	48.	Phares TW, DiSano KD, Stohlman SA, Bergmann CC. 2014. Progression
899		from IgD+ IgM+ to isotype-switched B cells is site specific during
900		coronavirus-induced encephalomyelitis. J Virol 88:8853-8867.
901	49.	Smith AL, Barthold S, De Souza M, Bottomly K. 1991. The role of gamma
902		interferon in infection of susceptible mice with murine coronavirus, MHV-
903		JHM. Arch Virol 121:89-100.
904	50.	Ramakrishna C, Bergmann CC, Atkinson R, Stohlman SA. 2003. Control
905		of central nervous system viral persistence by neutralizing antibody. J
906		Virol 77:4670-4678.
907	51.	Muehlinghaus G, Cigliano L, Huehn S, Peddinghaus A, Leyendeckers H,
908		Hauser AE, Hiepe F, Radbruch A, Arce S, Manz RA. 2005. Regulation of
909		CXCR3 and CXCR4 expression during terminal differentiation of memory
910		B cells into plasma cells. Blood 105:3965-3971.
911	52.	Ramakrishna C, Stohlman SA, Atkinson RD, Shlomchik MJ, Bergmann
912		CC. 2002. Mechanisms of central nervous system viral persistence: the
913		critical role of antibody and B cells. J Immunol 168:1204-1211.
914	53.	Lin MT, Hinton DR, Marten NW, Bergmann CC, Stohlman SA. 1999.
915		Antibody prevents virus reactivation within the central nervous system. J
916	- 4	Immunol 162:7358-7368.
917	54.	Ramakrishna C, Bergmann CC, Atkinson R, Stoniman SA. 2003. Control
918		of central nervous system viral persistence by neutralizing antibody. J
919	FF	VIIOI //:46/U-8. Derre D. Llinten DD. Marten NW/ Derrmann CC. Lin MT. Vens CC.
920	55.	Parra B, Hinton DR, Marten NW, Bergmann CC, Lin MI, Yang CS, Stehlman SA, 1000, JEN wie required for viral elegrance from control
921		Stoniman SA. 1999. IFIN-Y is required for viral clearance from central
922	FC	Rergmonn CC, Derro R, Hinten DR, Chandren R, Merrison M, Stehlmen
923	50.	SA 2002 Deferin mediated effector function within the control nervous
924		SA. 2005. Fenorin-mediated effector function within the central hervous
925		
920	57	JUNTAMPAKAR SS Baramann CC Savarin C Karn CL Phares TW Parra
927	57.	GL Hinton DR Stohlman SA 2011 Shifting hierarchies of interleukin-10-
920		producing T cell populations in the central nervous system during acute
920		and persistent viral encephalomyelitie 1 Virol 85.6702-6713
130		

