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Abstract. Middle East Respiratory Syndrome Coronavirus (MERS-CorV), was discovered in humans with lower respiratory tract
infection, causes a range of illnesses in humans, from the common cold to the Severe Acute Respiratory Syndrome (SARS).
Scientists give much attention to study the CorV infection among groups and travelers. In this paper, we utilize a mathematical
model governed by a system of differential equations, which incorporate target cell limitation and the innate interferon response,
investigate the innate and adaptive immune responses to primary CorV infection in an individual. We also investigate the sensitivity
analysis of the model to determine the most sensitive parameters and informative subintervals. This study may promote clearance
of virus and host recovery from infection.
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Introduction

Infectious diseases remain a major cause of death, disability, and social and economic disorder for millions of people
throughout the world. Prevention and treatment strategiesfor infectious diseases are derived thorough understanding
of the complex interactions between specific viral or bacterial pathogens and the human (or animal) host. Recently,
there are increasing attempts to use mathematical modelling tools in biology and medicine. A particular interest to
mathematical models has been established in theoretical studies of the immune system and infectious diseases in the
molecular level. Mathematicians and immunologists have begun to work together to create models that attempt to
predict the progression of disease in an individual, using differential models; See [1, 2, 3, 4, 5, 6].

Herein, we give attention to human Coronavirus (CorV) infections, which first appeared in April 2012 in the
Middle East. Since then, 536 laboratory-confirmed cases of human infection with Middle East respiratory syndrome
coronavirus (MERS-CorV) have been reported to WHO, including 145 deaths [7, 8, 9]. To date, the affected countries
in the Middle East include Jordan, Kuwait, Oman, Qatar, Saudi Arabia (KSA), United Arab Emirates (UAE) and
Yemen; in Africa: Egypt and Tunisia; in Europe: France, Germany, Greece, Italy and the United Kingdom; in Asia:
Malaysia and Philippines; and in North America: the United States of America (USA). All of the cases recently
reported outside the Middle East (Egypt, Greece, Malaysia,the Philippines and the USA) recently travelled from
countries inside of the Middle East (KSA or UAE). Overall, 65.6% of cases are male and the median age is 49 years
old (range 9 months-94 years old). Since the last update of 27March 2015, 330 laboratory-confirmed cases, including
59 deaths, were reported to WHO. These cases have not reported contacts with other laboratory-confirmed cases, and
some have reported contacts with animals, including camels. Although camels are suspected to be the primary source
of infection for humans, the routes of direct or indirect transmission remain unknown and investigations are ongoing
[10, 11].

Mathematical models have proven to be useful tools in the analysis of viral infections. For example, ordinary and
partial differential equations have long played important roles inbioscience, and they will no doubt continue to serve
as indispensable tools in future investigations. Althoughstudying transmission of the diseases among groups (animals
and humans) using the epidemic (or endemic/ pandemic) SIR or SIS models have a long and well-establishedhistory
of research, deterministic mathematical modeling of infectious diseases on the molecular level is still a relatively new
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field (see, e.g., [12, 13, 14, 15, 16, 17]). The concern in thispaper is to provide a system of ODEs model to describe
the dynamic process of the interactions between the immune system and CorV infections in an organism. Qualitative
behaviour of the model is investigated by sensitivity analysis of the parameters to model states.

The organization of this paper is as follows.. In Section 2, we introduce a general background about the interaction
of immune system with CorV infection. In Section 3, we propose a mathematical model based on a system of ODEs.
In Section 4, we briefly introduce sensitivity analysis of the model.

General Background

Coronavirus (CorV) attacks the host respiratory tract mucosa, interacts with healthy epithelial cells and infects them
by binding to cell surface receptors via one of the major surface glycoproteins, HA. The virus replicates in infected
cells and several hours after cellular infection, newly synthesized virus particles are released by the action of another
major glycoprotein, NA. The response of the host to CorV infection involves a cascade of events mediated by several
effector cells and molecules that neutralize free virus, kill infected cells and limit the spread of viral particles by
increasing healthy cell resistance to infection [18, 19].

