Journal of Virology

JVI Accepted Manuscript Posted Online 12 September 2018 J. Virol. doi:10.1128/JVI.01162-18 Copyright © 2018 American Society for Microbiology. All Rights Reserved.

- 1 Interplay between the poly(A) tail, poly(A)-binding protein and
- 2 coronavirus nucleocapsid protein regulates gene expression of the
- 3 coronavirus and host cell
- 4 Tsung-Lin Tsai¹, Ching-Houng Lin¹, Chao-Nan Lin², Chen-Yu Lo¹, Hung-Yi Wu^{1*}
- 5
- 6 1 Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine,
- 7 National Chung Hsing University, Taichung 40227, Taiwan
- 8 2 Department of Veterinary Medicine, National Pingtung University of Science and
- 9 Technology, Neipu, Pingtung 91201, Taiwan
- 10 *Corresponding Author
- 11 Keywords: coronaviruses; RNA synthesis; replication; translation; nucleocapsid
- 12 protein; poly(A)-binding protein; poly(A) tail; gene expression
- 13 <u>Corresponding Footnote</u>: Graduate Institute of Veterinary Pathobiology, College of
- 14 Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
- 15 Telephone: 886-4-22840369; Fax: 886-4-22862073
- 16 Email: <u>hwu2@dragon.nchu.edu.tw</u>
- 17 Manuscript information: 136 characters in title; 225 words in abstract (250 limit) and
- 18 111 words in importance (150 limit); 40 typed manuscript pages; 9 Figures.
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26

27 ABSTRACT

28	In the present study, we investigated the roles of interactions among poly(A) tail,
29	coronavirus nucleocapsid (N) protein and poly(A)-binding protein (PABP) in the
30	regulation of coronavirus gene expression. Through dissociation constant (K_d)
31	comparison, we found that the coronavirus N protein can bind to the poly(A) tail with
32	high affinity, establishing N protein as a PABP. A subsequent analysis with UV
33	cross-linking and immunoprecipitation revealed that the N protein is able to bind to
34	the poly(A) tail in infected cells. Further examination demonstrated that poly(A) tail
35	binding by the N protein negatively regulates translation of coronaviral RNA and host
36	mRNA both in vitro and in cells. Although the N protein can interact with PABP and
37	eIF4G, the poor interaction efficiency between the poly(A)-bound N protein and
38	eIF4E may explain the observed decreased translation efficiency. In addition to
39	interaction with translation factor eIF4G, the N protein is able to interact with
40	coronavirus nonstructural protein 9 (nsp9), a replicase protein required for replication.
41	Together, the study demonstrates interactions among the poly(A) tail, N protein and
42	PABP both <i>in vitro</i> and in infected cells. Of the interactions, binding of poly(A) tail to
43	N protein decreases the interaction efficiency between the poly(A) tail and eIF4E,
44	leading to translation inhibition. The poly(A)-dependent translation inhibition by N
45	protein has not been previously demonstrated and thus extends our understanding of
46	coronavirus gene expression.
47	
48	IMPORTANCE Gene expression in coronavirus is a complicated and dynamic
49	process. In this study, we demonstrate coronavirus N protein is able to bind to the

50 poly(A) tail with high affinity, establishing N protein as a PABP. We also show how

51 the interplay between coronavirus 3'-poly(A) tail, PABP and N protein regulates gene

52 expression of the coronavirus and host cell. Of the interactions, poly(A) tail binding

 \leq

53	by the N protein negatively regulates translation and, to our knowledge, this inhibition
54	of translation by binding of the N protein to poly(A) tail has not been previously
55	studied. Accordingly, the study provides fundamental molecular details regarding
56	coronavirus infection and expands our knowledge of coronavirus gene expression.
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	
	3

Σ

79 INTRODUCTION

80 Members of the family Coronaviridae, order Nidovirales, are single-stranded, 81 positive-sense RNA viruses with the largest known viral RNA genome, 26-32 82 kilobases (kb) (1-3). The coronavirus genome consists of a 5' cap, a 5' untranslated region (UTR), open reading frames (ORFs), a 3' UTR and a 3' poly(A) tail. The 5' 83 84 two-thirds of the genome consists of two ORFs (ORF 1a and ORF 1b) that encodes 16 85 nonstructural proteins (nsps) with replicase activity. The other one-third of the 86 genome largely consists of genes encoding structural proteins (3). During coronavirus 87 infection, in addition to the replication of genomic RNA, coronaviruses synthesize a 88 3'-coterminal nested set of subgenomic mRNAs (sgmRNAs) from which the 5'-most 89 ORF is translated (3). 90 The nucleocapsid (N) protein of coronaviruses, with a molecular weight of 50 to 91 55 kDa, is abundantly produced during infection. It has been shown that N protein 92 binds to different sites of the coronaviral RNA genome with various binding affinities 93 (4-7). Furthermore, the binding of N protein to coronaviral RNA is more efficient than 94 to non-coronaviral RNA (6); however, it has yet to be examined whether coronavirus 95 N protein is able to bind to the poly(A) tail. In addition to its structural role in the 96 formation of ribonucleoprotein, N protein has been shown to interact with coronaviral 97 replicase proteins including nsps 2-3, nsp5, nsp8 and nsps 12-13 (8-14) and is 98 required for efficient replication (15-19). Coronavirus nsp9 is a replicase protein and 99 has been shown to be associated with polymerase nsp12 (20), essential for replication 100 (21) and involved in the initiation of (-)-strand RNA synthesis (22); however, whether 101 nsp9 is able to interact with N protein remains unknown. 102 Poly(A)-binding protein (PABP), a 70-kDa cellular protein, is a ubiquitous 103 cytosolic protein (23, 24). The binding of PABP to mRNA poly(A) tails is followed 104 by interactions with eIF4G and other translation factors including eIF4E to constitute

4

<u>S</u>
ŏ
2
5
Ъ
σ
Ē

P

105	a translation initiation complex, which mediates cellular mRNA circularization and
106	enhances cap-dependent translation by facilitating ribosome recycling (24-26). The
107	positive-strand coronavirus genome contains an m7GpppN-cap structure at the 5'-end
108	and a poly(A) tail at the 3'-end, which are presumed to initiate translation in a way
109	similar to that for cellular mRNA (3).
110	During coronavirus infection, the positive-strand genome functions as a template
111	for both the synthesis of viral proteins and replication of the genome. Accordingly, a
112	conflict may occur between the translation and replication machineries, as the
113	ribosomes are moving along the viral RNA in the 5' to 3' direction and the viral RNA
114	polymerase is moving in the opposite direction (3' to 5'). Therefore, a balance
115	between these two processes must exist to enable efficient viral gene expression. In
116	poliovirus, it has been demonstrated that the 5'-terminal cloverleaf on the viral
117	genome functions as a regulator to control the use of the genome for translation or
118	replication (27, 28). Binding of poly(C)-binding protein (PCBP) to this RNA structure
119	facilitates viral translation (IRES-dependent translation), whereas interaction of the
120	viral protein 3CD with this RNA structure represses translation and enhances
121	replication. However, for coronaviruses, which employ a different translation
122	mechanism (cap-dependent translation) from that of poliovirus, the strategy for
123	coordinating the use of the positive-sense genome for translation or replication has yet
124	to be determined.
125	In this study, we show that the bovine coronavirus (BCoV) N protein can bind to
126	a poly(A) tail with high affinity. We also demonstrate that poly(A) tail binding by the
127	N protein negatively regulates translation of coronaviral RNA and host mRNA.
128	Finally, we demonstrate interactions among the poly(A) tail, PABP and N followed by
129	interactions with eIF4G, eIF4E and nsp9. Based on these data, we propose a model
130	explaining how these interactions regulate gene expression during coronavirus

Downloaded from http://jvi.asm.org/ on September 13, 2018 by guest

131 infection.

