JVI Accepted Manuscript Posted Online 1 August 2018 J. Virol. doi:10.1128/JVI.00902-18 Copyright © 2018 American Society for Microbiology. All Rights Reserved.

1

2	Inhibition of stress granule formation by Middle East respiratory syndrome coronavirus 4a
3	accessory protein facilitates viral translation, leading to efficient virus replication
4	
5	Keisuke Nakagawa ¹ , Krishna Narayanan ¹ , Masami Wada ¹ and Shinji Makino ^{1,2,3,4,5,#}
6	
7	Department of Microbiology and Immunology ¹ , Center for Biodefense and Emerging
8	Infectious Diseases ² , UTMB Center for Tropical Diseases ³ , Sealy Center for Vaccine
9	Development ⁴ , and The Institute for Human Infections and Immunity ⁵ , The University of
10	Texas Medical Branch, Galveston, Texas, 77555-1019
11	
12	Short title: SG formation inhibition in MERS-CoV replication
13	#: Corresponding author: Shinji Makino
14	Corresponding author's Mailing Address: 4.142E Medical Research Building 301 University
15	Boulevard, Galveston, Texas 77555-1019
16	Tel/Fax: (409) 775-2323/(409) 772-5065
17	E-mail: <u>shmakino@utmb.edu</u>
18	Abstract: 244 words, Importance: 145 words
19	
20	

~	
6	
õ	
2	
>	
0	
σ	
E	
$\overline{\mathbf{z}}$	

21 Abstract

22	Stress granule (SG) formation is generally triggered as a result of stress-induced translation
23	arrest. The impact of SG formation on virus replication varies among different viruses, and the
24	significance of SGs in coronavirus (CoV) replication is largely unknown. The present study
25	examined the biological role of SGs in Middle East respiratory syndrome (MERS)-CoV
26	replication. MERS-CoV 4a accessory protein is known to inhibit SG formation in expressed cells
27	by binding to double-stranded RNAs and inhibiting protein kinase R (PKR)-mediated eIF2 α
28	phosphorylation. Replication of MERS-CoV lacking genes 4a and 4b (MERS-CoV- $\Delta p4$), but not
29	MERS-CoV, induced SG accumulation in MERS-CoV-susceptible HeLa/CD26 cells, while
30	replication of both viruses failed to induce SGs in Vero cells, demonstrating cell type-specific
31	differences in MERS-CoV- $\Delta p4$ -induced SG formation. MERS-CoV- $\Delta p4$ replicated less
32	efficiently than MERS-CoV in HeLa/CD26 cells and inhibition of SG formation by siRNA-
33	mediated depletion of the SG components promoted MERS-CoV- $\Delta p4$ replication, demonstrating
34	that SG formation was detrimental for MERS-CoV replication. Inefficient MERS-CoV- $\Delta p4$
35	replication was neither due to induction of type I and type III interferons nor accumulation of
36	viral mRNAs in the SGs. Rather, it was due to inefficient translation of viral proteins, which was
37	caused by high levels of PKR-mediated $eIF2\alpha$ phosphorylation and likely by confinement of
38	various factors that are required for translation in the SGs. Finally, we established that deletion
39	of 4a gene alone was sufficient for inducing SGs in infected cells. Our study revealed that 4a-
40	mediated inhibition of SG formation facilitates viral translation, leading to efficient MERS-CoV
41	replication.

42

43

44 Importance

45	Middle East respiratory syndrome coronavirus (MERS-CoV) causes respiratory failure
46	with a high case fatality rate in patients, yet effective antivirals and vaccines are currently not
47	available. Stress granule (SG) formation is one of the cellular stress responses to virus infection
48	and is generally triggered as a result of stress-induced translation arrest. SGs can be beneficial or
49	detrimental for virus replication, and the biological role of SGs in CoV infection is unclear. The
50	present study showed that MERS-CoV 4a accessory protein, which was reported to block SG
51	formation in expressed cells, inhibited SG formation in infected cells. Our data suggest that 4a-
52	mediated inhibition of SG formation facilitates the translation of viral mRNAs, resulting in
53	efficient virus replication. To our knowledge, this is the first report showing the biological
54	significance of SG in CoV replication, and provides insight into the interplay between MERS-
55	CoV and antiviral stress responses.
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	

 $\overline{\leq}$

67 Introduction

68	Middle East respiratory syndrome (MERS), which was first reported in 2012, is a
69	zoonotic disease caused by MERS coronavirus (MERS-CoV) (1). It has been suspected that the
70	virus is of bat origin, while dromedaries serve as a reservoir and transmit the virus to human
71	primarily in Middle Eastern countries (2-5). MERS patients suffer from fever, cough, and
72	pneumonia, which can lead to respiratory failure (1, 6). The reported case fatality rate is
73	approximately 36% (http://www.who.int/emergencies/mers-cov/en/). Hence, MERS-CoV
74	represents a serious public health threat.
75	CoVs are enveloped viruses carrying a single-stranded positive-sense RNA genome of
76	~30-kb length (7-9) and are classified into four genera, alpha, beta, gamma, and delta CoVs.
77	Replication of MERS-CoV, a beta CoV, starts with binding of the virus to a specific viral
78	receptor, CD26 (also known as dipeptidyl peptidase 4) (10). After fusion of virus and host cell
79	membranes, the incoming genomic RNA undergoes translation of two large polyproteins from
80	open reading frame (ORF) 1a and from ORFs 1a and 1b, both of which are located in gene 1 (Fig.
81	1A). The polyproteins are processed into 16 mature nonstructural proteins (nsp1-nsp16), most of
82	which are essential for synthesis of viral RNAs (11-13), including genome-length mRNA 1 and
83	subgenomic mRNAs, mRNAs 2-8. Viral mRNAs have a common 3'-end, constituting a 3'-co-
84	terminal nested set structure and the 5' end of all viral mRNAs carry a common leader sequence
85	(14-17). Subgenomic mRNAs encode viral structural proteins and accessory proteins, including
86	3, 4a, 4b, and 5, the latter of which are not essential for virus replication, yet do affect viral
87	pathogenicity (18-22).

Downloaded from http://jvi.asm.org/ on August 3, 2018 by UNIV OF SUSSEX

88 Virus replication, which represents a stress to the cells, activates several signaling
89 pathways, including those triggered by activated protein kinase R (PKR). Upon binding viral

90	double-stranded RNAs (dsRNAs), PKR undergoes autophosphorylation reaction that activates
91	the kinase. Activated PKR phosphorylates the eukaryotic initiation factor 2α (eIF2 α) subunit
92	(23-25), which prevents the recycling of ternary complex $tRNA_i^{Met}$ -GTP-eIF2 and inhibits the
93	43S translation complex formation, leading to inhibition of translation (23, 24, 26, 27). Hence,
94	PKR activation inhibits viral gene expression, contributing to host cell survival from infection.
95	The translation inhibition by $eIF2\alpha$ phosphorylation also leads to polysome disassembly
96	and subsequent accumulation of the mRNAs associated with stalled ribosome complexes to
97	cytoplasmic structures called stress granules (SGs) (27, 28). SGs act as dynamic microdomains;
98	once translation activities are restored, SGs are disassembled and mRNAs that have been stored
99	in the SGs can rapidly resume translation (27, 29, 30). SGs contain mRNAs bound to translation
100	factors, such as eIF4A and eIF3, and the 40S ribosomal subunit, plus many additional proteins
101	affecting mRNA functions. SG assembly is driven by aggregation-prone cellular RNA-binding
102	proteins, such as T cell internal antigen 1 (TIA-1) and Ras-GTPase activating SH3 domain
103	binding protein 1 (G3BP1) (27). Recent studies have shown localization of RIG-I-like receptors
104	(RLRs) and PKR in SGs during viral infection (31-33). It has been proposed that SGs exert
105	specific antiviral effects (34) by providing a critical platform for interactions between antiviral
106	proteins and non-self RNA ligands (31, 35, 36).
107	The impact of SG formation on virus replication varies among different viruses (37, 38).
108	Some viruses accomplish efficient replication by inhibiting SG formation via various
109	mechanisms. For instance, influenza A virus blocks SG formation by the NS1 protein, which
110	sequesters dsRNAs from PKR (39). Alphaherpes viruses blocks SG formation by impairing the
111	activation of eIF2 α through the virion host shutoff protein, Us11, ICP34.5, and glycoprotein B

Downloaded from http://jvi.asm.org/ on August 3, 2018 by UNIV OF SUSSEX

Downloaded from http://jvi.asm.org/ on August 3, 2018 by UNIV OF SUSSEX

114	the activity of viral 3C proteinase (45). Some viruses induce or modulate SG formation for their
115	replication. For example, Newcastle disease virus triggers stable formation of SGs, which benefit
116	viral protein translation and virus replication by arresting cellular mRNAs (46). Vesicular
117	stomatitis virus induces SG-like structures, which contain viral RNAs and viral proteins
118	necessary for RNA synthesis, suggesting that SG-like structures are important for virus
119	replication (47, 48). Hepatitis C virus induces the assembly and disassembly of SGs in an eIF2 α -
120	dependent manner and some components of SGs play a pivotal role in several steps of the virus
121	life cycle (49, 50).
122	Several past studies reported either SG formation or absence of it in the context of CoV
123	infection. Transmissible gastroenteritis coronavirus (TGEV), an alpha CoV, induces aggregation
124	of granules containing viral mRNAs associated with the polypyrimidine tract-binding protein
125	and SG markers, TIA-1 and TIAR, late in infection (51). Mouse hepatitis virus (MHV), a beta
126	CoV, induces SGs when phosphorylation of eIF2 α and host translational shutoff occur (52).
127	Rabouw et al. reported that expression of MERS-CoV 4a protein, an accessory protein, impedes
128	PKR phosphorylation and SG formation, whereas MERS-CoV as well as MERS-CoV lacking
129	both ORFs 4a and 4b (Fig. 1A) did not induce SGs in infected cells (53). Absence of SG
130	formation in the mutant MERS-CoV-infected cells led the authors to speculate that MERS-CoV
131	encodes at least one other stress response antagonist with a mode of action that differs from that
132	of 4a (53). Currently, the biological significance of SG formation or inhibition of it during CoV
133	replication are unclear.
134	Rabouw et al. tested SG formation in MERS-CoV-infected Vero cells, but they used

preventing PKR activation (44). Finally, picornaviruses disassemble SG by cleaving G3BP1 via

135 HeLa cells to study 4a protein-induced SG formation (53). As PKR expression levels are low in

M

137

138

139

140

141

142

143

144

145

146

147

148

formation. In the present study, we explored this possibility and found that replication of MERS-CoV mutant lacking ORFs 4a and 4b (MERS-CoV-Δp4), but not wild-type MERS-CoV (MERS-CoV-WT), induced SG formation in HeLa-derived susceptible cells. Our study further demonstrated that inhibition of SG formation facilitated translation of viral proteins, leading to efficient virus replication, and that depletion of MERS-CoV 4a protein alone was sufficient for inducing SG formation in infected cells. To our knowledge, this is the first study revealing the biological role of SGs in CoV replication and identifying a CoV protein that suppresses SG

<u>Journal</u> of Virology

Results 149

accumulation in infected cells.

