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The Human Coronaviruses

Oliver Schildgen

�Introduction

Although human coronaviruses (CoV) are known as human pathogens since the 
1960s, their virus family has gained notoriety in 2002 and 2003 with the first out-
break of the SARS coronavirus epidemic and with the recent emergence in 2012 of 
the MERS coronavirus.

Coronaviruses belong to the family Coronaviridae and are enveloped single-
stranded RNA viruses with positive RNA-genomes [1]. Their genome is about 
26–32 kilobases long and thus represents the longest know viral RNA genome. The 
name coronaviruses is based on electron microscopy photographs which stimulated 
the imagination of early electron microscopy analysts who thought that the viruses 
have a crown-like surface. Consequently, these researchers named the viruses 
according to the Latin word for crown, i.e., corona [2]. Until today, all known coro-
naviruses share a similar genome organization and expression profile of their 
genomes: 16 nonstructural proteins (named nsp1–16) are encoded by an open read-
ing frame (ORF) named 1a/1b which is located at the 5′ terminus of the genome, 
followed by the structural proteins (spike/S, envelope/E, membrane/M, 
nucleocapsid/N) that in total are encoded by ORFs located 3′ of the viral genome.

Within the family of coronaviruses, four genera exist which are named alpha-
CoV (or group 1), beta-CoV (group 2), gamma-CoV (group 3), and delta-CoV 
(group 4), whereby group 2 coronaviruses comprises four lineages named A, B, C, 
and D, respectively [2]. In this context it is worth mentioning that the lineage A 
viruses of the group 2 CoVs encode a smaller protein called hemagglutinin esterase 
(HE), which appears to be functionally similar to the S protein [3].
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�HCoV Genome Organization

As mentioned previously, the human coronaviruses have a non-segmented positive-
stranded RNA genome. Approximately 60–70% of this genome consist of two large 
and overlapping open reading frames (ORF1a and ORF1b) that encode for the poly-
proteins pp1a and pp1ab that in turn are processed into the 16 nonstructural proteins 
1–16. The structural proteins E, M, N, and S share the rest of the ORFs of the viral 
genome while being accompanied by a variable number of the so-called accessory 
proteins [2]. The long genomes are believed to originate from a unique replication 
fidelity that in turn is originated by a set of viral enzymes harboring RNA-processing 
functions [4].

�Clinical Symptoms

In humans, HCoV infections in general result in self-limiting disease courses that 
involve the upper respiratory and the gastrointestinal tract. Symptoms may vary 
from mild to serious and (sometimes) life-threatening infections in permissive 
patients and range from a common cold to bronchitis and pneumonia; occasionally 
renal involvement is seen [5–15].

In this context it is important to note that the clinical manifestations of the two 
most serious (but also least frequent) HCoVs, namely, SARS coronavirus and 
MERS coronaviruses, are more serious and frequently are life-threatening. However, 
despite the ongoing endemic MERS outbreak in the Arabian region and single out-
breaks in South Korea, these two pathogens remain limited to single outbreaks (in 
case of SARS-CoV) and endemic zoonotic transmissions in the Middle East area.

In any case, none of the remaining human coronaviruses can be identified on 
clinical symptoms alone, and coinfections with other respiratory viruses are as com-
mon as with other respiratory pathogens, making it difficult to identify which is the 
“leading” pathogen in multiple infections [16–22].

�Epidemiology

To date, six human coronaviruses have been discovered, i.e., the human coronavi-
ruses OC43 and 229E, NL63 and HKU1, and the SARS and MERS coronaviruses. 
Except for the latter two, all human coronaviruses have been noted to occur world-
wide and are mostly associated with a seasonality that follows the typical flu-like 
symptom season [23–31]. As the nomenclature of coronaviruses is far from being 
logical, these viruses are described in the next section in more detail according to 
their systematic order.
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�Human Coronavirus 229E (Group 1/Alpha-Coronavirus)

Occurring globally, the human coronavirus type 229E was initially discovered in 
1966 during a trial to identify several newly recognized pathogens associated with 
the common cold [32, 33]. The clinical symptoms associated with 229E include 
malaise, headache, sneezing, sore throat, sometimes fever, and cough. The time 
span between infection and clinical symptoms is reported between 2 and 5 days 
with clinical symptoms lasting between 2 and 18 days [34–37]. Anyway, as men-
tioned earlier, there is no clinical difference between 229E infections and other 
respiratory infections caused by viral pathogens such as rhinovirus or influenza A 
[34–37].