49

931	58.	Perlman S, Zhao J. 2017. Roles of regulatory T cells and IL-10 in virus-
932		induced demyelination. J Neuroimmunol.
933	59.	Puntambekar SS, Hinton DR, Yin X, Savarin C, Bergmann CC, Trapp BD,
934		Stohlman SA. 2015. Interleukin - 10 is a critical regulator of white matter
935		lesion containment following viral induced demyelination. Glia 63:2106-
936		2120.
937	60.	Lalor SJ, Segal BM. 2010. Lymphoid chemokines in the CNS. J
938		Neuroimmunol 224:56-61.
939	61.	Sköldenberg B, Kalimo K, Forsgren M, Halonen P. 1981. Herpes simplex
940		encephalitis: A serological follow - up study. Acta Neurol Scand 63:273-
941		285.
942	62.	Schultze D, Weder B, Cassinotti P, Vitek L, Krausse K, Fierz W. 2004.
943		Diagnostic significance of intrathecally produced herpes simplex and
944		varizella-zoster virus-specific antibodies in central nervous system
945		infections. Swiss Med Wkly 134:700.
946	63.	Narayan K, Dail D, Li L, Cadavid D, Amrute S, Fitzgerald - Bocarsly P,
947		Pachner AR. 2005. The nervous system as ectopic germinal center:
948		CXCL13 and IgG in lyme neuroborreliosis. Ann Neurol 57:813-823.
949	64.	Burke DS, Nisalak A, Lorsomrudee W, Ussery MA, Laorpongse T. 1985.
950		Virus - specific antibody - producing cells in blood and cerebrospinal fluid
951		in acute Japanese encephalitis. J Med Virol 17:283-292.
952	65.	Vandvik B, Weil ML, Grandien M, Norrby E. 1978. Progressive rubella
953		virus panencephalitis: Synthesis of oligoclonal virus - specific IgG
954		antibodies and homogeneous free light chains in the central nervous
955		system. Acta Neurol Scand 57:53-64.
956	66.	Vandvik B, Norrby E. 1973. Oligoclonal IgG antibody response in the
957		central nervous system to different measles virus antigens in subacute
958		sclerosing panencephalitis. Proc Natl Acad Sci U S A 70:1060-1063.
959	67.	Thakare JP, Gore MM, Risbud AR, Banerjee K, Ghosh SN. 1991.
960		Detection of virus specific IgG subclasses in Japanese encephalitis
961		patients. Indian J Med Res 93:271-6.
962	68.	Kaiser R, Dorries R, Luer W, Poser S, Pohle HD, Felgenhauer K, ter
963		Meulen V. 1989. Analysis of oligoclonal antibody bands against individual
964		HIV structural proteins in the CSF of patients infected with HIV. J Neurol
965		236:157-60.
966	69.	Ryzhova E, Aye P, Harvey T, Cao W, Lackner A, Gonzalez-Scarano F.
967		2009. Intrathecal humoral responses are inversely associated with the
968		frequency of simian immunodeficiency virus macrophage-tropic variants in
969	-	the central nervous system. J Virol 83:8282-8.
970	70.	Puccioni-Sohler M, Rios M, Bianco C, Zhu SW, Oliveira C, Novis SA,
971		Pombo-de-Oliveira MS. 1999. An inverse correlation of HTLV-I viral load
972		IN USE and intrathecal synthesis of HILV-I antibodies in TSP/HAM.
973	74	Neurology 53:1335-9.
9/4	71.	nuoper DC, Phares IW, Fabis IVIJ, ROY A. 2009. The production of
975		antibody by invading B cells is required for the clearance of rables virus
976		from the central nervous system. PLOS Negl Trop Dis 3:e535.

Journal of Virology

Σ

977	72.	Fragkoudis R, Ballany CM, Boyd A, Fazakerley JK. 2008. In Semliki
978		Forest virus encephalitis, antibody rapidly clears infectious virus and is
979		required to eliminate viral material from the brain, but is not required to
980		generate lesions of demyelination. J Gen Virol 89:2565-8.
981	73.	Levine B, Hardwick JM, Trapp BD, Crawford TO, Bollinger RC, Griffin DE.
982		1991. Antibody-mediated clearance of alphavirus infection from neurons.
983		Science 254:856-60.
984	74.	Pachner AR, Brady J, Narayan K. 2007. Antibody-secreting cells in the
985		central nervous system in an animal model of MS: Phenotype, association
986		with disability, and in vitro production of antibody. J Neuroimmunol
987		190:112-20.
988	75.	Lee H, Sunden Y, Ochiai K, Umemura T. 2011. Experimental intracerebral
989		vaccination protects mouse from a neurotropic virus by attracting antibody
990		secreting cells to the CNS. Immunol Lett 139:102-9.
991	76.	Corcione A, Casazza S, Ferretti E, Giunti D, Zappia E, Pistorio A, Gambini
992		C, Mancardi GL, Uccelli A, Pistoia V. 2004. Recapitulation of B cell
993		differentiation in the central nervous system of patients with multiple
994		sclerosis. Proc Natl Acad Sci U S A 101:11064-9.
995	77.	Owens GP, Bennett JL, Gilden DH, Burgoon MP. 2006. The B cell
996		response in multiple sclerosis. Neurol Res 28:236-44.
997	78.	Owens GP, Ritchie AM, Burgoon MP, Williamson RA, Corboy JR, Gilden
998		DH. 2003. Single-cell repertoire analysis demonstrates that clonal
999		expansion is a prominent feature of the B cell response in multiple
1000		sclerosis cerebrospinal fluid. J Immunol 171:2725-33.
1001	79.	Krumbholz M, Theil D, Derfuss T, Rosenwald A, Schrader F, Monoranu
1002		CM, Kalled SL, Hess DM, Serafini B, Aloisi F, Wekerle H, Hohlfeld R,
1003		Meinl E. 2005. BAFF is produced by astrocytes and up-regulated in
1004		multiple sclerosis lesions and primary central nervous system lymphoma.
1005		J Exp Med 201:195-200.
1006	80.	Thangarajh M, Masterman T, Hillert J, Moerk S, Jonsson R. 2007. A
1007		proliferation-inducing ligand (APRIL) is expressed by astrocytes and is
1008		increased in multiple sclerosis. Scand J Immunol 65:92-8.
1009	81.	Metcalf IU, Baxter VK, Nilaratanakul V, Griffin DE. 2013. Recruitment and
1010		retention of B cells in the central nervous system in response to alphavirus
1011		encephalomyelitis. J Virol 87:2420-2429.
1012	82.	Cervantes-Barragan L, Kalinke U, Züst R, König M, Reizis B, López-
1013		Macias C, Thiel V, Ludewig B. 2009. Type I IFN-mediated protection of
1014		macrophages and dendritic cells secures control of murine coronavirus
1015		infection. J Immunol 182:1099-1106.
1016	83.	Coro ES, Chang WW, Baumgarth N. 2006. Type I IFN receptor signals
1017		directly stimulate local B cells early following influenza virus infection. J
1018	. .	Immunol 176:4343-4351.
1019	84.	Purtha WE, Chachu KA, Virgin HW, Diamond MS. 2008. Early B-cell
1020		activation after West Nile virus infection requires alpha/beta interferon but
1021		not antigen receptor signaling. J Virol 82:10964-10974.