132

RESULTS 133

134 Coronavirus N protein binds to poly(A) tail with high affinity. It has been shown

135 that N protein binds to different sites of the coronaviral RNA genome with various

136 binding affinities (4-7); however, it has yet to be examined whether coronavirus N

137 protein is able to bind to the poly(A) tail, a common structure in coronavirus genome,

- 138 subgenomic mRNAs and cellular mRNA. For this, we first tested whether Escherichia
- *coli*-expressed N protein (~65 kDa, Fig. 1B) binds to the ³²P-labeled polv(A) tail 139

using electrophoretic mobility shift assay (EMSA). As shown in Fig. 1C, N protein 140

- bound to the ³²P-labeled 65-nt poly(A) tail (lane 2). In addition, non-radiolabeled 141
- 142 competitor 65-nt poly(A) tail was able to compete for this binding by N protein in a
- 143 dose-dependent manner (lanes 3-5). Conversely, similar results were not found for the
- 144 binding between N protein and yeast tRNA (lanes 6) or between

glutathione S-transferase (GST) and ³²P-labeled 65-nt poly(A) tail (data not shown). 145

146 The data suggest that coronavirus N protein is able to bind to the poly(A) tail.

147 As it is well characterized that PABP binds to poly(A) tails with high affinity, we 148 postulated that the potential significance of the poly(A)-binding activity of N protein 149 may be further emphasized if its binding affinity is similar to that of PABP. For this, 150 increasing concentrations of N protein and PABP were separately incubated with ³²P-labeled 65-nt poly(A) tail and then analyzed by EMSA. The percentage of 151 152 bound RNA was then used to derive the dissociation constant (K_d) using the Hill

- 153 equation and K_d was calculated to be 28.4±3.9 and 17.8±1.2 nM for N protein and
- 154 PABP (Figs. 1D and 1E), respectively, suggesting that N protein and PABP have
- 155 similar binding affinities for the 65-nt poly(A) tail. Because the C-terminal domain
- 156 (CTD) of N protein is mainly involved in oligomerization (29, 30) and the CTD of

PABP has also been reported to possess homodimerization activity (31), the multiple
complexes shown in Figs. 1D and 1E resulting from such protein-protein interaction
are not unexpected.

160 To further characterize the poly(A)-binding activity of N protein, RNA probes 161 with various sequence were synthesized (Fig. 1F). The same RNA probes were also 162 examined for their ability to interact with PABP. The K_d for N protein and PABP 163 with RNA probes containing the BCoV 3'-terminal 55 nts and poly(A) tails of 164 decreasing lengths (55 nts+65A, 55 nts+45A, 55 nts+25A or 55 nts) increased (Fig. 165 1G, left panel), suggesting that the length of the poly(A) tail is the main factor for 166 increasing the binding efficiency of N protein and PABP to the RNA probes. In 167 addition, the K_d for N protein and PABP with 25-nt poly(A) tail was higher than that 168 with the 65-nt poly(A) tail (Fig. 1G, left panel), further suggesting that N protein is a 169 poly(A)-binding protein. Finally, as shown in Fig. 1G (right panel), K_d for N protein 170 and these non-poly(A) sequences containing various types of nts (BCoV-65nts and 171 β -actin-65nts, respectively, Fig. 1F) was ~4-5-fold higher than that for N and the 172 65-nt poly(A) tail, suggesting that N protein has greater binding affinity for a poly(A) 173 sequence than a non-poly(A) sequence containing various types of nts. Together, the 174 results further suggest that coronavirus N protein, similar to PABP, binds to poly(A) 175 tail with high affinity. 176

Downloaded from http://jvi.asm.org/ on September 13, 2018 by guest

177 N protein is able to compete with PABP for binding to the poly(A) tail *in vitro*

178 and in cells. To address the question of whether N protein is able to compete with

179 PABP for binding to the poly(A) tail in an environment in which they co-exist *in vitro*,

- 180 the ³²P-labeled poly(A) tail RNA probe was incubated with mixtures containing
- 181 various molar ratios of N protein to PABP, followed by EMSA. The EMSA results of
- 182 N protein or PABP binding to the poly(A) tail and the relative binding percentage are

gy
t Virolo
<u>a</u>
al of /

183	illustrated in the upper and lower panels of Fig. 2A, respectively. As shown in Fig. 2A,
184	upper panel, at molar ratios of N/PABP from 65.6 to 5.7 in lanes 3-7 (with the
185	increase of PABP), a minor (complex 1, indicated by white dot in lane 3) and a major
186	(indicated by white asterisk in lane 3) RNA-protein complex were observed. Since the
187	major complexes in lanes 3-7 corresponded to N-RNA complex in lane 2, the
188	preferential binding of 65-nts poly(A) tail to N protein was determined at molar ratios
189	between 5.7-65.6. With further increase of PABP (i.e., decreased molar ratio of
190	N/PABP from 4.0 to 1.9 in lanes 8-10), the minor complex (complex 1, indicated by
191	white dot in lane 3) in lanes 3-7 became major complex in lanes 8-10, suggesting that
192	the major complex (complex 1) consists of PABP and 65-nts poly(A) tail.
193	Furthermore, with the increase of PABP in lanes 11-13, the complex 1 almost
194	disappeared; however, complex 2 appeared, which corresponded to PABP-RNA
195	complex in lane 14. Together, since the major complex in lanes 8-13 consists of
196	PABP and 65-nts poly(A) tail, the preferential binding of 65-nts poly(A) tail to PABP
197	was determined at molar ratios between 0.6-4.0 (lanes 8-13). Note that a small amount
198	of N protein (~15%, Fig. 2A, lower panel) still bound to the poly(A) tail when the
199	molar ratio of N protein to PABP was from 3.0 to 4.0 (lanes 8 and 9). Based on these
200	results, it was concluded that N protein can compete with PABP for binding to the
201	poly(A) tail in vitro, even though at the same molar ratio (lane 12), PABP exhibits
202	better binding affinity to poly(A) tails than N protein.
203	To determine whether N protein is able to bind to poly(A) tail in infected
204	cells, ³² P-labeled 65-nt poly(A) tail was transfected into BCoV- or mock-infected
205	cells and UV cross-linked. Cell lysates were collected and an antibody against PABP
206	or N protein was employed to immunoprecipitate PABP or N protein followed by
207	RNase treatment. As shown in Fig. 2B, left panel, antibody against PABP
208	immunoprecipitated a ~70-kDa protein from mock-infected and BCoV-infected cells
	8

209	(lanes 4 and 5, respectively); however, in Fig. 2B, right panel, antibody against N
210	protein immunoprecipitated a ~50-kDa protein from BCoV-infected cell (lane 5) but
211	not the mock-infected cell (lane 3). The results suggest that, in addition to PABP, N
212	protein is able to bind to the poly(A) tail in infected cells.
213	
214	Determination of molar ratio of N protein to PABP in subcellular locations at
215	different stages of infection. As shown in Fig. 2A, the molar ratio of N protein to
216	PABP plays a role in poly(A) tail binding preference. In addition, it has been
217	suggested that coronavirus replication can occur in a modified membrane-associated
218	compartment (32). It was therefore speculated that molar ratios in subcellular
219	locations of coronavirus-infected cells at different stages of infection may also be
220	decisive regarding PABP or N protein binding preference for the poly(A) tail. Thus,
221	subcellular fractions of cytosol and membrane were obtained at various time points of
222	infection, and the amounts of N protein and PABP in each cellular fraction according
223	to immunoblotting (Figs. 3A and 3B, upper panel) were quantified based on a
224	standard curve obtained from known amounts of the proteins. As shown in Figs. 3A
225	and 3B, middle and lower panel, the molar ratio of N protein to PABP in both cytosol
226	and membrane was low (~0.4) during the initial infection, but increased (from ~0.4 to
227	~2.6 in cytosol and from ~0.3 to ~10.5 in membrane) at later infection stages. The
228	results indicate that the amounts of N protein are increased in both cytosol and
229	membrane at the later time points of infection. Thus, based on the results shown in
230	Figs. 2 and 3, we speculate that the poly(A) tail may preferentially bind with PABP
231	during the initial infection but with N protein in the later infection, especially in
232	membrane-associated structures.
233	