Recently it has been postulated that 229E originated from a recombination event 
between the alpaca alpha-coronavirus. This recombination event occurred within 
the S gene and was followed by a deletion in the same gene [38].

�Human Coronavirus NL63 (Group 1/Alpha-Coronavirus)

Discovered in 2004, the human coronavirus NL63 has been found worldwide since 
then and is mainly associated with respiratory infections in children, the elderly, and 
immunocompromised patients. The virus was consecutively discovered in two sepa-
rate laboratories in the Netherlands, one in Amsterdam and one in Rotterdam [39, 
40]. NL63 infections in general present with mild respiratory symptoms such as 
cough, rhinorrhea, tachypnea, fever, and hypoxia [11, 13, 41–44] and are self-
limited. A frequently observed “complication” is croup which is present in approx. 
5% of NL63 infections [45].

�Human Coronavirus HKU1 (Group 2/Betacoronavirus, 
Lineage A)

Starting with the description of the human metapneumovirus in 2001, a new era in 
virology began; this era focused on viral discovery methods that combined classical 
techniques of virology with modern molecular methods. The resulting wave of virus 
discoveries led to another trend in molecular diagnostics in which singleplex step by 
step methods were replaced with multiplexing technologies able to screen for sev-
eral pathogens simultaneously. During this time, HKU1 was detected in 2005 at the 
Hong Kong University (which is also the institution from which the name HKU1 
was derived). The isolation of HKU1 was from an elderly patient who suffered from 
bronchiolitis and pneumonia [46–48]. Fatal infections occur rarely, and the infec-
tions are indistinguishable from other viral respiratory infections. As the other 
“common cold” coronaviruses, HKU is circulating globally [49–54].
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�Human Coronavirus OC43 (Group 2/Betacoronavirus 
of Lineage A)

The strain OC43 belongs to the longest known human coronaviruses and was identi-
fied in 1967 [55, 56]. The discrimination between OC43 and 229 can be performed 
exclusively by molecular methods or serologically, and both viruses have the same 
morphology and clinical spectrum [55, 56].

�SARS Coronavirus (Group 2 Coronavirus/Betacoronavirus 
of Lineage B)

Much has been speculated; even more has been confirmed about the SARS corona-
virus since it was first detected in 2002/2003 during an outbreak in China. The 
subsequent pandemic that was beginning was halter due to strict hygienic proce-
dures and intervention measures before a worldwide disaster could occur. As a mat-
ter of fact, the discovery of this virus was possible solely by the first alarming 
observations reported by Dr. Carlo Urbani [57], a physician who was confronted 
with patients suffering from fever, myalgia, headache, malaise, and chills followed 
by a dry cough, dyspnea, and respiratory distress; in some cases infections of the 
liver, kidney, gastrointestinal tract, and brain occurred [58–62]. The overall mortal-
ity rate is 9% but is higher with increasing age. To date, the SARS coronavirus has 
caused only a single outbreak followed by spread to other locations as a result of 
travel. This initial SARS coronavirus outbreak is now known to be an archetypic 
zoonosis outbreak of this virus or other SARS-like coronaviruses. Such coronavi-
ruses circulating in their natural reservoirs should not be excluded during and out-
break and require a narrow mesh of surveillance.

�MERS Coronavirus (Group 2/Betacoronavirus, Lineage C)

The MERS coronavirus first came to the attention of the scientific community in 
2012 when the virus was isolated for the first time in Saudi Arabia. It causes severe 
pneumonia with acute respiratory distress (ARDS) and is frequently associated with 
gastrointestinal symptoms. Importantly, renal impairment is frequently observed. 
Especially patients with an underlying comorbidity are permissive for MERS-CoV 
infections and have a high mortality rate [63–75]. It is important to note that, 
although the virus appears to be endemic, spontaneous outbreaks due to imported 
cases are possible, as most recently reported from South Korea, where the room-
mate of an index patient left the hospital on his own account and thereby caused a 
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local outbreak [76–79]. It is worth noting that in terms of the MERS-CoV, it is 
assumed that the viral spike protein enables the virus to evade the immune system 
by preventing the binding of neutralizing antibodies.