15	50	MERS-CoV-Δp4 infection induces SGs in HeLa/CD26 cells. To determine whether
15	51	replication of MERS-CoV- $\Delta p4$ (Fig. 1A) induces SG formation, we established a HeLa cell line
15	52	stably expressing the MERS-CoV receptor, human CD26 (HeLa/CD26 cells). HeLa cells express
15	53	significantly higher levels of PKR than Vero cells (54). We inoculated MERS-CoV-WT or
15	54	MERS-CoV- $\Delta p4$, both of which were rescued by using a reverse genetics system (55), into
15	55	HeLa/CD26 cells at an MOI of 3; our MERS-CoV- $\Delta p4$ and the MERS-CoV mutant described by
15	56	Rabouw et al. (53) have the same deletion in the gene 4. The cells were subjected to
15	57	immunofluorescence analysis using specific antibodies for SG markers, TIA-1, G3BP, or eIF4A,

Vero cells (54), the extent of the PKR-induced eIF2 α phosphorylation caused by the MERS-

CoV mutant in Vero cells might have been too low for induction of SG formation. If this is the

case, the MERS-CoV mutant would induce SGs in other cells, where PKR expression levels are

high enough for inducing eIF2 α phosphorylation and the extent of which is sufficient for SG

159	MERS-CoV-Δp4-infected cells, but not in MERS-CoV-WT-infected cells (Figs. 1B-1D).
160	SGs are dynamic structures and disperse without a source of new translation initiation
161	complexes (27-30). Cycloheximide (CHX) stalls translation, leading to dismantling of SGs (28);
162	hence, if these granules carrying the SG markers in MERS-CoV- $\Delta p4$ -infected cells are indeed
163	SGs, CHX treatment would disperse them. CHX treatment, but not dimethyl sulfoxide (DMSO)
164	treatment, caused dispersion of TIA-1-positive granules in MERS-CoV- $\Delta p4$ -infected cells,
165	establishing that MERS-CoV- $\Delta p4$, but not MERS-CoV-WT, induced SGs in infected
166	HeLa/CD26 cells (Fig. 1E).
167	We next determined kinetics of accumulation of SG-positive cells by counting cells
168	positive for both TIA-1 and N proteins (SG-positive cells) and those positive for only N protein
169	(SG-negative cells) at different times postinfection (p.i.); cells showing at least one SG were
170	considered to be SG-positive. Approximately 5% of MERS-CoV- $\Delta p4$ -infected cells were SG-
171	positive at 6 h p.i., and the number of SG-positive cells increased as infection progressed, with
172	~80% and ~100% at 9 h p.i. and at 12 h p.i., respectively (Fig. 1F left panel). In contrast, SG-
173	positive cells represented a very minor population in MERS-CoV-WT-infected cells throughout
174	the infection.
175	We also tested MERS-CoV- $\Delta p4$ -induced SG formation in other cells. Replication of
176	MERS-CoV-WT and MERS-CoV- Δ p4 did not induce SGs in Vero cells (Figs. 1F right panel,
177	1G), confirming the data shown in a previous report (53). In contrast, replication of MERS-CoV
178	Δ p4, but not MERS-CoV-WT, in 293 cells stably expressing CD26 (293/CD26 cells) (56)
179	induced SG accumulation (Fig. 1H), demonstrating that MERS-CoV- $\Delta p4$ -induced SG formation

together with the MERS-CoV N protein. Granules containing these SG markers accumulated in

Journal of Virology

 \sum

Journal of Virology

Journal of Virology

was not limited to HeLa/CD26 cells. These data showed that MERS-CoV- Δ p4-induced SG

181 formation was cell type-dependent.

182

183	Growth kinetics of MERS-CoV-WT and MERS-CoV-Δp4 in Vero and HeLa/CD26 cells.
184	To glean whether SG formation affects virus replication, we next examined the growth kinetics
185	of MERS-CoV-WT and MERS-CoV- $\Delta p4$ in HeLa/CD26 and Vero cells. In HeLa/CD26 cells,
186	the titers of MERS-CoV-WT were significantly higher than those of MERS-CoV- $\Delta p4$ at 18 and
187	24 h p.i. at an MOI of 0.01, and were also higher at 12, 18, and 24 h p.i. at an MOI of 3 (Fig. 2A).
188	In Vero cells, both viruses replicated similarly at an MOI of 0.01, while titers of MERS-CoV-
189	WT were higher than those of MERS-CoV- $\Delta p4$ at 24, 36, and 48 h p.i. at an MOI of 3 (Fig. 2B).
190	As SG formation did not occur in MERS-CoV- $\Delta p4$ -infected Vero cells, the differences in virus
191	titers among the two viruses in Vero cells were not due to SG formation. At high MOI infection,
192	the difference in the maximum virus titers between the two viruses in Vero cells (~3.3-times at
193	48 h p.i.) were less prominent than in HeLa/CD26 cells (~12-times at 18 h p.i.). Considering the
194	fact that MERS-CoV- $\Delta p4$ replication induced SGs in HeLa/CD26 cells, not in Vero cells, these
195	results suggested that the SG formation negatively affected virus replication.
196	
197	Phosphorylation status of PKR and eIF2 α and translation activities in infected cells.

Downloaded from http://jvi.asm.org/ on August 3, 2018 by UNIV OF SUSSEX

198 MERS-CoV 4a protein inhibits PKR phosphorylation by binding to dsRNAs and sequestering

199 dsRNAs from PKR (53), yet the effects of 4a on PKR activation and eIF2 α phosphorylation in

- 200 infected cells are unknown. We found that phosphorylation levels of PKR and eIF2 α were
- clearly higher in HeLa/CD26 cells infected with MERS-CoV- $\Delta p4$ than in those infected with
- 202 MERS-CoV-WT (Fig. 3A). In contrast, both viruses induced low levels of PKR phosphorylation

in MERS-CoV-WT-infected cells, but not in MERS-CoV-Δp4-infected cells (Figs. 3A and 3B).
Appearance of two 4a protein bands suggest that the 4a accessory protein underwent
modification, the nature of which is unknown, in infected cells.
We next investigated the extent of host and viral protein synthesis by pulse radiolabeling
of the cells with ³⁵S-methinone/cysteine. In HeLa/CD26 cells, both viruses clearly induced
translation suppression after 9 h p.i., with stronger inhibition in MERS-CoV-Δp4-infected cells

and eIF2 α phosphorylation in Vero cells (Fig. 3B). As expected, 4a and 4b proteins accumulated

than in MERS-CoV-WT-infected cells (Fig. 3C). Also, the synthesis of viral-specific proteins
was lower in MERS-CoV-Δp4-infected cells than in MERS-CoV-WT-infected cells after 9 h p.i.

212 Thus, there was an inverse correlation between the extent of phosphorylation of PKR/eIF2 α and

translation activities in infected HeLa/CD26 cells. In Vero cells, synthesis of virus-specific

- 214 proteins was notable after 24 h p.i., and levels of host protein synthesis were similar among
- 215 mock-infected cells, MERS-CoV-WT-infected cells, and MERS-CoV-Δp4-infected cells (Fig.

Downloaded from http://jvi.asm.org/ on August 3, 2018 by UNIV OF SUSSEX

3D). These data imply that low levels of $eIF2\alpha$ phosphorylation did not inhibit host and viral

217 protein synthesis in infected Vero cells.

To further establish that MERS-CoV-Δp4 inhibited efficient viral protein synthesis in
HeLa/CD26 cells, we examined the abundance of viral mRNAs and proteins in infected
HeLa/CD26 cells. Northern blot analysis showed similar levels of viral mRNA accumulation
between MERS-CoV-WT- and MERS-CoV-Δp4-infected cells at different times p.i. (Fig. 4A).
Due to deletion of the ORFs 4a and 4b, mRNAs 1-3 of MERS-CoV-Δp4 migrated faster than
those of MERS-CoV-WT in the gel. Quantitative RT-PCR showed that mRNA 1 and mRNA 8

encoding N protein accumulated to similar levels in MERS-CoV-WT- and MERS-CoV- $\Delta p4$ -

203

lournal of Virology

225

226

227 Western blot analysis showed that the viral structural proteins S, M, and N, accumulated similarly in both viruses at 6 h p.i., while at 9 h p.i., when PKR-mediated eIF2 α phosphorylation 228 229 had occurred (Fig. 3A), the viral structural proteins accumulated to higher levels in MERS-CoV-230 WT-infected cells than in MERS-CoV- $\Delta p4$ -infected cells (Fig. 4D). Similar results were noted at 231 12 h p.i. (Fig. 4D). These data established that translation of viral proteins was indeed inefficient 232 in MERS-CoV- Δ p4-infected cells. We interpreted these data as the following: 1) MERS-CoV- $\Delta p4$ replication in 233 234 HeLa/CD26 cells activated PKR, which induced eIF2 α phosphorylation and strong translational 235 suppression, leading to SG formation; 2) In MERS-CoV-WT-infected HeLa/CD26 cells, 4a-236 mediated inhibition of PKR activation likely prevented efficient eIF2 α phosphorylation, 237 allowing viral and host translation and preventing SG formation; 3) The PKR antagonistic 238 function of 4a failed to show significant biological effects in Vero cells, probably due to low expression levels of PKR; and 4) Due to low levels of PKR expression, the PKR-mediated eIF2 α 239 phosphorylation was inefficient in infected Vero cells, allowing unimpeded translation of viral 240 241 and host proteins and inhibiting SG formation. 242 243 Innate antiviral responses in MERS-CoV-Ap4-infected HeLa/CD26 cells. Our data supported a notion that inhibition of viral translation, which was induced by phosphorylated 244 eIF2 α , caused inefficient MERS-CoV- $\Delta p4$ replication in HeLa/CD26 cells. In addition, we 245

infected cells (Figs. 4B and 4C). These studies established that depletion of the ORFs 4a and 4b

had little impact on accumulation of viral mRNAs.