 \leq

1022	85.	Veerhuis R, Janssen I, De Groot CJ, Van Muiswinkel FL, Hack CE,
1023		Eikelenboom P. 1999. Cytokines associated with amyloid plaques in
1024		Alzheimer's disease brain stimulate human glial and neuronal cell cultures
1025		to secrete early complement proteins, but not C1-inhibitor. Exp Neurol
1026		160:289-299.
1027	86.	Hosokawa M, Klegeris A, Maguire J, McGeer PL. 2003. Expression of
1028		complement messenger RNAs and proteins by human oligodendroglial
1029		cells. Glia 42:417-423.
1030	87.	Veerhuis R, Nielsen HM, Tenner AJ. 2011. Complement in the brain. Mol
1031		Immunol 48:1592-1603.
1032	88.	DiSano KD, Stohlman SA, Bergmann CC. 2017. An optimized method for
1033		enumerating CNS derived memory B cells during viral-induced
1034		inflammation. J Neurosci Methods 285:58-68.
1035	89.	Baccala R, Hoebe K, Kono DH, Beutler B, Theofilopoulos AN. 2007. TLR-
1036		dependent and TLR-independent pathways of type I interferon induction in
1037		systemic autoimmunity. Nat Med 13:543.
1038	90.	Das A, Heesters BA, Bialas A, O'Flynn J, Rifkin IR, Ochando J, Mittereder
1039		N, Carlesso G, Herbst R, Carroll MC. 2017. Follicular dendritic cell
1040		activation by TLR ligands promotes autoreactive B cell responses.
1041		Immunity 46:106-119.
1042	91.	Cupovic J, Onder L, Gil-Cruz C, Weiler E, Caviezel-Firner S, Perez-
1043		Shibayama C, Rülicke T, Bechmann I, Ludewig B. 2016. Central nervous
1044		system stromal cells control local CD8+ T cell responses during virus-
1045		induced neuroinflammation. Immunity 44:622-633.
1046	92.	Wingerchuk DM, Carter JL. 2014. Multiple sclerosis: current and emerging
1047		disease-modifying therapies and treatment strategies. Mayo Clin Proc
1048		89:225-240
1049	93.	Chalkias S, Dang X, Bord E, Stein MC, Kinkel RP, Sloane JA, Donnelly M,
1050		Ionete C, Houtchens MK, Buckle GJ. 2014. JC virus reactivation during
1051		prolonged natalizumab monotherapy for multiple sclerosis. Annals of
1052		neurology 75:925-934.

Z

 \leq

Downloaded from http://jvi.asm.org/ on September 21, 2017 by FUDAN UNIVERSITY

 $\overline{\leq}$

Journal of Virology

Day p.i.

Z

Α

WT

2000-

1500-

1000

₩ WT □ CD19^{-/-}

Brain

CD19-/-

WT

8000-

6000-

4000 2000

1000

٨

۸

~~

N.

Journal of Virology

Α

lgG BR

N.

lgG SC

Þ

¢

Day p.i.

CXCR3→

Z

Β

С

Journal of Virology

 \leq

 $\overline{\leq}$

Downloaded from http://jvi.asm.org/ on September 21, 2017 by FUDAN UNIVERSITY