 \leq

235

236	(Fig. 2), we hypothesized that such binding may prevent the poly(A) tail on
237	coronavirus RNA from interacting with translation factors, leading to translation
238	inhibition. To test the hypothesis, a BCoV defective interfering (DI) RNA, a surrogate
239	for the coronavirus genome that has been extensively used for studies of coronavirus
240	gene expression (33-37) (Fig. 4A), was engineered to express EGFP; the construct
241	was designated DI-EGFP. For in vitro translation analysis, DI-EGFP with the 65-nt
242	poly(A) tail was first incubated with various amounts of N protein (Fig. 4B) for 15
243	min to allow the binding of N protein to the 65-nt poly(A) tail on DI-EGFP and then
244	added to a rabbit reticulocyte lysate (RRL) for another 90 min. A similar experiment
245	was performed however DI-EGFP was first incubated with PABP or GST. As shown
246	in Fig. 4B, translation of DI-EGFP with a 65-nt poly(A) tail was inhibited with
247	increasing amounts of N protein but not PABP or GST (data not shown). To test
248	whether the inhibition was due to the effect of N protein on the RRL, various amounts
249	of N protein were first incubated with RRL for 60 min, and then DI-EGFP with the
250	65-nt poly(A) tail was added. The translation efficiency of DI-EGFP, however, was
251	not altered (data not shown), indicating that N protein at these concentrations had no
252	effect on the translation efficiency of RRL. Accordingly, the reduced translation
253	efficiency shown in Fig. 4B was due to the binding of N protein with DI-EGFP but
254	not the effect of N protein on RRL. Furthermore, it has been shown that translation
255	using RRL still occurs with an mRNA lacking a poly(A) tail although the translation
256	efficiency is affected (38). Consequently, we hypothesized that if the decreased
257	translation efficiency was due to the binding of N protein to the poly(A) tail,
258	translation efficiency of poly(A)-deficient DI-EGFP is not altered with increasing
259	amounts of N protein. To test this, poly(A)-deficient DI-EGFP was generated,
260	incubated with various amounts of N protein for 15 min and then added to the RRL.
	10

poly(A) tail is able to bind to N protein with high affinity (Fig. 1) and in infected cells

 \sum

261	As shown in Fig. 4C, the translation efficiency was not significantly affected with
262	increasing amounts of N protein, suggesting that the decreased translation in Fig. 4B
263	may be mostly due to the interaction between N protein and poly(A) tail. Taken
264	together, because N protein apparently had no effect on the translation efficiency of
265	RRL (data not shown) and on translation efficiency of poly(A)-deficient DI-EGFP
266	(Fig. 4C), the inhibitory effect of translation shown in Fig. 4B may be attributed to
267	interaction between the poly(A) tail and N protein. Note that after in vitro translation
268	in RRL the amounts of DI-EGFP at various concentrations of N protein were not
269	significantly altered, indicating that the stability of DI-EGFP is not a factor affecting
270	the translation efficiency. It was therefore concluded that N protein is able to inhibit
271	viral translation by binding to the viral poly(A) tail in vitro.
272	To further assess whether translation inhibition by N protein also occurs in vivo,
273	the N protein or His- β -actin transcript was transfected into HEK-293T cells followed
274	by transfection of DI-EGFP with a 65-nt poly(A) tail (Fig. 4D, left panel) or by
275	infection of BCoV (Fig. 4F, left panel). Cell lysates were harvested and analyzed by
276	immunoblotting to quantitate the translation efficiency of DI-EGFP and coronavirus
277	nsp1 (representing genome expression). As shown in Fig. 4D, right panel and Fig. 4E,
278	inhibition of the DI-EGFP translation was observed in cells transfected with the N
279	protein transcript at 3, 8 and 16 h in comparison with those transfected with the
280	His- β -actin transcript, suggesting that N protein is able to inhibit translation of
281	DI-EGFP in vivo. The similar inhibition results were also obtained in cells infected
282	with BCoV (Fig. 4F, right panel and Fig. 4G), suggesting N protein can inhibit
283	translation of coronavirus genome. Note that the levels of DI-EGFP RNA (Fig. 4D)
284	and viral genomic RNA (Fig. 4F) were similar between the groups at the same time
285	point as confirmed by RT-qPCR (data not shown). Therefore, based on the results of
286	the in vivo binding of N protein to poly(A) tail (Fig. 2B) and the in vitro analyses

Z

shown in Figs. 4B and 4C, the inhibitory effect of N protein on translation of
DI-EGFP and BCoV *in vivo* may at least be partly attributable to the binding of N
protein to the poly(A) tail on DI-EGFP and BCoV genome.

290	
291	BCoV N protein modulates translation of host mRNAs both in vitro and in vivo.
292	To examine whether the binding of N protein to the poly(A) tail of mRNA also
293	inhibits host mRNA translation, a β -actin transcript with 65-nt poly(A) tail was first
294	incubated with N protein to form an N protein-poly(A) complex and then subjected to
295	an <i>in vitro</i> translation assay with the RRL. As shown in Fig. 5A, expression of β -actin
296	transcripts was inhibited with increasing amounts of N protein. As with the in vitro
297	translation assay for DI-EGFP (Fig. 4), to further determine whether the inhibitory
298	effect was due to the binding of N protein to the poly(A) tail, a poly(A) tail-deficient
299	β -actin transcript was first incubated with various amounts of N protein followed by
300	the assay. However, inhibition was not observed (Fig. 5B), as no significant
301	difference in expression of the poly(A) tail-deficient β -actin transcript was observed
302	with increasing amounts of N protein. These results (Figs. 5A and 5B) suggest that
303	binding of N protein to the $poly(A)$ tail of the β -actin transcript is a major factor
304	leading to translation inhibition.
305	In addition to individual cellular mRNAs in vitro, inhibition of host mRNA
306	translation by N protein was also examined globally in cells. For this, the N protein
307	transcript or His-tagged β -actin transcript was independently transfected into
308	HEK-293T cells for 1 h, after which the cells were incubated for 3 h in the presence
309	or absence of actinomycin D. After addition of actinomycin D, the cells were labeled
310	with [³⁵ S]-methionine for 8 h, and equal amounts of cell lysate were analyzed by
311	SDS-PAGE. As shown in the left panel of Figs. 5C and 5D, inhibition of host protein
312	synthesis was not apparent in cells not treated with actinomycin D; however, with

 $\overline{\leq}$

313

314

	2	<u>></u>	
	200	2	
	200	2	
	200	20	
	2000		
	÷	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	÷		
	÷		
	÷		
	÷		

Jour

3	15	transfected with the His-tagged β -actin transcript or with mock transfected (Fig. 5C,
3	16	left panel and Fig. 5D, right panel). The fact that the efficiency of N protein inhibition
3	17	was better in actinomycin D-treated cells than in untreated cells may indicate that in
3	18	the absence of nascent mRNA synthesis, expressed N protein was involved in
3	19	interaction with preexisting mRNAs, leading to inhibition of host protein synthesis. In
3	20	addition, the levels of host mRNA (represented by GAPDH mRNA) were similar (Fig.
3	21	5C) between the groups treated with actinomycin D as confirmed by RT-qPCR (data
3	22	not shown) and thus were not affected by the expressed N protein. Thus, it was
3	23	concluded that in addition to coronaviral RNA, N protein is also able to globally
3	24	inhibit host mRNA translation, and based on in vitro results (Figs. 5A and 5B), such
3	25	inhibition in cells may at least partly result from the binding of N protein to the
3	26	poly(A) tail.
3	27	
3	28	Interactions among the poly(A) tail, N protein and PABP. To elucidate the
3	29	possible mechanism by which interactions among the poly(A) tail, N protein and
3	30	PABP regulate gene expression, we first determined whether a poly(A) tail is able to
3	31	interact with both the N protein and PABP using lysates of infected cell. For this, an
3	32	84-nt biotinylated RNA, consisting of 19 non-poly(A) nts (containing
3	33	biotin-conjugated uridine) followed by a 65-nt poly(A) tail, was synthesized and
3	34	incubated with cell lysates followed by a streptavidin pull-down assay and
3	35	immunoblotting. As shown in Fig. 6A (lane 1), both the N protein and PABP were
3	36	detected (indicated by asterisks), demonstrating poly(A) tail interaction. To ensure
3	37	that the detection of the N protein and PABP was in fact due to interaction with the
3	38	poly(A) tail and not with the 19 non-poly(A) residues, a biotinylated RNA containing
		13