- suspected that SG formation itself also contributed to the inefficient MERS-CoV- $\Delta p4$ replication
- 247 by one of the following mechanisms: 1) SG formation induces activation of innate immune

249	not available for translation, leading to inefficient viral translation; and 3) SGs store various
250	factors required for translation, e.g., translation factors and 40S ribosomal subunit, and restrict
251	availability of these factors for translation, leading to inefficient viral translation. The following
252	experiments tested these possibilities.
253	SGs provide a platform for interaction of RIG-I-like receptors and viral mRNAs, leading
254	to interferon (IFN) production (31, 35, 36). Additionally, antiviral proteins, e.g., PKR, 2'-5'-
255	oligoadenylate synthetase (OAS), and RNase L, are recruited to SGs and exert anti-viral
256	functions (31, 32). We explored whether SG formation could trigger innate immune responses by
257	examining the expression levels of <i>IFN-β</i> , <i>IFN-λ1</i> , <i>OAS</i> , and <i>ISG56</i> mRNAs in MERS-CoV-
258	WT- and MERS-CoV- Δ p4-infected HeLa/CD26 cells (Fig. 5). Sendai virus (SeV), a positive
259	control, induced efficient expression of these mRNAs, while mock infection did not (Fig. 5).
260	MERS-CoV-WT or MERS-CoV- $\Delta p4$ did not induce efficient expression of these mRNAs at any
261	times p.i. Also, there were no significant differences in the expression levels of these mRNAs
262	between MERS-CoV-WT- and MERS-CoV- $\Delta p4$ -infected cells. These data suggested that the
263	SGs did not play significant roles in innate immune gene expression in MERS-CoV-∆p4-
264	infected HeLa/CD26 cells.
265	
266	MERS-CoV mRNAs are not confined in the SGs. The absence of innate immune gene
267	expression in MERS-CoV- $\Delta p4$ -infected HeLa/CD26 cells may be due to the possibility that the

responses, leading to suppression of viral replication; 2) Viral mRNAs are stored in the SGs and

268 viral mRNAs are not confined in the SGs, thus escaping recognition by RIG-I-like receptors in

269 the SGs. Alternatively, viral mRNAs might have been efficiently stored in the SGs and

12

Σ

Journal of Virology

Z

contributed to inefficient viral translation, yet they were unable to trigger innate immune geneexpression.

272 To determine whether viral mRNAs are trapped in the SGs, we visualized viral mRNAs by using fluorescent in situ hybridization (FISH) analysis with the probe binding to all viral 273 274 mRNAs. SGs were visualized by IFA staining of a SG marker, eIF4A, in mock-infected 275 HeLa/CD26 cells, MERS-CoV-WT-infected cells, and MERS-CoV-Δp4-infected cells. eIF4A 276 showed diffuse distribution in mock-infected cells and MERS-CoV-WT-infected cells, demonstrating absence of SG formation. Although eIF4A accumulated within SGs in MERS-277 278 CoV-Δp4-infected cells (Fig. 6), viral mRNAs were diffusely distributed in the cytoplasm in 279 infected cells (Fig. 6). The absence of clear co-localization of viral mRNAs and eIF4A 280 demonstrated that most of viral mRNAs were not confined in the SGs. 281 SG formation interferes with MERS-CoV replication. We next explored a possibility that 282

Downloaded from http://jvi.asm.org/ on August 3, 2018 by UNIV OF SUSSEX

283 various factors involved in translation are accumulated in the SGs, causing reduction of their 284 abundance in the cytoplasm and leading to inefficient translation of viral proteins. If this is the 285 case, inhibition of SG accumulation would lead to promotion of viral gene expression, as those 286 factors involved in translation are not confined in the SGs and are available for translation. We 287 tested this possibility by examining replication and gene expression of MERS-CoV- $\Delta p4$ in 288 HeLa/CD26 cells that were depleted of TIA-1 or both G3BP1 and G3BP2 (G3BP1/2) by siRNA 289 treatment. The siRNAs targeting TIA-1 and those targeting G3BP1/2 efficiently reduced levels 290 of TIA-1 and G3BP1/2, respectively. (Fig. 7A). Depletion of TIA-1 or G3BP1/2 did not prevent SG formation in MERS-CoV- $\Delta p4$ -infected cells, whereas it reduced average numbers of SGs 291 292 (Fig. 7A top panels). MERS-CoV-WT replicated less efficiently in cells depleted of TIA-1 or

J	254	
Ś	295	replicated more efficient
otec	296	lower left panel). Likewi
	297	cells than in control siRN
Ă	298	reduction in the number
	299	inhibition of SG formation
	300	positive effects of TIA-1
	301	Effects of ineffic
	302	Control siRNA-treated c
	303	MERS-CoV-Δp4 or ME
ournai or virology	304	radiolabeling. In control
	305	translational inhibition,
	306	7C). In TIA-1-depleted of
ř	307	less prominent at 9 and 1
	308	depleted of G3BP1/2 and
	309	inhibitory effects at 9 an

293 those depleted of G3BP1/2 than in control siRNA-treated cells (Fig. 7B upper-panels), implying that TIA-1 and G3BP1/2 facilitated MERS-CoV replication. In contrast, MERS-CoV-Δp4 201 tly in TIA-1-depleted cells than in control siRNA-treated cells (Fig. 7B ise, replication of MERS-CoV- $\Delta p4$ was also better in G3BP1/2-depleted NA-treated cells (Fig. 7B lower right panel). These data showed that the of SGs facilitated MERS-CoV- $\Delta p4$ replication and also suggested that on had more pronounced effects on promoting virus replication than the or G3BP1/2 for virus replication. eient SG accumulation on translation activities were examined next.

ells and TIA-1-depleted cells were first mock-infected or infected with RS-CoV-WT. Translational activities were then examined by metabolic siRNA-treated cells, MERS-CoV-WT and MERS-CoV-∆p4 induced with the latter virus showing stronger inhibition at 9 and 12 h p.i. (Fig. cells, the translation inhibitory effects caused by MERS-CoV- $\Delta p4$ were 2 h p.i. (Fig. 7C). We performed similar experiments by using cells d found that depletion of G3BP1/2 induced less pronounced translation d 12 h p.i. in MERS-CoV-∆p4-infected cells (Fig. 7D). Western blot analysis showed that accumulation of structural proteins of MERS-CoV- $\Delta p4$ was stronger in 310 311 cells depleted of TIA-1 or G3BP1/2 than in control siRNA-treated cells (Fig. 7E), whereas depletion of TIA-1 or G3BP1/2 did not affect accumulation of viral mRNAs, mRNA 1, and 312 mRNA 8 (Fig. 7F). These data demonstrated that inhibition of SG accumulation promoted 313 314 translation of viral and host proteins.

Downloaded from http://jvi.asm.org/ on August 3, 2018 by UNIV OF SUSSEX

Journal of Virology

315	Because SG formation occurs downstream of $eIF2\alpha$ phosphorylation, we anticipated that
316	inhibition of SG formation by depletion of TIA-1 or G3BP1/2 would not affect the status of
317	$eIF2\alpha$ phosphorylation in infected cells. Consistent with this anticipation, depletion of TIA-1 or
318	G3BP1/2 did not alter eIF2 α phosphorylation levels in MERS-CoV- Δ p4-infected HeLa/CD26
319	cells and MERS-CoV-WT-infected HeLa/CD26 cells (Figs. 7G and 7H). These data revealed
320	that increased viral gene expression of MERS-CoV- $\Delta p4$ in cells depleted TIA-1 or G3BP1/2 was
321	not due to changes in eIF2 α phosphorylation.
322	Taken together, these data were consistent with a notion that SG formation prevented
323	translation by sequestering various factors that are involved in translation to SGs and preventing
324	them to engage translation, leading to inefficient virus replication.
325	
326	Deletion of 4a gene alone is sufficient for suppression of SG formation in infected cells To
327	establish that 4a accessory protein inhibits SG formation in MERS-CoV infection, we examined
328	SG formation in HeLa/CD26 cells that were infected with MERS-CoV lacking 4a ORF (MERS-
329	CoV- Δ 4a) (Fig. 8A). Immunofluorescence analysis using specific antibodies for SG markers,
330	TIA-1, or G3BP, together with MERS-CoV N protein, showed accumulation of SGs in MERS-
331	CoV- Δ 4a-infected cells (Fig. 8B and C). There were no notable differences in the quantity of
332	SGs per cell or the number of SG-positive cells between MERS-CoV- $\Delta p4$ -infected and MERS-
333	CoV-∆4a-infected cells. As expected, accumulation of 4b protein, but not 4a protein, occurred in
334	MERS-CoV- Δ 4a-infected cells (Fig. 9A), demonstrating that 4a accessory protein alone was
335	sufficient for inhibiting SG formation in infected cells. Efficient phosphorylation of PKR and
335 336	sufficient for inhibiting SG formation in infected cells. Efficient phosphorylation of PKR and eIF2 α occurred in MERS-CoV- Δ 4a-infected cells (Fig. 9A), establishing that 4a protein alone