Antigen presenting cells (APC) are essential in the induction and amplication of the human immune response.
Exogenous viral antigens, which comprise inactive viral particles, intact viruses and apoptotic, infected cells, are
taken up by APC through endocytosis and provide a potential source of peptides that could bind to MHC class I or
II molecules in the APC. The role of the APC is to stimulate both innate and adaptive immunity. As the rst line of
defense, APC and infected cells stimulate the innate immunity by secreting interferonα andβ (IFN) molecules which
interact with healthy cells and convert them to an infectionresistant state, thereby preventing the virus from spreading
efciently and allowing the adaptive immune response enoughtime to develop and eliminate the virus.Another role of
IFN is to stimulate symptoms such as fever which occurs in theearly stages of infection. IFN levels rise rapidly after
infection and correlate directly with the degree of viral replication in ferrets, mice and humans. Magnitude of the fever
correlates strongly with the level of virus shedding in humans and animals [20].

As a second line of defense, APC stimulate the cellular component of innate immunity which consists of effector
cells (cytotoxic T cells (CTL) or natural killer cells (NK))that destroy infected cells before they can release a mature
virus. Activated T cells produce various factors which are extremely important for the kinetics of the CorV infection:
helper T cells secrete IL-2 and other lymphocytes and CTL produce IFN-γ, which increases the expression of MHC
antigens acting to enhance virus-infected cell destruction. The peptide-class I MHC complexes presented on the
infected cells are recognized by class-I MHC-restricted CD8+memory T-cells (Th1 cells), which destroy the infected
cells. The specicity of memory T cells is directed against viral internal proteins; NP is the strongest of these antigens.
Since structure of these antigens is conserved within the type of virus, Th1 cells against these antigens are cross-
reactive within the type of virus [21].

Finally, APC stimulate adaptive immunity by activating theproliferation of virus-specic plasma cells which
produce antibodies (Abs) that bind with CorV and render it ineffective. HA and NA are taken up in an endocytic
vesicle pathway of the APC and are degraded; the peptides of these antigens are loaded on class-II MHC molecules
and then expressed on the APC (Tulp et al., 1994). The peptideclass II MHC complexes are recognized by class-II
MHC-restricted CD4+ T cells (Th2 cells). Th2 cell stimulation by antigen recognition results in the produc- tion
of specic Abs to HA and NA molecules. Anti-HA Abs neutralize the infectivity of the virus, whereas anti-NA Abs
prevent the release of viruses from infected cells. Thus, anti-HA Abs are primarily responsible for preventing infection,
while anti-NA Abs and CTL specic for viral core proteins are responsible for reducing viral spread and thereby for
accelerating the recovery from the virus.

The respiratory tract mucosa is not only the site of infection by inuenza viruses but also the site of defense
against viral infection in the host. The recovery process after primary infection involves two phases: an early phase
(days 57), characterized by a rapid decrease in virus titer via killing of the virus- infected epithelial cells by MHC
class I restricted CD8+ CTLs, which appear with a peak at day 7 is cellular response dependent, while a late phase
(day 7 onwards), characterized by a more protracted decrease that ultimately results in clearance, depends on the
adaptive response. Since u symptoms emerge within a few daysof inoculation, acquired immunity appearing after
the rst week of infection cannot prevent the onset of respiratory symptoms. Therefore, effective immunity must be
induced in advance by natural infection or vaccination in order to prevent disease [8, 22, 23].
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FIGURE 1. Schematic representation of interactions included in model (1). The CorV is shown as red hexagon, the four different
cell types are shown in cyan. Components of adaptive immunity are shown in orange, cellular component of innate immunity
in purple, and interferon component in green. Up-regulation is represented by lines terminated with arrows and inhibition by
lines terminated with bars. The inter-conversion of cell types is indicated by dashed arrows. Dashed ovals represent details of the
mechanism ignored in this model. Homeostatic maintenance of effector and plasma cell populations are indicated by self-regulating
loops.

The Model

In this paper, we construct a mathematical model of the dynamics of CorV infection and the human immune response
to such infection. We focus on three important components ofthe immune response: the interferon and cellular com-
ponents of innate immunity and the adaptive immunity, all ofwhich have the same goal of limiting the concentration
of the virus and the damage to the system, but which achieve this goal using different strategies: interferon immunity
by removing the sub- strate that virus needs for reproduction (i.e., the healthy cells), cellular immunity by removing
the source of new viruses (i.e., the infected cells), and adaptive immunity by lowering the effective concentration of
the virus.