actinomycin D treatment, synthesis of host proteins in cells transfected with the N

protein transcript was decreased by ~one-third in comparison with that in cells

339	the 19 non-poly(A) nts was also used. However, neither were observed (data not
340	shown) by immunoblotting, confirming that the 65-nt poly(A) tail, and not 19
341	non-poly(A) nts, can interact with both the N protein and PABP from infected cell
342	lysates. We next addressed whether the N protein is able to directly bind to the PABP
343	by performing a pull-down assay, in which purified His-tagged PABP (Fig. 6B, left
344	panel) was bound to Ni-NTA beads and mixed with purified untagged N protein (Fig.
345	6B, right panel). As shown in Fig. 6C, untagged N protein (left panel, lane 1) was
346	co-pelleted by His-tagged PABP, suggesting that the N protein can physically bind to
347	the PABP. Finally, we assessed whether the N protein is able to interact with the
348	PABP from infected cell lysates by incubating Ni-NTA beads with His-tagged N
349	protein and infected cell lysates and subjecting the elute to immunoblotting with an
350	antibody against PABP. As shown in Fig. 6D, a signal at ~70 kDa representing the
351	cellular PABP was observed (left panel, lane 1), suggesting that the N protein is able
352	to interact with cellular PABP from infected cell lysates. Consistently, the reciprocal
353	pull-down assay with His-tagged PABP demonstrated that the PABP can interact with
354	the N protein from infected cell lysates (Fig. 6D, right panel, lane 1). To determine
355	whether RNA bridging is essential for such interaction, RNase treatment was included
356	in the pull-down assay. As shown in Fig. 6D, both the PABP (left panel, lane 6) and N
357	protein (right panel, lane 5) were detected, suggesting RNA bridging is not a
358	requirement for the interaction between the two proteins. Taken together, it was
359	concluded that the poly(A) tail can interact with both the N protein and PABP from
360	infected cell lysates. In addition, the N protein is able to physically bind to the PABP
361	in vitro and to interact with PABP from infected cell lysates.
362	
363	Interactions of the $poly(A)$ tail and N protein with translation factor eIF4G and

- **coronavirus replicase protein nsp9.** To further examine the role of the poly(A) tail

 $\overline{\leq}$

365	and N protein in gene regulation, we first determined whether the poly(A) tail is able
366	to interact with eIF4G and nsp9, a coronavirus replicase protein that is associated with
367	polymerase nsp12 (20), is essential for replication (21) and is involved in the initiation
368	of (-)-strand RNA synthesis (22). To this end, the 84-nt biotinylated RNA described
369	above (consisting of 19 non-poly(A) nts followed by 65-nt poly(A) tail) were used in
370	the streptavidin pull-down assay. As shown in Fig. 7A, both eIF4G (left panel, lane 1)
371	and coronavirus nsp9 (right panel, lane 1) were detected by immunoblotting, though
372	they were not observed with the biotinylated RNA containing only the 19 non-poly(A)
373	tail nts (data not shown), suggesting that the 65-nt poly(A) tail is able to interact with
374	eIF4G and coronavirus nsp9 from infected cell lysates. We next performed the
375	pull-down assay with Ni-NTA beads to determine whether the N protein is able to
376	interact with eIF4G in infected cells. In this case, eIF4G was not detected when using
377	infected cell lysates treated with or without RNase (Fig. 7B, lane 1 and lane 7,
378	respectively) but was detected when using mock-infected cell lysates treated with or
379	without RNase (Fig. 7B, lane 2 and lane 8, respectively). To address whether the lack
380	of eIF4G detection was due to the His-tagged N protein being outcompeted by
381	endogenous N in infected cell lysates, a pull-down assay with protein G beads
382	followed by incubation with an antibody against N protein was employed. Indeed,
383	eIF4G was detected in the absence or presence of RNase (Fig. 7C, lane 1 and lane 6,
384	respectively), suggesting that the N protein can interact with eIF4G from infected cell
385	lysates without the assistance of RNA. Our results show that the N protein is able to
386	bind to the poly(A) tail, yet it is possible that at least a portion of the detected
387	coronavirus nsp9 in Fig. 7A is due to its interaction with the N protein. Another
388	pull-down assay was performed to investigate this possibility. As shown in Fig. 7D,
389	lane 2 and lane 7, nsp9 was detected in infected cell lysates in the absence or presence
390	of RNase treatment, respectively, suggesting that the N protein is able to interact with

Σ

Z

nsp9 without an RNA bridge. These data suggest that both the poly(A) tail and N
protein are able to interact with the translation factor eIF4G and replicase protein
nsp9.

394

395	Poly(A)-bound N protein interacts efficiently with eIF4G but not eIF4E. To
396	further examine the translation inhibition caused by binding of the N protein to the
397	poly(A) tail, we next assessed whether N can interact with the translation factor eIF4E.
398	For this, a fixed concentration of biotinylated RNA consisting of 19 non-poly(A) nts
399	followed by the 65-nt poly(A) tail was first incubated with increasing amounts of N (2,
400	4 and 6 μ M) and then with mock-infected cell lysates followed by a streptavidin
401	pull-down assay. In this context, the N protein interacted with eIF4G efficiently (Fig.
402	8A, lanes 4-6, panel 1), whereas the amount of eIF4E detected decreased (Fig. 8A,
403	lanes 4-6, panel 2) with an increase in N protein (Fig. 8A, lanes 4-6, panel 4),
404	suggesting that the poly(A)-bound N protein cannot interact efficiently with eIF4E.
405	Note that the binding efficiency between the aforementioned biotinylated RNA and
406	the input PABP or N protein increased with increasing amounts of input PABP or N
407	protein as confirmed by immunoblotting shown in panels 3 (lanes 1-3) and 4 (lanes
408	4-6), respectively. With regard to the observed eIF4E (Fig. 8A, lane 4, panel 2), we
409	interpret that the biotinylated poly(A) tail not bound to N, which resulted from
410	insufficient binding of N to the biotinylated poly(A) tail due to the reduced amount of
411	input N protein (2 μ M), was still able to bind to PABP and then eIF4G and eIF4E,
412	leading to detection of eIF4E (Fig. 8A, lane 4, panel 2). Accordingly, with an
413	increasing amount of input N protein, the biotinylated poly(A) tail was almost all
414	bound and thus was unable to interact with eIF4E (Fig. 8A, lanes 5-6, panel 2),
415	supporting the above argument.
416	To further determine whether the poly(A) tail is able to interact with eIF4G,

Downloaded from http://jvi.asm.org/ on September 13, 2018 by guest

417

418

110	
419	non-poly(A) nts followed by the 65-nt poly(A) tail followed by streptavidin pull-down.
420	As shown in Fig. 8B, levels of eIF4G and eIF4E were decreased (lanes 4-6, panels 1
421	and 2, respectively) with increasing N protein (lanes 4-6, panel 4), whereas nsp9 was
422	increased (lanes 4-6, panel 3). These results suggest that in infected cells, the poly(A)
423	tail is able to interact with eIF4G and eIF4E but that the efficiency is decreased with
424	increasing amounts of N protein. Because the N protein can interact with coronaviral
425	replicase proteins (8-14), we speculate that these viral proteins compete with eIF4G
426	for interaction with N in infected cells, which in our assay would lead to reduced
427	detection of eIF4G. This argument is supported by the increased amounts of nsp9
428	detected (Fig. 8B, lanes 4-6, panel 3), which is also able to interact with the N protein
429	(Fig. 7). Furthermore, the amount of eIF4E detected (Fig. 8B, lanes 4-6, panel 2) may
430	be attributed to the input biotinylated poly(A) tail being bound by PABP followed by
431	eIF4G and eIF4E. In line with this argument, the reduced amount of eIF4E detected
432	(Fig. 8B, lanes 4-6, panel 2) may have resulted from the increased level of poly(A)
433	-bound N protein, which, based on the results shown in Fig. 8A, cannot interact with
434	eIF4E. Together, the poor interaction efficiency between the poly(A) -bound N
435	protein and eIF4E (Fig. 8A) and the decreased interaction efficiency between the
436	poly(A) tail and eIF4G and eIF4E in infected cells (Fig. 8B) may explain the results
437	of decreased translation efficiency observed in coronaviruses and host cells (Figs. 4
438	and 5).
439	

eIF4E and replication factor nsp9 in infected cells, lysates at different time points of

coronavirus infection were incubated with a biotinylated RNA consisting of 19

DISCUSSION 440

441 In the present study, we provide evidence for interactions among the poly(A) tail, N

442 protein and PABP both in vitro and in infected cells. We also demonstrate that poly(A)