 \leq

338	radiolabeling experiments showed less efficient translational activities in MERS-CoV- Δ 4a-
339	infected cells than in MERS-CoV-WT-infected cells after 9 h p.i. (Fig. 9B), suggesting that a
340	combined effect of SG formation and efficient eIF2 α phosphorylation caused strong translational
341	suppression in MERS-CoV- Δ 4a-infected cells. There were not substantial differences in the
342	accumulation levels of viral mRNAs between MERS-CoV- Δ 4a-infected cells and MERS-CoV-
343	WT-infected cells, except that the former had slightly lower levels of mRNA 4 than the latter
344	(Fig. 9C). Accumulation of viral structural proteins was higher in MERS-CoV-WT-infected cells
345	than in MERS-CoV- Δ 4a-infected cells (Fig. 9D), demonstrating that 4a protein inhibited viral
346	translation without affecting viral RNA accumulation. We suspect that inefficient translational
347	activity and lower levels of mRNA 4 accumulation in MERS-CoV- Δ 4a-infected cells contributed
348	to the lower level of 4b protein accumulation in MERS-CoV- Δ 4a-infected cells than in MERS-
349	CoV-WT-infected cells (Fig. 9A). MERS-CoV-Δ4a replicated less efficiently than MERS-CoV-
350	WT in HeLa/CD26 cells, regardless of the MOI (Fig. 9E). In contrast, both viruses replicated to
351	comparable levels with similar kinetics in Vero cells both at high and low MOIs, except that the
352	titers of MERS-CoV- Δ 4a were statistically lower than those of MERS-CoV-WT at 36 h p.i. at an
353	MOI of 3 (Fig. 9F). Taken together, these data supported the notion that due to absence of 4a
354	protein, MERS-CoV- Δ 4a induced efficient PKR-mediated eIF2 α phosphorylation and SG
355	formation, both of which caused inhibition of viral and host translation, resulting in inefficient
356	virus replication in HeLa/CD26 cells. Overall, MERS-CoV- Δ 4a and MERS-CoV- Δ p4 showed
357	similar virological properties and induced analogous changes in translational activities and
358	phosphorylation statuses of PKR and eIF2 α , strongly suggesting that observed biological
359	differences between MERS-CoV- Δ p4 and MERS-CoV-WT in infected HeLa/CD26 cells were
360	primarily due to the absence of 4a protein in MERS-CoV- $\Delta p4$ -infected cells.

Journal of Virology

362 Discussion

SG formation or inhibition has been reported for various viruses, including CoVs (37, 38). 363 TGEV and MHV induce SG or SG-like granules (51, 52) and MERS-CoV did not induce SGs in 364 Vero cells (53), yet the biological roles of SGs or absence of SGs in CoV replication are 365 366 unknown. The present study demonstrated that replication of MERS-CoV-Δp4 and MERS-CoV-367 Δ 4a, but not MERS-CoV-WT, induced SG formation in HeLa/CD26 cells. MERS-CoV- Δ p4 and MERS-CoV-A4a replicated less efficiently than MERS-CoV-WT (Figs. 2 and 9) and inhibition 368 of SG formation promoted MERS-CoV- $\Delta p4$ replication in this cell line (Fig. 7), demonstrating 369 370 that SG formation was detrimental for MERS-CoV replication. The less efficient replication of 371 MERS-CoV- $\Delta p4$ was at least partly due to attenuation of viral protein synthesis, which was not 372 caused by induction of type I and type III IFNs nor by sequestering viral mRNAs to the SGs. 373 Rather, our data suggested that high levels of PKR-mediated eIF2 α phosphorylation and 374 sequestering host factors that are required for translation to the SGs prevented viral translation in 375 MERS-CoV- $\Delta p4$ replication. To our knowledge, this is the first report uncovering the biological role of SGs in CoV infection and identifying a CoV protein that suppresses SG accumulation in 376 377 infected cells. 378 We observed cell type-dependent SG formation in MERS-CoV- $\Delta p4$ infection; SG 379 formation occurred in HeLa/CD26 cells and 293/CD26 cells, but not in Vero cells (Fig. 1). Our

- 380 data were consistent with a past study reporting the absence of SG formation in Vero cells
- infected with MERS-CoV and its mutant lacking 4a and 4b ORFs (53). Because translational
- suppression induced by phosphorylated eIF2 α triggers SG formation (27, 28, 30), efficient
- $eIF2\alpha$ phosphorylation-mediated translational suppression, which occurred in MERS-CoV- Δ p4-

394

395

396

397

398	Translation of viral proteins were less efficient in MERS-CoV- $\Delta p4$ -infected HeLa/CD26
399	cells than in MERS-CoV-WT-infected HeLa/CD26 cells (Fig. 4D). Likewise, inefficient viral
400	protein synthesis occurred in MERS-CoV- Δ 4a replication (Fig. 9B). In contrast, the amount of
401	viral mRNAs were similar in these cells (Figs. 4B, 4C, 9C). As nsp3-nsp16 and N proteins (13,
402	60, 61) drive viral RNA synthesis, it is somewhat puzzling that difference in the translational
403	efficiency of viral proteins did not result in differences in the accumulation of the viral mRNAs.
404	We noted that these three viruses showed similar levels of translational activities (Figs. 3C and
405	9B) and N protein accumulation (Figs. 4D and 9D) at 6 h p.i., implying that they accumulated
406	similar levels of nsp3-nsp16 and N proteins early in infection. If this is the case and if the nsp3-

various viruses in Vero cells.

infected HeLa/CD26 cells but not in MERS-CoV-Ap4-infected Vero cells, most likely

contributed to SG formation in HeLa/CD26 cells. PKR expression is low in Vero cells (54) and

levels of phosphorylated PKR were similar between MERS-CoV- $\Delta p4$ -infected Vero cells and

MERS-CoV-WT-infected Vero cells (Fig. 3B). In contrast, MERS-CoV- $\Delta p4$ replication, but not

MERS-CoV-WT replication, induced efficient PKR phosphorylation in HeLa/CD26 cells (Fig.

3A). MERS-CoV-Δ4a replication also induced efficient PKR phosphorylation in HeLa/CD26

cells (Fig. 9A). These data suggest that low level expression of PKR in Vero cells masked the

effects of the 4a protein for inhibiting eIF2α-mediated SG formation in MERS-CoV-Δp4

replication. Likewise, replication of a herpes simplex virus type 1 mutant activates PKR and

induces eIF2 α phosphorylation in HeLa cells, but not in Vero cells (57). In addition to the

presence of a genetic defect for IFN production (58, 59), low expression levels of PKR, which

was insufficient for PKR-induced eIF2α phosphorylation and SG formation in MERS-CoV-Δp4

replication and MERS-CoV-04a replication, might have contributed to efficient replication of

408

409

infected with these three viruses.

Absence of SG formation in MERS-CoV- $\Delta p4$ -infected Vero cells led Rabouw et al. to 410 411 suspect that MERS-CoV encodes at least one other stress response antagonist with a mode of action that differs from that of 4a (53). MERS-CoV- Δ p4 replication in HeLa/CD26 cells induced 412 SGs in ~100% of infected cells by 12 h p.i., while SGs were detected in very small numbers of 413 414 MERS-CoV-WT-infected HeLa/CD26 cells (Fig. 1F). Furthermore, MERS-CoV-Δ4a induced SGs in HeLa/CD26 cells (Figs. 8B and 8C). These data suggest that 4a accessory protein is the 415 416 stress response antagonist that inhibits formation of SGs and that MERS-CoV does not encode 417 another protein(s) that efficiently suppresses SG formation. It should be also noted that the number of SG-positive cells increased according to the progression of MERS-CoV- $\Delta p4$ 418 419 replication (Fig. 1F). Steady SG accumulation during MERS-CoV- $\Delta p4$ replication differed from 420 transient induction and disruption of SGs during replication of some viruses (49, 62). These data 421 imply that MERS-CoV does not encode a protein that disrupts pre-existing SGs. 422 Several past studies reported that SGs serve as a platform for the sensing of non-self RNA by RLRs and that SG formation is important for the innate immunity response during viral infection 423 (31, 35, 36), whereas MERS-CoV- $\Delta p4$ infection did not induce accumulation of *IFN-\beta, IFN-\lambda 1*, 424 425 OAS, and ISG56 mRNAs in HeLa/CD26 cells (Fig. 5). Likewise, Rabouw et al. reported the 426 absence of IFN β production in MERS-CoV- $\Delta p4$ -infected Huh-7 cells (53). Several possibilities are conceivable for the lack of accumulation of those mRNAs involved in innate immune 427 428 responses in MERS-CoV- $\Delta p4$ infection. One is that poor accumulation of viral mRNAs in the SGs (Fig. 6) prevented recognition of viral mRNAs by RLRs in the SGs. If true, there is a 429

nsp16 and N proteins, which are synthesized early in infection, primarily determine viral mRNA

synthesis efficiency, it would result in similar levels of viral mRNA accumulation in cells

≥
0.0
2
:5
ę
g
Ľ
Q

430	possibility that MERS-CoV alters the cellular environment to actively prevent accumulation of
431	viral mRNAs in SGs. Another possibility is that the SGs could not serve as a platform for
432	sensing of viral mRNAs due to low concentration of RLRs in the SGs. Alternatively, SGs might
433	have served as a sensing platform of viral mRNAs by RLRs, yet another viral protein(s)
434	prevented accumulation of innate immune mRNAs by inhibiting the signaling pathways that
435	induce them, suppressing their transcription/processing or promoting their degradation.
436	Depletion of TIA-1 or G3BP1/2 reduced the number of SGs and promoted viral and host
437	translation and MERS-CoV- $\Delta p4$ replication, without affecting levels of eIF2 α phosphorylation
438	(Fig. 7G and H). These data strongly suggest that SG formation itself interfered with translation.
439	As viral mRNAs are not confined in the SGs (Fig. 6), we suspect that the confinement of various
440	factors that are required for translation, e.g., translation factors and 40S ribosomes, in the SGs
441	interfered with efficient translation in MERS-CoV- Δ p4-infected HeLa/CD26 cells. Although
442	depletion of TIA-1 or G3BP1/2 promoted replication of MERS-CoV- $\Delta p4$, it inhibited replication
443	of MERS-CoV-WT (Fig. 7). These data suggested that the inhibition of SG formation by
444	depleting TIA-1 or G3BP1/2 was more pronounced than the effect of TIA-1 and G3BP1/2 for
445	promoting virus replication. Some viruses, e.g., flaviviruses and alphaviruses, inhibit SG
446	accumulation by using certain SG components for viral RNA synthesis (63-65). Accordingly,
447	MERS-CoV may also prevent SG formation to exploit TIA-1 and G3BP1/2 for virus replication.
448	As accumulation of viral mRNAs were similar between MERS-CoV-WT-infected HeLa/CD26
449	cells and MERS-CoV- Δ p4-infected HeLa/CD26 cells (Figs. 4A-4C), TIA-1 and G3BP1/2 may
450	promote virus replication at the post-viral transcription step.
451	MERS-CoV accessory proteins encoded from ORF 3 to ORF 5 have major implications
452	for viral replication and pathogenesis in the mouse model (18), while the role of 4a accessory

