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Abstract Significant sequence variation of Middle East

respiratory syndrome coronavirus (MERS CoV) has never

been detected since it was first reported in 2012. A MERS

patient came from Korea to China in late May 2015. The

patient was 44 years old and had symptoms including high

fever, dry cough with a little phlegm, and shortness of

breath, which are roughly consistent with those associated

with MERS, and had had close contact with individuals

with confirmed cases of MERS.After one month of therapy

with antiviral, anti-infection, and immune-enhancing

agents, the patient recovered in the hospital and was dis-

charged. A nasopharyngeal swab sample was collected for

direct sequencing, which revealed two deletion variants of

MERS CoV. Deletions of 414 and 419 nt occurred between

ORF5 and the E protein, resulting in a partial protein fusion

or truncation of ORF5 and the E protein. Functional

analysis by bioinformatics and comparison to previous

studies implied that the two variants might be defective in

their ability to package MERS CoV. However, the mech-

anism of how these deletions occurred and what effects

they have need to be further investigated.
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Introduction

Middle East respiratory syndrome coronavirus (MERS

CoV) has been reported in more than 23 countries [1] since

the first case was identified in 2012 [2]. Infection with this

virus leads to a mortality rate of about 40%, but its origin is

still not known [3–7]. MERS CoV belongs to lineage C of

the betacoronaviruses and has a single-stranded, positive-

sense, 30.1-kb RNA genome. The viral genomic RNA

encodes four structural proteins, i.e., spike glycoprotein

(S), envelope (E), matrix (M) and nucleocapsid (N), as well

as several nonstructural proteins, including ORF3-5 and

ORF8b [8].

Recently, 186 individuals were confirmed to be infected

with MERS CoV in Korea. During the epidemic, one

person who was in close contact with a MERS CoV patient

started to show MERS symptoms shortly after he traveled

to Guangdong Province of China and was confirmatively

diagnosed with MERS CoV by lab tests. The patient was

cured after 31 days of treatment with antiviral, anti-infec-

tion, and immune-enhancing agents. In order to better

understand the transmission and evolution of this virus [9],

viral RNA was isolated from a nasopharyngeal swab

sample of the Korean patient and sequenced. In addition to

the wild-type (WT) virus, two deletion variants of MERS

CoV were detected in this patient.

Materials and methods

The cDNA was amplified using 24 pairs of primers

(Supplemental Table 1). Each fragment amplified by RT-

PCR was about 1500 bp in length. After electrophoresis,

PCR products were recovered using a PCR purification

kit and sequenced on an AB3730 sequencer (Life

Technologies, Guangzhou, China). The sequences

obtained from PCR products were assembled into a full-

length genome sequence using DNAstar (version 7.0,

DNASTAR Inc., Madison, WI, USA). [10]. RNA was

extracted from nasopharyngeal swab specimens collected

on days 4, 5, 10, and 13 after onset of fever. Reverse

transcription of RNA into cDNA was performed as

described previously. The cDNA was used as the tem-

plate for PCR amplification with LA-Taq mix (TaKaRa)

and primer pair no. 22. PCR products were analyzed by

1% agarose gel electrophoresis. Protein sequences were

aligned using MEGA (version 6.0) [11]. TransMembrane

software was used to predict the transmembrane domain

of the ORF5 protein (http://www.cbs.dtu.dk/services/

TMHMM/) [12]. RNA secondary structure was predicted

using RNAfold software, available at http://rna.tbi.uni

vie.ac.at/cgi-bin/RNAfold.cgi [13].

Results and discussion

All products yielded usable sequences except those pro-

duced using primer pair no. 22. Two specific products

obtained by nested PCR (Fig. 1A) were purified, cloned

and sequenced. The lower-molecular-weight band was

composed of two variants that differed by 5 bp. Variant 2

was longer than variant 1, with the sequence TATGG

adjacent to the sequence CTCATGG). The upper band

(WT) was 414 bp longer than variant 2 after the sequence

CTCATGGTATGG. All fragments of the sequences were

assembled into three contigs of WT, variant 1 and variant

2. The genomic sequences have been uploaded to GenBank

as KT036372 [14], KT036373 and KT036374, and the

main differences in their nucleotide sequences are shown in

Fig. 1B.

The predicted changes in the primary structures of the

ORF5 and E proteins are shown in (Fig. 1C). Variant 2

encodes a fusion protein of the ORF5 and E proteins

(ORF5-E) with an 81-amino-acid (aa) deletion at the

C-terminus of ORF5 and a 31-aa deletion at the N-terminus

of the E protein. Variant 1 encodes two truncated proteins:

a 143-aa fragment of the N-terminus of ORF5 with an

additional 5 aa (FPYGY), and a 52-aa fragment of the

C-terminus of the E protein. Until now, no such variant has

been found in the NCBI database.