M

443	tail binding by the N protein inhibits translation of both coronaviral RNA and host
444	mRNA. Further examination revealed that both the poly(A) tail and N protein are ab
445	to interact with the translation factor eIF4G and replicase protein nsp9. However, th
446	poly(A)-bound N protein cannot interact efficiently with eIF4E. The mechanism by
447	which the aforementioned interactions regulate gene expression in coronaviruses an
448	host cells and the biological relevance of such interactions are discussed below.
449	It has been demonstrated that the binding of PABP to a poly(A) tail (39)
450	followed by eIF4G and eIF4E binding to form a translation initiation complex is
451	required for efficient protein synthesis. In the current study, we showed that an N
452	protein-bound poly(A) tail can interact with eIF4G but largely cannot interact with
453	eIF4E (Fig. 8). Therefore, such an inefficient interaction may affect the constitution
454	a stable translation initiation complex, leading to decreased translation efficiency, as

444	mRNA. Further examination revealed that both the poly(A) tail and N protein are able
445	to interact with the translation factor eIF4G and replicase protein nsp9. However, the
446	poly(A)-bound N protein cannot interact efficiently with eIF4E. The mechanism by
447	which the aforementioned interactions regulate gene expression in coronaviruses and
448	host cells and the biological relevance of such interactions are discussed below.
449	It has been demonstrated that the binding of PABP to a poly(A) tail (39)
450	followed by eIF4G and eIF4E binding to form a translation initiation complex is
451	required for efficient protein synthesis. In the current study, we showed that an N
452	protein-bound poly(A) tail can interact with eIF4G but largely cannot interact with
453	eIF4E (Fig. 8). Therefore, such an inefficient interaction may affect the constitution of
454	a stable translation initiation complex, leading to decreased translation efficiency, as
455	shown in Figs. 4 and 5. It is known that eIF4G can bind to eIF4E; however, the
456	mechanism by which the poly(A)-bound N protein is able to interact with eIF4G but
457	not with eIF4E remains to be experimentally elucidated. It has been suggested that
458	allosteric interactions mediated by the poly(A) tail, PABP, eIF4G, and eIF4E are
459	critical for translation initiation (39-41) and that molecules such as 4EGI-1 (42) and
460	eIF4E-binding proteins (4EBPs) (43) are also involved in these interactions. Therefore,
461	it is possible that binding of the N protein to eIF4G may cause a conformational
462	change in eIF4G and thus decrease the binding efficiency with eIF4E. Alternatively,
463	the N protein may use the same binding site as utilized for eIF4E to bind to eIF4G;
464	thus, once eIF4G is bound to the N protein, eIF4G cannot bind to eIF4E, leading to
465	undetectable eIF4E in pull-down assays. These arguments are in agreement with
466	results of an <i>in vitro</i> translation assay (Figs. 4B and 5A) in which the poly(A) tail was
467	first bound by the N protein, resulting in decreased translation efficiency. Accordingly,
468	such a mechanism (binding of N to the poly(A) tail) may explain, in part, why

 \leq

469	translation was inhibited in cells (Figs. 4D-G and 5C-D). To our knowledge, the
470	translation inhibition caused by the binding of N to the poly(A) tail has not been
471	previously documented for coronaviruses.
472	Regarding cellular mRNA, as argued above, binding of N to the poly(A) tail can
473	inhibit translation, possibly preventing the use of mRNA for gene expression.
474	Nevertheless, the outcome of such binding may not be applicable to coronavirus
475	genomic RNA and subgenomic mRNA (sgmRNA) because the N protein can interact
476	with viral replicase proteins (8-14) and nsp9 (the current study; Fig. 7). We speculate
477	that, in addition to translation inhibition, N protein binding to the poly(A) tail
478	followed by interaction with replicase protein may be a highly important task for
479	coronavirus RNA species including sgmRNA (44). Thus, further study is required to
480	demonstrate the biological relevance of the interaction. One may argue that the
481	poly(A) tail of cellular mRNA may also be bound by the N protein followed by
482	interaction with these replicase proteins. However, because cis-acting elements
483	located at the 5'- and 3'-termini of the coronavirus have been demonstrated to be
484	required for coronavirus replication (45), lack of these elements in cellular mRNA
485	would explain the above argument.
486	According to the elegant model proposed by Hurst et al. (10), after release of an
487	N protein-bound viral genome into the cell, displacement of the N protein from the 5'
488	two-thirds of the genome may allow replicase proteins to be translated, including nsp3.
489	This translated nsp3 then associates with infecting (residual) N protein, which is
490	bound to the 3' end of the incoming viral genome, and tethers the complex to the
491	endoplasmic reticulum (ER). Based on the results of the current study, we propose a
492	modification of this model with more details, as follows. Because coronavirus
493	assembly occurs at the membrane (13), where the N protein concentration is higher
494	than that of PABP (Fig. 3), we speculate that the incoming viral genomic poly(A) tail

Σ

495	may be bound by N protein. Additionally, because N has higher binding affinity for
496	the poly(A) tail than for a non-poly(A) sequence (Fig. 1), it is possible that for the
497	incoming viral genomic RNA, the N protein disassociates from all genome regions
498	except the poly(A) tail, allowing translation of replicase proteins to occur. At this
499	point, it can be expected that the translation efficiency may be decreased because the
500	poly(A) tail is bound by N (Fig. 4). However, once nsp3 is synthesized, it can
501	associate with the N protein and tether the N-poly(A)-bound genome to the replication
502	complex at the ER (9, 10) for the first round of replication to synthesize a nascent
503	genomic RNA and sgmRNA.
504	During infection, the genome of the positive-sense RNA virus functions as a
505	template for both translation and replication; therefore, these two processes must be
506	regulated to enable efficient gene expression. In coronaviruses, however, the
507	mechanisms by which the two processes are regulated remain unclear. Based on the
508	results from the current study and others, (i) the poly(A) tail can be bound by PABP
509	and function in translation (46); (ii) the poly(A) tail is a start site for (-)-strand RNA
510	synthesis (47); (iii) the poly(A) tail can also be bound by the N protein with high
511	affinity (Fig. 1); (iv) the N protein can interact with viral replicase proteins (8-14) and
512	nsp9 (Fig. 5) and participates in replication (15-18); and (v) nsp9 is required for
513	coronavirus replication (21) and is associated with the replication complex for
514	(-)-strand initiation according to the model proposed by Züst et al. (22). Altogether,
515	we speculate that similar to the 5'-terminal cloverleaf in polioviruses (27, 28), the
516	coronavirus 3'-poly(A) tail, which is required for both translation and replication (36,
517	46), may function as a regulator to coordinate utilization of the genome for translation
518	(binding to PABP) or replication (binding to N). Further experiments are required to
519	demonstrated whether binding of the poly(A) tail to N protein is a key step needed to
520	regulate the two processes.