Journal of Virology

453	protein in viral pathogenicity is unclear. Unlike Vero cells, many cells in animal hosts likely
454	express PKR, the levels of which are sufficient for eIF2 α phosphorylation and inhibition of viral
455	translation; otherwise, cells expressing low levels of PKR would be highly susceptible to virus
456	infection and this would be detrimental for host survival against virus infection. Accordingly, we
457	speculate that MERS-CoV- $\Delta p4$ and MERS-CoV- $\Delta 4a$ induce SGs, which suppress viral
458	translation, in most of the susceptible cells/organs in infected animals. Testing pathogenesis of
459	MERS-CoV- $\Delta p4$ and MERS-CoV- $\Delta 4a$ in the mouse model would provide a clue as to the role of
460	SGs in MERS-CoV pathogenesis.
461	
462	Materials and Methods
463	Cells. Vero cells were maintained in Dulbecco modified Eagle medium supplemented with
464	10% fetal bovine serum. HeLa/CD26 cells and 293/CD26 cells were generated by transfecting
465	pCAGGS-CD26-BlasticidinR, which expresses the blasticidin resistance gene and human CD26,
466	into HeLa cells and 293 cells (ATCC), respectively, and incubating the transfected cells in
467	selection medium containing blasticidin (12 μ g/ml) for two weeks. Stable expression of human
468	CD26 in 293/CD26 and HeLa/CD26 cells were confirmed by Western blot analysis with anti-
469	human DPP4 antibody (R&D systems).
470	
471	Viruses. MERS-CoV-WT, MERS-CoV- Δ p4 lacking ORFs 4a and 4b, and MERS-CoV- Δ 4a
472	lacking ORF 4a were rescued by using a reverse genetics system of MERS-CoV (55). Briefly, a
473	recombinant PCR procedure was used to delete both ORFs 4a and 4b or only ORF 4a in
474	fragment F of the MERS-CoV reverse genetics system (55). After assembly of the MERS-CoV
475	full-length cDNA by ligating fragments A through F, we synthesized the full-length RNA

21

Σ

476	transcripts, and rescued the recombinant viruses according to established protocols, as described
477	previously (55). MERS-CoV- Δ p4 and MERS-CoV- Δ 4a had a deletion at from nt 25,852 to
478	26,833 and from nt 25,852 to 26,181, respectively, in the MERS-CoV genomic RNA (GenBank
479	accession number: JX869059.2). We passaged the rescued viruses once in Vero cells, confirmed
480	the presence of the expected mutation in MERS-CoV- $\Delta p4$ and MERS-CoV- $\Delta 4a$ and absence of
481	the mutation at the corresponding region in MERS-CoV-WT, and used for experiments. All
482	experiments with infectious MERS-CoV were performed in an approved biosafety level 3
483	laboratory at The University of Texas Medical Branch at Galveston. Sendai virus (SeV; Cantell
484	strain), obtained from Charles River Laboratory (Wilmington, MA), was used to infect cells at
485	400 hemagglutination units/ml.
486	
487	Immunofluorescence staining and CHX treatment. Cells were fixed overnight with 4%
488	paraformaldehyde, and permeabilized for 15 min with 0.1% Triton X-100 in phosphate-buffered
489	saline (PBS). After blocking with 1% bovine serum albumin in PBS for 1 h, the cells were

490 incubated with primary antibodies (anti-MERS-CoV N protein antibody and goat anti-TIA1

491 antibody [Santa Cruz], mouse anti-G3BP antibody [BD Biosciences], or mouse anti-eIF4AI/II

antibody [Santa Cruz]) overnight at 4°C, washed, and incubated for 1 h at room temperature with 492

Alexafluor conjugated secondary antibodies (Thermo Fisher Scientific). Anti-MERS-CoV N 493

494 protein antibody was generated by immunizing rabbits with synthetic peptide

495 (NDITNTNLSRGRGRNPKPR). Fluorescence was visualized by using a ZEISS Axioplan 2

496 imaging. For CHX treatment, HeLa/CD26 cells were infected with virus at an MOI of 3. At 8 h

p.i., medium was replaced with growth medium containing 100 µg/ml CHX (Sigma) dissolved in 497

DMSO. An equal volume of DMSO was added to the control medium. At 9 h p.i., cells were 498

Journal of Virology

Journal of Virology

499 fixed and processed for immunofluorescence staining for anti-MERS-CoV N protein antibody

500 and TIA-1 antibody, as described above.

501

502	Fluorescent in situ hybridization. MERS-CoV mRNAs were detected by using a DIG-labeled
503	riboprobe binding to nt 29,084 to 29,608 of the MERS-CoV genomic RNA. The probe was
504	denatured at 100°C for 10 min, diluted 1:1 in hybridization buffer (2% SSC, 10% dextran
505	sulfate), and hybridized to the cells at 45° C for 18 h. After two washes using wash buffer I (50%
506	formamide, 0.1% SDS and 0.1 % SSC) and one subsequent wash with wash buffer II (50%
507	formamide and 0.2% SSC), cells were incubated with anti-digoxigenin-fluorescein (Sigma-
508	Aldrich) and anti-eIF4AI/II antibodies overnight at 4°C. Then, the cells were washed in wash
509	buffer III (8% formamid and 2% SSC), and incubated for 1 h at room temperature with
510	Alexafluor conjugated secondary antibodies (Thermo Fisher Scientific). Images were captured
511	by a Zeiss Axiophot 2 fluorescence microscopy and processed with ImageJ software
512	(http://rsbweb.nih.gov/ij/).
513	
514	Virus growth in Vero and HeLa/CD26 cells. Monolayer cultures of Vero cells or
515	HeLa/CD26 cells were infected with MERS-CoV-WT, MERS-CoV- $\Delta p4$, or MERS-CoV- $\Delta 4a$ at
516	an MOI of 0.01 or 3 for 1 h at 37°C. After virus adsorption, cells were washed twice with PBS
517	and incubated with the appropriate medium. Viruses in the culture supernatants were harvested at
518	different times p.i. The infectious virus titers were determined by plaque assay by using Vero
519	cells and expressed in plaque forming unit (PFU) per ml.
520	

 \sum

Journal of Virology

521

522	or MERS-CoV- Δ 4a at an MOI of 3. At different times p.i., cells were lysed in sodium sulfate-
523	polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer. Anti-PKR (Abcam) antibody,
524	anti-phospho-PKR antibody (Abcam), anti-eIF2a antibody (Cell Signaling Technology), anti-
525	phosphorylated eIF2 α antibody (Cell Signaling Technology), anti- α -tubulin antibody
526	(CALBIOCHEM), anti-MERS-CoV N protein antibody, or the following antibodies for MERS-
527	CoV proteins were used as primary antibodies: anti-MERS-CoV S protein antibody, anti-MERS-
528	CoV M protein antibody, anti-MERS-CoV 4a protein antibody and anti-MERS-CoV 4b protein
529	antibody were generated by immunizing rabbits with the synthetic peptides
530	DDRTEVPQLVNANQYSPCVSIVC, CDYDRLPNEVTVAK, QRIAWLLHKDGGIPD, and
531	RKARKRSHSPTKKLRYVKRR, respectively. The secondary antibodies consisted of goat anti-
532	mouse immunoglobulin G-horseradish peroxidase and goat anti-rabbit immunoglobulin G-
533	horseradish peroxidase (Santa Cruz).
534	
535	Metabolic radiolabeling of intracellular proteins in virus-infected cells. Vero or HeLa/CD26
536	cells were mock-infected or infected with MERS-CoV-WT, MERS-CoV- $\Delta p4$, or MERS-CoV-
537	Δ 4a at an MOI of 3. Cells were radiolabeled with 100 μ Ci of Tran ³⁵ S-label/ml (PerkinElmer) for
538	1 h at different times p.i. The cell extracts were prepared by lysing the cells in SDS-PAGE
539	sample buffer. Cell lysates were subjected to SDS-PAGE analysis, followed by autoradiography
540	and colloid Coomassie brilliant blue staining.
541	
542	Total RNA extraction and qRT-PCR Total cellular RNAs were extracted from cells by using

Western blot analysis. Confluent cells were infected with MERS-CoV-WT, MERS-CoV-Δp4,

TRIzol LS reagent (Invitrogen) and Direct-zol RNA MiniPrep (Zymo Research), following

 $\overline{\leq}$

543

544	instruction manuals. cDNAs were synthesized using SuperScript III reverse transcriptase
545	(Invitrogen) and random primers (Invitrogen). To specifically detect MERS-CoV mRNAs,
546	MERS-CoV gene specific primers, 5'-TTTTTTTTTTTTCTAATCAGTGTTAACATCAATCATTGG-
547	3', were used for cDNA synthesis. qRT-PCR was performed using a Bio-Rad CFX96 real-time
548	PCR apparatus and SYBR green Master mix (Bio-Rad). PCR conditions were as follows:
549	preincubation at 95°C for 30 s and amplification with 40 cycles of 95°C for 15 s and 60°C for 20
550	s. The purity of the amplified PCR products was confirmed by the dissociation melting curves
551	obtained after each reaction. The primers used for human <i>IFN-</i> β mRNA were 5'-
552	AAGGCCAAGGAGTACAGTC-3' (forward) and 5'-ATCTTCAGTTTVGGAGGTAA-3'
553	(reverse); the primers for <i>IFN-λ</i> mRNA were 5'-CGCCTTGGAAGAGTCACTCA-3' (forward)
554	and 5'-GAAGCCTCAGGTCCCAATTC-3' (reverse); the primers for OAS mRNA were 5'-
555	GCCCTGGGTCAGTTGACTGG-3' (forward) and 5'-TGAAGCAGGTGGAGAACTCGC-3'
556	(reverse); the primers for ISG56 mRNA were 5'-CAGCAACCATGAGTACAAAT-3' (forward)
557	and 5'-AAGTGACATCTCAATTGCTC-3' (reverse); the primers for 18S rRNA were 5'-
558	CCGGTACAGTGAAACTGCGAATG-3' (forward) and 5'-
559	GTTATCCAAGTAGGAGAGGAGGAGCGAG-3' (reverse); the primers for MERS-CoV mRNA 1
560	were 5'-AATACACGGTTTCGTCCGGTG-3' (forward) and 5'-
561	ACCACAGAGTGGCACAGTTAG-3' (reverse); the primers for MERS-CoV mRNA 8 were 5'-
562	CTCGTTCTCTTGCAGAACTTTG-3' (forward) and 5'-TGCCCAGGTGGAAAGGT-3'
563	(reverse). The relative expression level of each gene mRNA was normalized to 18S rRNA levels.
564	All of the assays were performed in triplicate, and the results are expressed as means \pm the
565	standard deviations.
566	