�Virus Ecology of Human Coronaviruses

To date it appears that the coronaviruses NL63, HKU1, 229E, and OC43 are well-
adapted human viruses that remain in the human reservoir; these coronaviruses 
originated from zoonotic transmission long ago [38, 80–83]. In contrast, MERS-
CoV and SARS-CoV are less adapted to the human host and most likely represent 
zoonoses, originating from their natural reservoirs camels and bats, respectively 
[82–90].

�Diagnostics

The diagnostic confirmation of a human coronavirus infection does not necessarily 
lead to a specific therapeutic decision. While coronaviruses NL63, HKU1, OC43, 
and 229E do not require “special” attention, isolation of patients is strictly required 
in case of SARS-CoV and should be considered in case of MERS-CoV.

As diagnostic methods, neither cell culture-based nor electron microscopy meth-
ods are the first choice. Instead, molecular methods such as RT-qPCR, LAMP, or 
multiplexing methods should be used. RT-qPCR protocols have been described by 
several groups and are the method of choice for the new coronaviruses. For MERS 
coronavirus it is recommended by Corman and coworkers to use the upE region and 
the Orf1a as targets for the PCR, while Orf1b has a reduced sensitivity [91]. In addi-
tion, it is recommended to sequence parts of the RdRp- and/or the N-gene to con-
firm the results. Internal and external controls should be included in every PCR run 
and are available, e.g., from Public Health England.

For the other coronaviruses, several validated and approved multiplex assays are 
available, such as the RespiFinder assay (Pathofinder, Maastricht, Netherlands), the 
film array (former IDAHO film assay, meanwhile produced and distributed by 
bioMerieux, Lyon, France), or the Luminex RVP (Luminex, Austin, Texas, USA). 
All of these assays have the advantage of a high sensitivity combined with the 
simultaneous detection of several other pathogens. Moreover, the novel Light Mix 
Modular Assays from Roche/TIBMOLBIOL could serve as an alternative for coro-
navirus diagnostics.
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Fig. 1  Overview of the novel high-throughput VIDISCA method. (From de Vries et  al. 2011, 
PLoS One [92]. Original picture published under the Creative Commons Attribution (CC BY) 
license in PLoS One [92])
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�Advanced Molecular Techniques Relevant to Human 
Coronaviruses

The detection of novel coronaviruses within the last 15 years are excellent examples 
for the necessity of advanced molecular techniques that have to be combined with 
classical virological methods. As an example, the discovery of the SARS coronavi-
rus has become possible solely due to the sophisticated combination of detailed and 
timely clinical observation followed by attempts to isolate the virus in cell culture 
(classical method) and subsequent characterization by modern molecular tech-
niques. The latter method used for the identification of the novel genome of the 
SARS coronavirus was called random reverse transcriptase PCR and led to the 
amplification and subsequent sequencing of the first known SARS genomes [62].

A further example is the discovery of the human coronavirus NL63 by van der 
Hoek and coworkers [39]. These researchers established a novel method called 
VIDISCA (virus discovery cDNA-AFLP). For this method, the viral DNA or cDNA 
is digested with enzymes targeting short recognition sequences that are virtually 
present in all viruses. These fragments are then ligated to adaptors and amplified by 
an adaptor-specific PCR. The VIDISCA method meanwhile was refined (Fig. 1) and 
is applicable as a sensitive assay for virus discovery also from clinical samples [92].

�Concluding Remarks

Coronaviruses have been recognized as a major player in serious airway infections. 
The recent experiences with the MERS coronavirus and the outbreak experience 
with the SARS coronavirus have shown that these zoonotic viruses are able to cross 
the species barrier and along with influenza viruses are the most likely candidates 
for future outbreaks. In concert with newer studies on virus ecology, it has become 
obvious that coronaviruses are ubiquitous pathogens infecting a broad range of 
mammals that often are in contact with humans, thus providing the basics for future 
zoonotic outbreaks.
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