Σ

521	Based on the data presented herein and reported by others, a mechanism by
522	which interactions among the poly(A) tail, PABP and N protein regulate gene
523	expression in coronaviruses is proposed, as illustrated in Fig. 9. At the early stage of
524	infection, PABP is abundant (Fig. 3). The poly(A) tail of the coronavirus genomic
525	RNA may predominantly be bound by PABP followed by interaction with other
526	translation factors such as eIF4G and eIF4E (Fig. 8), leading to translation. With an
527	increase in N protein in the later stage of infection (Fig. 3), binding of the N protein to
528	poly(A) tails on coronavirus genomic RNA decreases the interaction efficiency
529	between the poly(A) tail and translation factors such as eIF4E (Fig. 8), leading to
530	translation inhibition.
531	Although we understand that additional data are required to determine the role of
532	binding of the poly(A) tail to N protein in the switch from genome translation to
533	replication, we attempt to explain the potential gene regulation in coronaviruses based
534	on the current findings with different viewpoints. First, in terms of an individual viral
535	genomic RNA, binding of the poly(A) tail by PABP or the N protein may decide the
536	subsequent function of the RNA. Second, in terms of the infection stage, the major
537	proportion of viral RNA in the early stage of infection functions in translation via
538	binding of the poly(A) tail by PABP, whereas in later stages, binding of the poly(A)
539	tail by the N protein and subsequent replicase proteins downregulates translation and
540	may lead to replication. Third, in terms of subcellular location, the N protein has been
541	shown to accumulate at a modified membrane-associated compartment where
542	coronavirus replication and assembly occur (32, 48). Thus, the findings of the study
543	reporting that membrane levels of PABP are much reduced compared to the cytosolic
544	fraction (49) support our results that a high molar ratio of N to PABP was detected in
545	the membrane fraction (Fig. 3), leading to binding of the poly(A) by the N protein and
546	possibly thereby directing the viral RNA toward replication. In addition, we argue that

Journal of Virology

547	the aforementioned interactions and their effects on the regulation of gene expression
548	are stochastic, rather than an all-or-none process in the infected cells.
549	In conclusion, we demonstrate interactions among the poly(A) tail, N protein and
550	PABP, as well as those among the N protein and eIF4G and nsp9. Of the interactions
551	shown in this study, binding of the poly(A) tail to PABP followed by eIF4G and
552	eIF4E leads to translation. However, binding of poly(A) tail to N protein decreases the
553	interaction efficiency between the poly(A) tail and eIF4E, leading to translation
554	inhibition. In addition, whether binding of the poly(A) tail by the N protein followed
555	by interaction with nsp9 may further direct viral RNA toward (-)-strand RNA
556	synthesis remains to be determined.
557	
558	MATERIALS AND METHODS
559	Viruses, cells and antibodies. Human rectum tumor (HRT)-18 and HEK-293T
560	cells were obtained from David A. Brian (University of Tennessee, TN) and
561	maintained in Dulbecco's modified Eagle's medium (DMEM) supplemented with

562 10% fetal bovine serum (FBS) (HyClone) and antibiotics at 37°C with 5% CO₂.

Downloaded from http://jvi.asm.org/ on September 13, 2018 by guest

563 The plaque-purified Mebus strain of BCoV (GenBank accession no. U00735) was

564 grown on an HRT-18 cell line as described (50, 51). Anti-N protein (BCoV)

565 antibody and anti-nsp9 (BCoV) antibody were obtained from David A. Brian

566 (University of Tennessee, TN). Antibodies used for this study are as follows:

567 anti-EGFP antibody (GeneTex), anti-PABP antibody (Cell Signaling

568 Technology), anti-eIF4G antibody (Cell Signaling Technology), anti-eIF4E

569 antibody (Cell Signaling Technology), anti-GAPDH antibody (GeneTex),

570 anti-calnexin antibody (Cell Signaling Technology) and anti-His-tag antibody

571 (Bio-Rad).

Ŋ

Journal of Virology

573	Construction of plasmids and DNA templates for RNA probes. The DNA
574	templates 55nts+65A, 55nts, 65A, 55nts+45A, 55nts+25A, 25A, and BCoV-65nts
575	for synthesis of RNA probes were produced by PCR. The template for the 65A
576	and 25A containing 65 and 25 adenosine residues were generated by PCR using a
577	primer containing 65 and 25 thymidine nucleotides, respectively, and a primer
578	containing T7 promoter sequence plus 3 guanosine residues. Therefore, except
579	for 3 guanosine residues, there is no extra non-adenosine residues in both RNA
580	probes after in vitro transcription. To synthesize a DNA template containing the
581	65-nt poly(A) tail and 19 non-poly(A) tail, a primer with sequence of
582	5'-TGTAATACGACTCACTATAGGGCCAATTGAAGAAT-3' and a primer with
583	sequence of 5'-T(65) GTGATTCTTCAATTGG-3' were used for PCR. Constructs
584	actin-65nts for the RNA probe and His-tagged β -actin for <i>in vitro</i> translation
585	were amplified by RT-PCR using RNA extracted from HRT-18 cells. To construct
586	DI-EGFP, EGFP gene was inserted into BCoV DI RNA at the site between ORF
587	1a and N protein gene. For this, a DNA fragment containing the EGFP sequence
588	and HpaI and XbaI restriction enzyme sites was amplified by an overlap PCR
589	mutagenesis procedure, digested with HpaI and XbaI and ligated into HpaI and
590	XbaI-linearized pDrepI to create pDI-EGFP. The resulting pDI-EGFP contained
591	full-length EGFP and N protein gene.
592	
593	Expression of recombinant proteins. For His-tagged N protein, pET32aN,

Downloaded from http://jvi.asm.org/ on September 13, 2018 by guest

594 which contains BCoV N protein gene, was transformed into Escherichia coli

595	BL21 (DE3) cells followed by inoculating into LB medium. The cells were then
596	induced with isopropyl thio- β -D-galactoside, harvested by centrifugation and
597	resuspended in PBS and then sonicated. The supernatant containing the
598	recombinant protein was purified through the 6xHis tag by immobilized metal ion
599	affinity chromatography with EDTA-resistant Ni Sepharose excel resin (GE
600	Healthcare) and loaded on a nickel-chelating column (GE Healthcare). Fractions
601	containing N protein were dialyzed and collected. Because the expressed BCoV
602	N protein also contains His-, Trx- and S-Tag coding sequences, the resulting
603	molecular weight is estimated to be ~65 kDa. To obtain N protein without the
604	His-tag, the tag along with Trx- and S-Tag was removed using PreScission
605	protease (GE Healthcare). To purify His-tagged PABP, pET28aPABP, which
606	contains PABP gene (GenBank accession no. NM_002568), was transformed into
607	E. coli BL21 (DE3) pLysS cells and the following procedures were similar to
608	those for expression of N protein as described above.
609	
(10	Electron bounting mobility shift again $(EMSA)$ and disconingtion constant (V_{i})

610 Electrophoretic mobility shift assay (EMSA) and dissociation constant (K_d). An in vitro transcription reaction for synthesizing ³²P-labeled RNA for EMSA 611 was carried out using T7 RNA polymerase and $[\alpha^{-32}P]ATP$ as specified by the 612 manufacturer (Promega). To purify ³²P-labeled RNA, the synthesized ³²P-labeled 613 614 RNA was separated on 6% sequencing gels, and passive elution was performed followed by phenol/chloroform extraction. The ³²P-labeled RNA and N protein 615 were added to the binding reaction containing 20 mM HEPES (pH 7.5), 6 mM 616 MgCl₂, 1.5 µM EGTA, 22.5 mM NaCl, 330 mM KCl, 36% glycerol, 3.6 mM 617