25

567	Northern blot analysis. Total cellular RNAs were extracted from mock-infected cells or
568	infected cells as described above. A DIG-labeled riboprobe, corresponding to nt 29,084 to
569	29,608 of the MERS-CoV genomic RNA, was used to detect MERS-CoV mRNAs as described
570	previously (56).
571	
572	siRNA treatment. HeLa/CD26 cells were transfected with the indicated siRNAs using
573	RNAiMAX according to the manufacturer's protocol (Invitrogen). Non-targeting siRNA
574	(Dharmacon) and siRNA targeting G3BP1 (Thermo Fisher Scientific), G3BP2 (Thermo Fisher
575	Scientific), or TIA-1 (Dharmacon) were used. At 24 h posttransfection, cells were either mock-
576	infected or infected with MERS-CoV-WT or MERS-CoV-∆p4 at an MOI of 3.
577	
578	Statistical Analysis Two-tailed Student's t test was conducted to determine statistical
579	significance. Statistical significance was defined as a P value of <0.05.
580	
581	Acknowledgements
582	We thank Ralph Baric for kindly providing us the MERS-CoV reverse genetics system.
583	This study was supported by Public Health Service grants AI99107 and AI114657 from the
584	National Institutes of Health and a grant from the Institute for Human Infections and Immunity at
585	The University of Texas Medical Branch. K. Nakagawa was supported by the James W.
586	McLaughlin fellowship fund.
587	
588	References

5891.Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 2012. Isolation of a novel590coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367:1814-20.

591 592 593 594	2.	Alagaili AN, Briese T, Mishra N, Kapoor V, Sameroff SC, Burbelo PD, de Wit E, Munster VJ, Hensley LE, Zalmout IS, Kapoor A, Epstein JH, Karesh WB, Daszak P, Mohammed OB, Lipkin WI. 2014. Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia MBio 5:e00884-14
595 596	3.	Wernery U, Lau SK, Woo PC. 2017. Middle East respiratory syndrome (MERS) coronavirus and dromedaries. Vet 1 220:75-79.
597 598	4.	Chu DK, Poon LL, Gomaa MM, Shehata MM, Perera RA, Abu Zeid D, El Rifay AS, Siu LY, Guan Y, Webby RJ, Ali MA, Peiris M, Kayali G. 2014. MERS coronaviruses in dromedary camels, Egypt.
600 601	5.	Drosten C, Kellam P, Memish ZA. 2014. Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med 371:1359-60.
602 603 604 605	6.	Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguiere AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW. 2003. Identification of a novel coronavirus in patients with severe acute
606 607 608 609	7.	Lee HJ, Shieh CK, Gorbalenya AE, Koonin EV, La Monica N, Tuler J, Bagdzhadzhyan A, Lai MM. 1991. The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology 180:567-82.
610 611	8. 9	Lomniczi B. 1977. Biological properties of avian coronavirus RNA. J Gen Virol 36:531-3.
612 613 614 615	10.	Raj VS, Mou H, Smits SL, Dekkers DH, Muller MA, Dijkman R, Muth D, Demmers JA, Zaki A, Fouchier RA, Thiel V, Drosten C, Rottier PJ, Osterhaus AD, Bosch BJ, Haagmans BL. 2013. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495:251-4
616 617	11.	Hurst-Hess KR, Kuo L, Masters PS. 2015. Dissection of amino-terminal functional domains of murine coronavirus nonstructural protein 3. J Virol 89:6033-47.
618 619 620	12.	Graham RL, Sims AC, Brockway SM, Baric RS, Denison MR. 2005. The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication. J Virol 79:13399-411.
621 622	13.	Neuman BW, Chamberlain P, Bowden F, Joseph J. 2014. Atlas of coronavirus replicase structure. Virus Res 194:49-66.
623 624 625	14.	Lai MM, Baric RS, Brayton PR, Stohlman SA. 1984. Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus. Proc Natl Acad Sci U S A 81:3626-30.
626 627	15.	Lai MM, Patton CD, Baric RS, Stohlman SA. 1983. Presence of leader sequences in the mRNA of mouse hepatitis virus. J Virol 46:1027-33.
628 629	16.	Leibowitz JL, Wilhelmsen KC, Bond CW. 1981. The virus-specific intracellular RNA species of two murine coronaviruses: MHV-a59 and MHV-JHM. Virology 114:39-51.
630 631 632	17.	Spaan WJ, Rottier PJ, Horzinek MC, van der Zeijst BA. 1982. Sequence relationships between the genome and the intracellular RNA species 1, 3, 6, and 7 of mouse hepatitis virus strain A59. J Virol 42:432-9.
633 634 635	18.	Menachery VD, Mitchell HD, Cockrell AS, Gralinski LE, Yount BL, Jr., Graham RL, McAnarney ET, Douglas MG, Scobey T, Beall A, Dinnon K, 3rd, Kocher JF, Hale AE, Stratton KG, Waters KM, Baric RS. 2017. MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis. MBio 8.
636 637 638	19.	Thornbrough JM, Jha BK, Yount B, Goldstein SA, Li Y, Elliott R, Sims AC, Baric RS, Silverman RH, Weiss SR. 2016. Middle East Respiratory Syndrome Coronavirus NS4b Protein Inhibits Host RNase L Activation. MBio 7:e00258.

Accepted Manuscript Posted Online

Σ

Downloaded fr
om htt
p://jvi.a
asm.org/
on August
t 3, 2018
3 by UN
IV OF (
SUSSEX

639	20.	Matthews KL, Coleman CM, van der Meer Y, Snijder EJ, Frieman MB. 2014. The ORF4b-encoded
640		accessory proteins of Middle East respiratory syndrome coronavirus and two related bat
641		coronaviruses localize to the nucleus and inhibit innate immune signalling. J Gen Virol 95:874-82.
642	21.	Niemeyer D, Zillinger T, Muth D, Zielecki F, Horvath G, Suliman T, Barchet W, Weber F, Drosten C,
643		Muller MA. 2013. Middle East respiratory syndrome coronavirus accessory protein 4a is a type I
644		interferon antagonist. J Virol 87:12489-95.
645	22.	Canton J, Fehr AR, Fernandez-Delgado R, Gutierrez-Alvarez FJ, Sanchez-Aparicio MT, Garcia-
646		Sastre A, Perlman S, Enjuanes L, Sola I. 2018. MERS-CoV 4b protein interferes with the NF-
647		kappaB-dependent innate immune response during infection. PLoS Pathog 14:e1006838.
648	23.	Holcik M, Sonenberg N. 2005. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol
649		6:318-27.
650	24.	Garcia MA, Meurs EF, Esteban M. 2007. The dsRNA protein kinase PKR: virus and cell control.
651		Biochimie 89:799-811.
652	25.	Farrell PJ, Balkow K, Hunt T, Jackson RJ, Trachsel H. 1977. Phosphorylation of initiation factor
653		elF-2 and the control of reticulocyte protein synthesis. Cell 11:187-200.
654	26.	Wek RC, Jiang HY, Anthony TG. 2006. Coping with stress: eIF2 kinases and translational control.
655		Biochem Soc Trans 34:7-11.
656	27.	Anderson P, Kedersha N. 2008. Stress granules: the Tao of RNA triage. Trends Biochem Sci
657		33:141-50.
658	28.	Anderson P, Kedersha N. 2009. Stress granules. Curr Biol 19:R397-8.
659	29.	Kedersha N, Anderson P. 2009. Regulation of translation by stress granules and processing
660		bodies. Prog Mol Biol Transl Sci 90:155-85.
661	30.	Kedersha NL, Gupta M, Li W, Miller I, Anderson P. 1999. RNA-binding proteins TIA-1 and TIAR
662		link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol
663		147:1431-42.
664	31.	Onomoto K, Jogi M, Yoo JS, Narita R, Morimoto S, Takemura A, Sambhara S, Kawaguchi A, Osari
665		S, Nagata K, Matsumiya T, Namiki H, Yoneyama M, Fujita T. 2012. Critical role of an antiviral
666		stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS One
667		7:e43031.
668	32.	Reineke LC, Lloyd RE. 2015. The stress granule protein G3BP1 recruits protein kinase R to
669		promote multiple innate immune antiviral responses. J Virol 89:2575-89.
670	33.	Langereis MA, Feng Q, van Kuppeveld FJ. 2013. MDA5 localizes to stress granules, but this
671		localization is not required for the induction of type I interferon. J Virol 87:6314-25.
672	34.	Onomoto K, Yoneyama M, Fung G, Kato H, Fujita T. 2014. Antiviral innate immunity and stress
673		granule responses. Trends Immunol 35:420-8.
674	35.	Okonski KM, Samuel CE. 2013. Stress granule formation induced by measles virus is protein
675		kinase PKR dependent and impaired by RNA adenosine deaminase ADAR1. J Virol 87:756-66.
676	36.	Ng CS, Jogi M, Yoo JS, Onomoto K, Koike S, Iwasaki T, Yoneyama M, Kato H, Fujita T. 2013.
677		Encephalomyocarditis virus disrupts stress granules, the critical platform for triggering antiviral
678		innate immune responses. J Virol 87:9511-22.
679	37.	White JP, Lloyd RE. 2012. Regulation of stress granules in virus systems. Trends Microbiol
680		20:175-83.
681	38.	Poblete-Duran N, Prades-Perez Y, Vera-Otarola J, Soto-Rifo R, Valiente-Echeverria F. 2016. Who
682		Regulates Whom? An Overview of RNA Granules and Viral Infections. Viruses 8.
683	39.	Khaperskyy DA, Hatchette TF, McCormick C. 2012. Influenza A virus inhibits cytoplasmic stress
684		granule formation. FASEB J 26:1629-39.