Although the function of the S protein has been exam-

ined previously [15–19], our knowledge of ORF5 and E

protein functions in MERS CoV is limited [20]. Moreover,

the effects of ORF5 and E protein mutations on viral

packaging, infection and disease development have not

been evaluated. Based on studies of other coronaviruses, it

is believed that the E protein is important for virus pack-

aging and replication [20–22]. The conserved hydrophobic

transmembrane N-terminal domain of the E protein is

necessary for CoV to be implanted in the membrane. Even

single point mutations in the transmembrane protein of the

infectious bronchitis virus (IBV) E protein [23], or amino

acid changes in the N-terminus of the SARS-CoV E protein

can result in attenuation of virulence [24]. To predict the

function of the E protein of MERS CoV, we aligned the E

and ORF5-E protein sequences of MERS CoV with those

of two other coronaviruses, SARS-CoV and China Rattus

coronavirus HKU24, using MEGA software (version 6.0)

[11]. The results showed that the E protein of MERS CoV

shares high similarity with the other two coronavirus (45%

for SARS CoV; 60% for HKU24 CoV) in the N-terminal,

C-terminal and transmembrane domains (Fig. 2A). The

truncated E protein with a deletion of aa 1-30 lacks the

N-terminus and a major part of the hydrophobic trans-

membrane domain in MERS CoV variant 1, which might

directly impair virus packaging and replication [24]. The
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putative fusion ORFF5-E protein (Fig. 2B) encoded by

variant 2 is predicted to have three transmembrane regions

(TransMembrane Hidden Markov Models [12]), and it

remains unclear whether it is able to function like the wild-

type E protein.

Almazán et al. reported that MERS CoV with a deletion

in the E gene produced replication-competent but propa-

gation-defective virus particles and proposed that this

defective virus should be a potential vaccine candidate for

preventing MERS CoV infection [25]. The two variants

identified in this study carried mutations in the N-terminal

domain, which is dispensable for the function of the E

protein. However, variations in this region lead to changes

in the location of this protein, and therefore, the virulence

of these two variants might be impaired to some extent.

This needs to be investigated using a recombinant virus.

The ORF5 gene of both variants of MERS CoV in this

study was truncated and fused with the E protein. The

effect of these variations on the virus could not be pre-

dicted because the function of the ORF5 gene is not well

understood. However, Scobey et al. found that the effect of

ORF5 deletions on the viral replication is minimal, but

deletion of the whole ORF5 gene significantly enhances S

protein expression [26]. More investigations are required to

determine the effects of the ORF5 mutant in these two

variants.

Intragenomic sequence deletions have been found in

some coronavirus [27, 28]. It has been proposed that this

occurs by a copy-choice or template-strand-switching

mechanism [29]. One important condition is for there to be

a specific leader sequence flanked by the deletion region

and a stem-loop structure [30]. Leader sequences corre-

sponding to the UCUAAAC sequence of murine hepatitis

virus (MHV) or the CUUAACA sequence of infectious

bronchitis virus (IBV) were not found in MERS CoV in

this study. Maori et al. have found that inverted repeats

facilitate looping out of the middle genomic sequences

during RNA replication, resulted in a defective RNA

genome [31]. An RNA secondary structure predicted using

the RNAfold webserver [13] suggested that the inverted

repeat sequence contains long complementary sequences at

each end and forms a strong stem-loop structure in the

deletion region (Fig. 2C). The deleted sequence was clo-

sely adjoined, characterized by a 14-bp nearly complete

inverted repeat sequence consisting of 27131-GTCATA-

CACACCAA-27144 and 27527-TTGGTGTGTATGGC-

27540, which would result in RNA replicase jumping from

one segment to another distant segment. Whether this

feature is linked to RNA intramolecular recombination

remains to be investigated.

Wild-type MERS CoV and two variants were isolated

for the first time from a patient who had traveled from

Korea to China. Genomic sequencing revealed 414-bp and

419-bp deletions between ORF5 and the E protein that

would result in partial fusion or truncation of these pro-

teins. Whether this finding is a special case or not needs to

Fig. 1 Schematic diagram of

WT, variant 1 and variant 2 of

MERS CoV. A. PCR product

electrophoresis of the variant

fragment. M, DNA marker; lane

1, no. 22 PCR product of the

sample. B. Comparison of three

sequences in two bands (A). C.
Protein changes of ORF5 and

the E protein in the three

genomes (WT, variant 1 and

variant 2)
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be investigated by sequencing more samples. Based on

previous studies of E protein localization [23–25, 32, 33],

we conclude that the two variants might affect virus

packaging, which could result in the attenuation of viru-

lence and therefore be relevant for studies related to vac-

cine development, pathogenesis and viral evolution.
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