Journal of Virology

618	DTT, 82.5 $\mu g/$ ml BSA, and 36% glycerol and incubated for 15 min at 37°C with
619	1 U/ml RNasin (Promega) (final concentration for ³² P-labeled RNA and N protein
620	is 1 nM and 5 nM, respectively). Reactions with unlabeled competitor at 1-, 10-
621	and 100-fold excess and non-specific yeast tRNA (0.1 mg/mL) were also
622	performed in parallel. The RNA-protein complexes were resolved on a native
623	polyacrylamide gel in TBE buffer (50 mM Tris, 45 mM boric acid, 0.5 mM
624	EDTA) at constant voltage at room temperature, dried, and analyzed by
625	autoradiography. To determine the binding affinity, a fixed concentration of 0.2
626	nM 32 P -labeled RNA was titrated with protein (0, 14, 71, 143, 286, 533 nM), and
627	the bound RNA-protein complexes were separated from unbound RNA using an
628	8% polyacrylamide gel. Free and bound RNA were quantitated and fit to the Hill
629	equation: RNA bound= $b^{P}[P]n/(Kd^{n} + [P]^{n})$, where b is the upper binding limit,
630	[P] is the protein concentration, n is the Hill coefficient and K_d is the dissociation
631	constant. GraphPad Prism was used. K_d was calculated based on at least three
632	independent experiments.
633	
634	UV cross-linking of RNA to N protein HEK-293T cells were mock-infected or

UV cross-linking of RNA to N protein. HEK-293T cells were mock-infected or 634 infected with BCoV. After 16 h of infection, ³²P-labeled 65-nt poly(A) tail was 635 636 transfected using Lipofectamine 2000 (Thermo Fisher Scientific) according to the manufacturer's instruction and at 2 h posttransfection cells were washed by 637 638 phosphate-buffered saline (PBS). Cells were subjected to irradiation on ice for 5 min at 254 nm with ~4000 µwatts/cm² using a Spectrolinker (XL-1000, 639 SpectrolinkerTM). Cell lysates were collected and treated with RNase mix

Downloaded from http://jvi.asm.org/ on September 13, 2018 by guest

640

 \leq

641	containig10mM Tris (pH 7.5), 400 U/ml micrococcal nuclease, 1mM CaCl ₂ , 1%
642	aprotinin, 2 mg/ml leupeptin/pepstatin, 100mM PMSF, 0.1 mg/ml RNase A and
643	RNase T1) at 37°C for 30 min. RNase-treated samples were centrifuged and
644	supernatants were collected and pre-cleared for 1 h at 4°C by incubation with
645	protein G beads (MagQu). The beads were then removed and immunoprecipitaed
646	with an antibody against N protein at 4°C overnight followed by incubation with
647	protein G beads for 4 h at 4°C using tilt rotation. After extensive washing, the
648	RNA-protein complexes were resuspended in SDS-PAGE loading dye, resolved
649	by SDS-PAGE, dried and visualized by autoradiography.
650	
651	Immunoprecipitation and pull-down assay. His-tagged PABP (25 μ g) was
652	mixed with N protein in 100 μ l binding buffer containing 50 mM sodium
653	phosphate (pH 7.4), 300 mM NaCl, and 0.02% Tween 20, and Qbeads-NTA-Ni
654	(MagQu) were added. The mixture was incubated with tilt rotation for 30 min at
655	room temperature. The beads were washed 3 times with 1 ml binding buffer
656	containing 50 mM sodium phosphate (pH 7.4), 300 mM NaCl, and 0.02% Tween
657	20. Proteins bound to the beads were eluted in SDS sample buffer, resolved by
658	SDS-PAGE and analyzed by western blotting. The same method was employed to
659	analyze proteins from cell lysates interacting with His-tagged N protein or
660	His-tagged PABP in the presence or absence of RNase mix. Immunoprecipitation
661	assay with N antibody bound to the protein G-coated magnetic beads followed by
662	incubation with infected cell lysates was performed according to
663	the manufacturer's instructions (MagQu). Proteins bound to the beads were

 \leq

686

analyzed by immunoblotting with antibody against eIF4G. 664

665

666	Biotinylated RNA pull-down assays. To synthesize RNA labeled with biotin, the
667	DNA template containing the 65-nt poly(A) tail and 19 non-poly(A) tail nts or
668	only 19 non-poly(A) tail nts was used for in vitro transcription with T7
669	polymerase (Promega) in the presence of a biotin-UTP labeling NTP mixture
670	(Roche), as recommended by the manufacturer. After purification, biotinylated
671	RNA was incubated with cell lysates in TE buffer. After incubation at room
672	temperature for 30 min, a streptavidin suspension (MagQu) was added to the
673	mixture and incubated for 30 min at room temperature followed by three washes
674	with binding buffer. The protein-associated beads were boiled with SDS-PAGE
675	loading buffer for 5 min and analyzed by immunoblotting.
676	
676 677	In vitro and in vivo translation assays. Capped transcripts for in vitro
	<i>In vitro</i> and <i>in vivo</i> translation assays. Capped transcripts for <i>in vitro</i> translation were prepared using the T7 mMessage mMachine kit (Ambion),
677	
677 678	translation were prepared using the T7 mMessage mMachine kit (Ambion),
677 678 679	translation were prepared using the T7 mMessage mMachine kit (Ambion), according to the manufacturer's protocol. For the <i>in vitro</i> translation assay, 1 μ g
677 678 679 680	translation were prepared using the T7 mMessage mMachine kit (Ambion), according to the manufacturer's protocol. For the <i>in vitro</i> translation assay, 1 µg of capped transcript was added to a mixture containing 17.5 µl rabbit reticulocyte
677 678 679 680 681	translation were prepared using the T7 mMessage mMachine kit (Ambion), according to the manufacturer's protocol. For the <i>in vitro</i> translation assay, 1 µg of capped transcript was added to a mixture containing 17.5 µl rabbit reticulocyte lysate (RRL) (Promega), 20 U RNasin RNase inhibitor (Promega), 1 µl amino
 677 678 679 680 681 682 	translation were prepared using the T7 mMessage mMachine kit (Ambion), according to the manufacturer's protocol. For the <i>in vitro</i> translation assay, 1 μ g of capped transcript was added to a mixture containing 17.5 μ l rabbit reticulocyte lysate (RRL) (Promega), 20 U RNasin RNase inhibitor (Promega), 1 μ l amino acid mixture minus methionine and 20 μ Ci [³⁵ S]-methionine. After incubation at

Downloaded from http://jvi.asm.org/ on September 13, 2018 by guest

capped transcript was resolved on a formaldehyde-agarose gel and stained with

ethidium bromide, followed by band density quantitation using ImageJ software
(NIH, Bethesda, MD). For the effect of N protein on translation of DI-EGFP in
vivo, HEK-293T cells were independently transfected with 3 μ g of N protein or
the His-tagged β -actin transcript using Lipofectamine 2000 (Thermo
Fisher Scientific) according to the manufacturer's instruction. After 8 h of
transfection, HEK-293T cells were transfected with 3 μg of DI-EGFP. Cell
lysates were collected after 3, 8 and 16 h and equivalent amounts of cell lysates
were analyzed by immunoblotting. The amounts of translated products were
normalized with loading control GAPDH and the amounts of DI-EGFP RNA
quantified by RT-qPCR. For the effect of N protein on coronavirus translation in
vivo, HEK-293T cells were independently transfected with 3 μ g of N protein or
the His-tagged β -actin transcript. After 8 h of transfection, HEK-293T cells were
infected with BCoV. Cell lysates were collected at the time of postinfection as
indicated in Fig. 4F and equivalent amounts of cell lysates were analyzed by

687

688

689

690	the His-tagged β -actin transcript using Lipofectamine 2000 (Thermo
691	Fisher Scientific) according to the manufacturer's instruction. After 8 h of
692	transfection, HEK-293T cells were transfected with 3 μ g of DI-EGFP. Cell
693	lysates were collected after 3, 8 and 16 h and equivalent amounts of cell lysates
694	were analyzed by immunoblotting. The amounts of translated products were
695	normalized with loading control GAPDH and the amounts of DI-EGFP RNA
696	quantified by RT-qPCR. For the effect of N protein on coronavirus translation in
697	vivo, HEK-293T cells were independently transfected with 3 μ g of N protein or
698	the His-tagged β -actin transcript. After 8 h of transfection, HEK-293T cells were
699	infected with BCoV. Cell lysates were collected at the time of postinfection as
700	indicated in Fig. 4F and equivalent amounts of cell lysates were analyzed by
701	immunoblotting. The amounts of translated products were also normalized with
702	loading control GAPDH and the amounts of BCoV genomic RNA quantified by
703	RT-qPCR. For the effect of N protein on host protein synthesis, HEK-293T cells
704	were mock transfected or independently transfected with N protein or the
705	His- β -actin transcript. After 1 h, HEK-293T cells were incubated in medium in
706	the presence or absence of actinomycin D (Thermo Fisher Scientific) for 8 h and
707	incubated with methionine-free medium for 30 min followed by 20 μCi of
708	[³⁵ S]-methionine for 1 h. The cells were then collected and equivalent amounts of
709	cell lysates were analyzed by SDS-PAGE gel. The gel was exposed to X-ray film

Journal of Virology

 \leq

or Coomassie blue-stained followed by the quantification with ImageJ software
(NIH, Bethesda, MD). The amounts of [³⁵S]-methionine-labeled host proteins
were then normalized with the amounts of Coomassie blue-stained proteins and
GAPDH mRNA quantified by RT-qPCR.