 \sum

685	40.	Sciortino MT, Parisi T, Siracusano G, Mastino A, Taddeo B, Roizman B. 2013. The virion host
686		shutoff RNase plays a key role in blocking the activation of protein kinase R in cells infected with
687		herpes simplex virus 1. J Virol 87:3271-6.
688	41.	Cassady KA, Gross M. 2002. The herpes simplex virus type 1 U(S)11 protein interacts with
689		protein kinase R in infected cells and requires a 30-amino-acid sequence adjacent to a kinase
690		substrate domain. J Virol 76:2029-35.
691	42.	He B, Gross M, Roizman B. 1997. The gamma(1)34.5 protein of herpes simplex virus 1 complexes
692		with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic
693		translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded
694		RNA-activated protein kinase. Proc Natl Acad Sci U S A 94:843-8.
695	43.	Mulvey M, Arias C, Mohr I. 2007. Maintenance of endoplasmic reticulum (ER) homeostasis in
696		herpes simplex virus type 1-infected cells through the association of a viral glycoprotein with
697		PERK, a cellular ER stress sensor. J Virol 81:3377-90.
698	44.	Simpson-Holley M, Kedersha N, Dower K, Rubins KH, Anderson P, Hensley LE, Connor JH. 2011.
699		Formation of antiviral cytoplasmic granules during orthopoxvirus infection. J Virol 85:1581-93.
700	45.	White JP, Cardenas AM, Marissen WE, Lloyd RE. 2007. Inhibition of cytoplasmic mRNA stress
701		granule formation by a viral proteinase. Cell Host Microbe 2:295-305.
702	46.	Sun Y, Dong L, Yu S, Wang X, Zheng H, Zhang P, Meng C, Zhan Y, Tan L, Song C, Qiu X, Wang G,
703		Liao Y, Ding C. 2017. Newcastle disease virus induces stable formation of bona fide stress
704		granules to facilitate viral replication through manipulating host protein translation. FASEB J
705		31:1337-1353.
706	47.	Heinrich BS, Cureton DK, Rahmeh AA, Whelan SP. 2010. Protein expression redirects vesicular
707		stomatitis virus RNA synthesis to cytoplasmic inclusions. PLoS Pathog 6:e1000958.
708	48.	Dinh PX, Beura LK, Das PB, Panda D, Das A, Pattnaik AK. 2013. Induction of stress granule-like
709		structures in vesicular stomatitis virus-infected cells. J Virol 87:372-83.
710	49.	Garaigorta U, Heim MH, Boyd B, Wieland S, Chisari FV. 2012. Hepatitis C virus (HCV) induces
711		formation of stress granules whose proteins regulate HCV RNA replication and virus assembly
712		and egress. J Virol 86:11043-56.
713	50.	Ruggieri A, Dazert E, Metz P, Hofmann S, Bergeest JP, Mazur J, Bankhead P, Hiet MS, Kallis S,
714		Alvisi G, Samuel CE, Lohmann V, Kaderali L, Rohr K, Frese M, Stoecklin G, Bartenschlager R. 2012.
715		Dynamic oscillation of translation and stress granule formation mark the cellular response to
716		virus infection. Cell Host Microbe 12:71-85.
717	51.	Sola I, Galan C, Mateos-Gomez PA, Palacio L, Zuniga S, Cruz JL, Almazan F, Enjuanes L. 2011. The
718		polypyrimidine tract-binding protein affects coronavirus RNA accumulation levels and relocalizes
719		viral RNAs to novel cytoplasmic domains different from replication-transcription sites. J Virol
720		85:5136-49.
721	52.	Raaben M, Groot Koerkamp MJ, Rottier PJ, de Haan CA. 2007. Mouse hepatitis coronavirus
722		replication induces host translational shutoff and mRNA decay, with concomitant formation of
723		stress granules and processing bodies. Cell Microbiol 9:2218-29.
724	53.	Rabouw HH, Langereis MA, Knaap RC, Dalebout IJ, Canton J, Sola I, Enjuanes L, Bredenbeek PJ,
725		Kikkert M, de Groot RJ, van Kuppeveld FJ. 2016. Middle East Respiratory Coronavirus Accessory
726		Protein 4a Inhibits PKR-Mediated Antiviral Stress Responses. PLoS Pathog 12:e1005982.
727	54.	Park SH, Choi J, Kang JI, Choi SY, Hwang SB, Kim JP, Ahn BY. 2006. Attenuated expression of
/28		interferon-induced protein kinase PKR in a simian cell devoid of type I interferons. Mol Cells
/29		
/30	55.	Scobey I, Yount BL, Sims AC, Donaldson EF, Agnihothram SS, Menachery VD, Graham RL,
/31		Swanstrom J, Bove PF, Kim JD, Grego S, Kandell SH, Baric RS. 2013. Reverse genetics with a full-

 \leq

736 737		Selectively Targeting mRNAs Transcribed in the Nucleus while Sparing mRNAs of Cytoplasmic
738	57.	Dauber B. Poon D. Dos Santos T. Duguay BA. Mehta N. Saffran HA. Smiley IR. 2016. The Herpes
739	57.	Simplex Virus Virion Host Shutoff Protein Enhances Translation of Viral True Late mRNAs
740		Independently of Suppressing Protein Kinase R and Stress Granule Formation. J Virol 90:6049-57.
741	58.	Emeny JM, Morgan MJ. 1979. Regulation of the interferon system: evidence that Vero cells have
742		a genetic defect in interferon production. J Gen Virol 43:247-52.
743	59.	Wathelet MG, Berr PM, Huez GA. 1992. Regulation of gene expression by cytokines and virus in
744		human cells lacking the type-I interferon locus. Eur J Biochem 206:901-10.
745	60.	Baric RS, Nelson GW, Fleming JO, Deans RJ, Keck JG, Casteel N, Stohlman SA. 1988. Interactions
746		between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription. J
747		Virol 62:4280-7.
748	61.	Compton SR, Rogers DB, Holmes KV, Fertsch D, Remenick J, McGowan JJ. 1987. In vitro
749		replication of mouse hepatitis virus strain A59. J Virol 61:1814-20.
750	62.	Panas MD, Varjak M, Lulla A, Eng KE, Merits A, Karlsson Hedestam GB, McInerney GM. 2012.
751		Sequestration of G3BP coupled with efficient translation inhibits stress granules in Semliki Forest
752	62	VIRUS INTECTION. MOI BIOL CEII 23:4/01-12.
755	03.	the 2 ^t terminal stem loop of West Nile virus minus strand RNA in an infestious clope pogatively
755		affects genomic RNA amplification 1 Virol 82:10657-70
756	64	li W Li Y Kedersha N Anderson P Emara M Swiderek KM Moreno GT Brinton MA 2002 Cell
757	04.	proteins TIA-1 and TIAR interact with the 3' stem-loop of the West Nile virus complementary
758		minus-strand RNA and facilitate virus replication. J Virol 76:11989-2000.
759	65.	Scholte FE, Tas A, Albulescu IC, Zusinaite E, Merits A, Sniider EJ, van Hemert MJ, 2015, Stress
760		granule components G3BP1 and G3BP2 play a proviral role early in Chikungunya virus replication.
761		J Virol 89:4457-69.
762		
763	Figu	re Legends
764	Fig 1	. Induction of SGs in MERS-CoV-Δp4-infected cells (A) Schematic diagrams of
765	genor	mes of MERS-CoV-WT (WT) and MERS-CoV- $\Delta p4$ ($\Delta p4$). The 5' and 3' untranslated
766	regio	ns (bars) and viral open reading frames (boxes) are not drawn according to their lengths (B-
	10810	
767	D) H	eLa/CD26 cells were infected with MERS-CoV-WT or MERS-CoV- $\Delta p4$ at an MOI of 3. At
768	9 h p	i., the infected cells were fixed with 4% formaldehyde and stained for TIA-1 (B), G3BP
769	(C), c	or eIF4A (D) shown in green, together with MERS-CoV N protein shown in red. Right
770	panel	s show enlarged images of the regions shown in white boxes in the merged image panels.

length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc Natl Acad Sci

Lokugamage KG, Narayanan K, Nakagawa K, Terasaki K, Ramirez SI, Tseng CT, Makino S. 2015.

Middle East Respiratory Syndrome Coronavirus nsp1 Inhibits Host Gene Expression by

732

733

734

735

56.

U S A 110:16157-62.

 \leq

771	(E) HeLa/CD26 cells were infected with MERS-CoV- $\Delta p4$ at an MOI of 3. At 8 h p.i., the
772	infected cells were treated with 100 μ g/ml of CHX or DMSO for 1 h. After fixing, cells were
773	stained for TIA-1 (green) and N protein (red). (F) HeLa/CD26 cells (left panel) or Vero cells
774	(right panel) were infected with MERS-CoV-WT or MERS-CoV- $\Delta p4$ at an MOI of 3. At
775	indicated times p.i., cells were fixed, and stained for TIA-1 and MERS-CoV N protein. Among
776	N protein-positive cells, those carrying at least a single TIA-1-postive granule were counted as
777	SG-positive, while SG-negative calls lacked any TIA-1-postive granules. The percentage of SG-
778	positive cells was calculated by counting the number of SG-positive cells out of 25-34 N protein-
779	positive cells/field. A total of 20 fields were counted for each sample. Each bar represents the
780	mean (±standard deviation). (G, H) Vero cells (G) or 293/CD26 cells (H) were mock-infected
781	(Mock) or infected with MERS-CoV-WT (WT) or MERS-CoV- $\Delta p4$ ($\Delta p4$) at an MOI of 3. At 24
782	h p.i., the infected cells were fixed with 4% formaldehyde and were stained for G3BP (green),
783	together with MERS-CoV N protein (red).
784	

Fig 2. Growth kinetics of MERS-CoV-WT and MERS-CoV- $\Delta p4$ in HeLa/CD26 and Vero cells HeLa/CD26 (A) or Vero cells (B) were infected with MERS-CoV-WT (WT) or MERS-CoV- $\Delta p4$ ($\Delta p4$) at an MOI of 0.01 (left panels) or 3 (right panels). Culture supernatants were collected at the indicated times p.i., and virus titers were determined by plaque assay. Each dot represents mean virus titers (\pm standard deviation) from three wells. Asterisks represent statically significant differences in virus titers (P<0.05).