The model of human immune response against CorV infection weconsider is a simplied model of population-
dynamics type which consists of the following interactions(see Fig. 1). The epithelial cells of the respiratory tract
are assumed to be in one of four possible states: healthy (H),infected (I), dead (D), or resistant (R) to infection. The
total number of epithelial cells (i.e., H+I+D+R) is assumed constant. The virus particles (V) interact with healthy
cells and infect them. Infected cells release new virus particles upon their death. Proliferation of healthy cells causes
regeneration and decrease in the proportion of dead cells. Dead cells stimulate the activation of APC (M).

The interactions are based on clonal selection theory, massaction kinetics, characteristics of interactions and the
birthdeath balances of populations of cells and molecules.Given the variables of table 1, we assume the following
model which is based on th emodel is similar on the model that was proposed by Bocharov and Romanyukha [24].

V ′(t) = γV I(t) − γVAS (t)A(t)V(t) − γVH H(t)V(t) − αVV(t) −
aV1V(t)

1+ aV2V(t)
, (1)

H′(t) = bHDD(t)(H(t) + R(t)) + aRR(t) − γHVV(t)H(t) − bHF F(t)H(t), (2)

I′(t) = γHVV(t)H(t) − bIE E(t)I(t) − aI I(t), (3)

M′(t) = (bMDD(t) + bMVV(t))(1− M(t)) − aM M(t), (4)

F′(t) = bF M(t) + cF I(t) − cFH H(t)F(t) − aF F(t), (5)

R′(t) = bHF F(t)H(t) − aRR(t), (6)

E′(t) = bEM M(t)E(t) − bEI I(t)E(t) − aE(1− E(t)), (7)

020009-3



P′(t) = bPM M(t)P(t) − aP(1− P(t)), (8)

A′(t) = baA(t) − γAVS (t)V(t)A(t) − aAA(t), (9)

S ′(t) = rP(t)(1− S (t)). (10)

HereD(t) is the proportion of dead cells which is given by

D(t) = 1− H(t) − R(t) − I(t). (11)
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FIGURE 2. Shows, for particular values of parameters, the numerical simulation of the model (1-11).

First Eq. of (1) of the system describes the rate of change of virus concentrationV. It expresses the production
rate of a viral particle by infected cells, rate of neutralization of CorV by specific antibodies, the rate of adsorption
of viral particles by healthy cells, and the natural decay ofviral particles. The viral particles are also removed from
the respiratory tract by nonspecific mechanisms. The nonspecific mucociliary removal of virions supported by cough
and other mechanisms is described by the termaV1V/(1+ aV2V), which saturates with increasing V as the available
capacity of these mechanisms is exhausted. Note that the lethal damage of an infected cell by the effector cells does
not cause any release of infective CorV and hence in Eq. (1) there is no term of the formEI.

Second Eq. of (2) determines the time rate of change of healthy cellsH. During recovery, new healthy cells are
generated as a result of proliferation of both healthy and resistant cells (the offspring of resistant cells lose resistance)
and hence the proliferation term is proportional to (H +R), and toD (in a logistic fashion) since regeneration can only
occur in the presence of damage. Resistant cells R graduallylose their resistance to infection and return into their
initial sensitive state (healthy state) (Joklik, 1985), which is characterized by the termaRR. The termgHVVH is the
loss of healthy cells due to infection and the termbHF FH characterizes transition of the healthy cells into resistant
state. Third Eq. of (3) characterizes the time rate of changeof infected cellsI. The infection of healthy cells by virions
is described in the termγHVVH. The termaI I indicates the natural death of infected cells during which new virus
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FIGURE 3. Displays cumulative proportions of types of respiratory epithelial cells. For particular values of parameters It shows,
at any given time, the proportions of dead cells, infected cells, resistant cells, and healthy cells.

TABLE 1. Variables of Model (1) [3].

Variable Description

V(t) Viral load per epithelial cell
H(t) Proportion of healthy cells
I(t) Proportion of infected cells
M(t) Activated antigen presenting cells per homeostatic level
F(t) Interferon per homeostatic level of macrophages
R(t) Proportion of resistant cells
E(t) Effector cells per homeostatic level
P(t) Plasma cells per homeostatic level
A(t) Antibodies per homeostatic level
S (t) Antigenic distance
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FIGURE 4. shows the sensitivityV(t) due to small perturbations on the parametersγV , andγVH. The state variableV(t) is insensi-
tive the beginning then sensitive to small changes in the parameters.

particles are produced. The termbIE EI characterizes the destruction of infected cells by effector cells (CT L andNK)
during which no new virus is produced.