- 791
- Fig 3. Phosphorylation statuses of PKR and eIF2a and efficiencies of host and viral protein
 synthesis in infected cells HeLa/CD26 cells or Vero cells were either mock-infected (Mock) or
 - 31

<u>.</u>		
scr	794	infected with MERS-CoV-WT (WT) or MERS-CoV- $\Delta p4$ ($\Delta p4$) at an MOI of 3. (A and B)
anu	795	Whole cell lysates were prepared at 9 h p.i. for HeLa/CD26 cells (A) and 24 h p.i. for Vero cells
X	796	(B) and subjected to Western blot analysis to detect PKR, phosphorylated PKR (p-PKR), eIF2a,
oted	797	phosphorylated eIF2α (p-eIF2α), MERS-CoV 4a protein, MERS-CoV 4b protein, and tubulin.
cep	798	HeLa/CD26 cells (C) or Vero cells (D) were radiolabeled for 1 h with 100 μ Ci of Tran ³⁵ S-label,
Ă	799	and cell lysates were prepared at the indicated times p.i. Cell lysates were subjected to SDS-
	800	PAGE analysis, followed by autoradiography (top panels) and colloid Coomassie blue staining
	801	(bottom panels). Arrows, virus-specific proteins.
	802	
	803	Fig 4. Accumulations of viral mRNAs and proteins in infected HeLa/CD26 cells
	804	HeLa/CD26 cells were mock-infected (Mock) or infected with MERS-CoV-WT (WT) or MERS
ology	805	CoV- Δ p4 (Δ p4) at an MOI of 3. At indicated times p.i., total intracellular RNAs and proteins
of Vire	806	were prepared. (A) Northern blot analysis of viral mRNAs using a riboprobe that binds to all
urnal	807	viral mRNAs. Numbers 1-8 represent viral mRNA species. The 28S and 18S rRNAs were
_ب ا	808	detected by ethidium bromide staining (rRNA). Amounts of mRNA 1 (B) and subgenomic

809 mRNA 8 (C) were quantified by qRT-PCR. Expression levels of mRNAs were normalized to

810 levels of 18S rRNA. Each bar represents the mean (±standard deviation) of three independent

811 samples. ns, not significant (P>0.05). (D) Western blot analysis of intracellular accumulation of

812 MERS-CoV S, M, N proteins and tubulin.

813

Fig 5. Expression of host mRNAs involved in innate immune responses in infected 814

- HeLa/CD26 cells HeLa/CD26 cells were mock-infected (Mock) or infected with MERS-CoV-815
- WT (WT) or MERS-CoV- $\Delta p4$ ($\Delta p4$) at an MOI of 3. SeV was used as a positive control. Total 816

817 intracellular RNAs were extracted at the indicated times p.i., and the amounts of endogenous 818 *IFN-* β (A), *IFN-* λ (B), *OAS* (C), *and ISG56* (D) mRNAs were determined by qRT-PCR analysis. 819 Expression levels of the genes were normalized to levels of 18S rRNA. Each bar represents the 820 mean (±standard deviation) from three independent samples. ns, not significant (*P*>0.05).

821

Fig 6. Subcellular localization of viral mRNAs and a SG marker, eIF4A, in MERS-CoVΔp4-infected cells HeLa/CD26 cells were mock-infected (top panels) or infected with MERSCoV-WT (middle panels) or MERS-CoV-Δp4 (bottom panels) at an MOI of 3. At 9 h p.i., viral
mRNAs were detected by riboprobe binding to all viral mRNAs (green) and SGs were detected
by anti-eIF4A antibody (red). Samples were subjected to fluorescent microscopic examination.

828 Fig 7. SG formation interfered with efficient MERS-CoV replication HeLa/CD26 cells 829 were transfected with control siRNA (siCont) or siRNA targeting TIA-1 (siTIA-1) or G3BP1/2 830 (siG3BP1/2). (A) At 24 h siRNA posttransfection, cells were infected with MERS-CoV-Δp4 at 831 an MOI of 3. At 9 h p.i., the cells were fixed and stained for G3BP or TIA-1, together with N 832 protein. The numbers of SGs in each N protein-positive cells were counted and average numbers 833 of SGs per cell were calculated. Each bar represents the mean (±standard deviation) for 20 cells 834 infected with MERS-CoV- Δ p4. Whole cell lysates were prepared at 24 h posttransfection, and 835 subjected to Western blot analysis to detect TIA-1, G3BP1, G3BP2, or tubulin. (B) At 24 h siRNA posttransfection, cells were infected with MERS-CoV-WT or MERS-CoV-Δp4 at an 836 837 MOI of 3. The titers of released viruses at the indicated times p.i. were determined by plaque 838 assay. Filled boxes represent virus titers in siCont-transfected cells, while empty boxes represent 839 virus titers insiTIA-1-transfected cells or siG3BP1/2-transfected cells. Each box represents the

\circ	
- Nor	
ste	
P	
<u>o</u>	
<u>C</u>	
SUC SUC	
ar	
2	
e e	
- de	
Ö	
Ā	

841

ne

842	or infected with MERS-CoV-WT (WT) or MERS-CoV- $\Delta p4$ ($\Delta p4$) at an MOI of 3. These cells
843	were radiolabeled for 1 h with 100 μ Ci of Tran ³⁵ S-label, and cell lysates were prepared at the
844	indicated times p.i. Cell lysates were subjected to SDS-PAGE analysis, followed by
845	autoradiography (left panels) and colloid Coomassie blue staining (right panels). (E and F) After
846	24 h siRNA transfection, cells were infected with MERS-CoV- $\Delta p4$ at an MOI of 3, and total cell
847	lysates and RNAs were prepared at 9 h p.i. Western blot analysis of viral S protein, M protein, N
848	proteins, and tubulin (E). Amounts of mRNA 1 and subgenomic mRNA 8 were quantified by
849	qRT-PCR (F). Expression levels of mRNAs were normalized to levels of 18S rRNA. Each bar
850	represents the mean (±standard deviation) of three independent samples. ns, not significant
851	(P>0.05). (G and H) After 24 h siRNA transfection, cells were mock-infected (Mock) or infected
852	with MERS-CoV-WT (WT) or MERS-CoV- $\Delta p4$ ($\Delta p4$) at an MOI of 3. Cell lysate were
853	prepared at 9 h p.i., and subjected to Western blot analysis to detect $eIF2\alpha$ and phosphorylated
854	eIF2α (p-eIF2α).
855	
856	Fig 8. MERS-CoV 4a accessory protein alone is sufficient for inhibiting SG formation in
857	infected cells (A) Schematic diagrams of genomes of MERS-CoV-WT (WT) and MERS-CoV-
858	Δ 4a (Δ 4a). Boxes represent open reading frames derived from MERS-CoV-WT. The 5' and 3'
859	untranslated regions (bars) and viral open reading frames (boxes) are not drawn according to

mean (±standard deviation) for three wells. Asterisks represent statistically significant

differences (P<0.05). (C and D) After 24 h siRNA transfection, cells were mock-infected (Mock)

860 their lengths. (B and C) HeLa/CD26 cells were infected with MERS-CoV-WT or MERS-CoV-

861 Δ4a at an MOI of 3. At 9 h p.i., the infected cells were fixed and stained for TIA-1 or G3BP

(green), together with MERS-CoV N protein (red). 862

 \leq

864	Fig. 9. Characterization of MERS-CoV-Δ4a replication in HeLa/CD26 cells HeLa/CD26
865	cells were either mock-infected (Mock) or infected with MERS-CoV-WT (WT) or MERS-CoV-
866	Δ 4a (Δ 4a) at an MOI of 3. (A) Whole cell lysates were prepared at 9 h p.i. and subjected to
867	Western blot analysis to detect PKR, phosphorylated PKR (p-PKR), eIF2 α , phosphorylated
868	eIF2α (p-eIF2α), MERS-CoV 4a protein, MERS-CoV 4b protein, and tubulin. (B) HeLa/CD26
869	cells were radiolabeled for 1 h with 100 μ Ci of Tran ³⁵ S-label, and cell lysates were prepared at
870	the indicated times p.i. Cell lysates were subjected to SDS-PAGE analysis, followed by
871	autoradiography (top panels) and colloid Coomassie blue staining (bottom panels). Arrows
872	depict virus-specific proteins. (C) Northern blot analysis of viral mRNAs using a riboprobe that
873	binds to all viral mRNAs. Numbers 1-8 represent viral mRNA species. The 28S and 18S rRNAs
874	were detected by ethidium bromide staining (rRNA). (D) Western blot analysis of intracellular
875	accumulation of MERS-CoV S, M, N proteins, and tubulin. (E and F) HeLa/CD26 (E) or Vero
876	cells (F) were infected with MERS-CoV-WT (WT) or MERS-CoV- Δ 4a (Δ 4a) at an MOI of 0.01
877	(left panels) or 3 (right panels). Culture supernatants were collected at the indicated times p.i.,
878	and virus titers were determined by plaque assay. Each dot represents mean virus titers
879	(±standard deviation) from three wells. Asterisks represent statically significant differences in
880	virus titers (<i>P</i> <0.05).

Figure 1 Nakagawa et. al.

Journal of Virology

Z

Figure 1 Nakagawa et. al.

 \sum

Figure 1 Nakagawa et. al.

Z

Figure 2 Nakagawa et. al.

Figure 3 Nakagawa et. al.

 \leq

Figure 4 Nakagawa et. al.

Figure 5 Nakagawa et. al.

 \sum

Accepted Manuscript Posted Online

Journal of Virology

Z

Figure 6 Nakagawa et. al.

Figure 7 Nakagawa et. al.

 \sum

Figure 7 Nakagawa et. al.

 \sum

Figure 8 Nakagawa et. al.

Z

Figure 9 Nakagawa et. al.

 \sum