Fourth Eq. of (4) establishes that the time rate of increase of activatedAPC (M) is proportional to the amount
of the virus and the amount of dead cells. The natural decay ofactivated state ofAPC is represented by the last term
in that equation. The sixth Eq. describes the time rate of change of interferonα andβ (F) which depends on the
production rate ofF by APC and by infected cells, on the rate ofF binding healthy cells, as well as on the nonspecific
decay ofF. The fifth Eq. shows that resistant cellsR are induced from healthy cells (bHF FH) and convert back to
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healthy cells (aRR) with finite lifetime.
Seventh Eq. of (7) characterizes the rate of change of effector cellsE concentration and takes into account the

production rate of effector cells stimulated byAPC (first term) and the destruction rate of infected cells by effector
cells (second term,bEI IE). The termsaE(1− E) andaP(1− P) and (8) are approximate expressions for homeostatic
maintenance of the levels of active effectors and plasma cells, reflecting the observation that thehealthy body tends to
maintain their concentrations within narrow bounds. In a healthy state the effectors and plasma cells are naturally lo-
cated in lymph nodes and blood, and migrate into the infectedtissue upon activation. Both the activation and migration
of those cells to the infected tissue are assumed to be much faster than their proliferation and hence are not explicitly
accounted for. The first term in eight Eq. of (8) characterizes the activation process of plasma cells stimulated byAPC.

Ninth Eq. of (9) stands for the time rate of change of the concentration of antibodies A describing the production
rate of A by plasma cells (first term), the neutralization rate of freeviral particles by specific antibodies (second
term) and the natural decay rate ofA (last term). The variableS in our model represents the compatibility between
antibodies and the virus strain in an individual and ranges from 0 (no compatibility) to 1 (maximal compatibility)
and can be interpreted as a measure of binding affinity of the antibody and the virus. The immune memory of the
host is described by the initial valueS (0) of S . During the course of the disease,S increases as plasma cells produce
antibodies increasingly compatible with viral antigens. The rate of increase of S is approximated by the termrP(1−S )
which accounts for two natural observations: (i) the increase in S is stimulated by plasma cells and (ii)S cannot
increase beyond 1. By adjusting the time evolution of S we mayobserve how the course of the disease depends on the
evolution of antigenic distance.

We note that a number of assumptions in the model are strong simplifications of our knowledge of immune
physiology. The populations of cells and virus are assumed to be uniformly distributed over the epithelial layer at
all times. It is also assumed that time rate of change of any model variable is determined by the present value of all
variables. Some of the variables do not have uniquely identifiable biological counterparts. For example, there is no
single biological entity or marker that represents theAPC in our model, which are assumed to provide both antigen
presenting andIFN producing functions. We have also omitted intermediate steps in the pathways: for example, we
do not account for the intermediate steps in the production of effector cells and plasma cells such as Th1 and Th2
helper cells and B-cells. We do not consider time delays in the reproduction of cellular components.

Figure 2 shows the numerical simulation of the model, or particular values of parameters. While Figure 3 displays
cumulative proportions of types of respiratory epithelialcells: at any given time, the proportions of dead cells, infected
cells, resistant cells, and healthy cells.

Sensitivity Analysis

The goals of sensitivity analysis with respect to random perturbations of the model parameters are (i) to show how
robust of the the infection model is in relation to perturbedparameter values, (ii) to explore to which parameters the
system is more sensitive to understand key processes and immune system mechanisms. Figure 4 shows the sensitivity
V(t) due to small perturbations on the parametersγV , andγVH . The state variableV(t) is insensitive the beginning then
sensitive to small changes in the parameters; See [22, 25, 26].

Conclusion

We presented a mathematical model, based on a system of ODEs,of the human immune response to the CorV infection
in individual hosts which includes innate and adaptive immunity, and analyzed its behavior. Such a model could be
used to explore in more detail individual determinants of symptoms and behavior of clinical relevance, especially in
large-scale simulations of disease spread and containment. Simulation and sensitivity analysis of this model suggest
that for majority of possible parameter values and initial conditions the course of the disease falls into one of three
categories: asymptomatic disease, typical disease, and severe disease. The model can be extended to consider time
delays in the reproduction of cellular components.
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