714

715 Statistical analysis. Student's unpaired t test was used for statistical analysis of

the data using Prism 6.0 software (GraphPad Software, Inc.). The values in the

Downloaded from http://jvi.asm.org/ on September 13, 2018 by guest

517 study are presented as the mean \pm SD (n = 3); *p<0.05, **p<0.01 and

718 ***p<0.001.

719

720 ACKNOWLEDGEMENTS

721 We thank Dr. Wei-Li Hsu at National Chung Hsing University, Taiwan, for the 722 assistance of RNA-protein interaction experiment and Dr. Chih-Jung Kuo at National 723 Chung Hsing University, Taiwan, for the help of protein purification. We also would 724 like to dedicate the work to Dr. David A. Brian (1941-2014), University of Tennessee, 725 and thank him for many helpful discussions in the initial stage of the work. 726 727 REFERENCES 728 1. International Committee on Taxonomy of Viruses., King AMQ. 2012. Virus 729 taxonomy : classification and nomenclature of viruses : ninth report of the 730 International Committee on Taxonomy of Viruses. Academic Press, London ; 731 Waltham, MA. 732 2. Lee S, Lee C. 2014. Complete Genome Characterization of Korean Porcine

733Deltacoronavirus Strain KOR/KNU14-04/2014. Genome Announc 2.

Masters PS. 2006. The molecular biology of coronaviruses. Adv Virus Res
66:193-292.

736 4. Chen H, Gill A, Dove BK, Emmett SR, Kemp CF, Ritchie MA, Dee M,

737		Hiscox JA. 2005. Mass spectroscopic characterization of the coronavirus
738		infectious bronchitis virus nucleoprotein and elucidation of the role of
739		phosphorylation in RNA binding by using surface plasmon resonance. J Virol
740		79:1164-79.
741	5.	Nelson GW, Stohlman SA. 1993. Localization of the RNA-binding domain of
742		mouse hepatitis virus nucleocapsid protein. J Gen Virol 74 (Pt 9):1975-9.
743	6.	Cologna R, Spagnolo JF, Hogue BG. 2000. Identification of nucleocapsid
744		binding sites within coronavirus-defective genomes. Virology 277:235-249.
745	7.	Grossoehme NE, Li LC, Keane SC, Liu PH, Dann CE, Leibowitz JL, Giedroc
746		DP. 2009. Coronavirus N Protein N-Terminal Domain (NTD) Specifically
747		Binds the Transcriptional Regulatory Sequence (TRS) and Melts TRS-cTRS
748		RNA Duplexes. Journal of Molecular Biology 394:544-557.
749	8.	Verheije MH, Hagemeijer MC, Ulasli M, Reggiori F, Rottier PJM, Masters PS,
750		de Haan CAM. 2010. The Coronavirus Nucleocapsid Protein Is Dynamically
751		Associated with the Replication-Transcription Complexes. Journal of Virology
752		84:11575-11579.
753	9.	Hurst KR, Ye R, Goebel SJ, Jayaraman P, Masters PS. 2010. An Interaction
754		between the Nucleocapsid Protein and a Component of the
755		Replicase-Transcriptase Complex Is Crucial for the Infectivity of Coronavirus
756		Genomic RNA. Journal of Virology 84:10276-10288.
757	10.	Hurst KR, Koetzner CA, Masters PS. 2013. Characterization of a Critical
758		Interaction between the Coronavirus Nucleocapsid Protein and Nonstructural
759		Protein 3 of the Viral Replicase-Transcriptase Complex. Journal of Virology
760		87:9159-9172.
761	11.	Denison MR, Spaan WJM, van der Meer Y, Gibson CA, Sims AC, Prentice E,
762		Lu XT. 1999. The putative helicase of the coronavirus mouse hepatitis virus is
763		processed from the replicase gene polyprotein and localizes in complexes that
764		are active in viral RNA synthesis. Journal of Virology 73:6862-6871.
765	12.	Sims AC, Ostermann J, Denison MR. 2000. Mouse hepatitis virus replicase
766		proteins associate with two distinct populations of intracellular membranes.
767		Journal of Virology 74:5647-5654.
768	13.	Stertz S, Reichelt M, Spiegel M, Kuri T, Martinez-Sobrido L, Garcia-Sastre A,
769		Weber F, Kochs G. 2007. The intracellular sites of early replication and
770		budding of SARS-coronavirus. Virology 361:304-315.
771	14.	van der Meer Y, Snijder EJ, Dobbe JC, Schleich S, Denison MR, Spaan WJM,
772		Locker JK. 1999. Localization of mouse hepatitis virus nonstructural proteins
773		and RNA synthesis indicates a role for late endosomes in viral replication.
774		Journal of Virology 73:7641-7657.

Σ

30

775	15.	Chang RY, Brian DA. 1996. cis requirement for N-specific protein sequence in
776		bovine coronavirus defective interfering RNA replication. Journal of Virology
777		70:2201-2207.
778	16.	Yount B, Denison MR, Weiss SR, Baric RS. 2002. Systematic assembly of a
779		full-length infectious cDNA of mouse hepatitis virus strain A59. Journal of
780		Virology 76:11065-11078.
781	17.	Almazan F, Galan C, Enjuanes L. 2004. The nucleoprotein is required for
782		efficient coronavirus genome replication. J Virol 78:12683-8.
783	18.	Schelle B, Karl N, Ludewig B, Siddell SG, Thiel V. 2005. Selective replication
784		of coronavirus genomes that express nucleocapsid protein. J Virol 79:6620-30.
785	19.	Wu CH, Chen PJ, Yeh SH. 2014. Nucleocapsid phosphorylation and RNA
786		helicase DDX1 recruitment enables coronavirus transition from discontinuous
787		to continuous transcription. Cell Host Microbe 16:462-72.
788	20.	Brockway SM, Clay CT, Lu XT, Denison MR. 2003. Characterization of the
789		expression, intracellular localization, and replication complex association of
790		the putative mouse hepatitis virus RNA-dependent RNA polymerase. Journal
791		of Virology 77:10515-10527.
792	21.	Miknis ZJ, Donaldson EF, Umland TC, Rimmer RA, Baric RS, Schultz LW.
793		2009. Severe Acute Respiratory Syndrome Coronavirus nsp9 Dimerization Is
794		Essential for Efficient Viral Growth. Journal of Virology 83:3007-3018.
795	22.	Zust R, Miller TB, Goebel SJ, Thiel V, Masters PS. 2008. Genetic interactions
796		between an essential 3 ' cis-acting RNA pseudoknot, replicase gene products,
797		and the extreme 3 ' end of the mouse coronavirus genome. Journal of Virology
798		82:1214-1228.
799	23.	Deo RC, Bonanno JB, Sonenberg N, Burley SK. 1999. Recognition of
800		polyadenylate RNA by the poly(A)-binding protein. Cell 98:835-45.
801	24.	Gorgoni B, Gray NK. 2004. The roles of cytoplasmic poly(A)-binding proteins
802		in regulating gene expression: a developmental perspective. Brief Funct
803		Genomic Proteomic 3:125-41.
804	25.	Gingras AC, Raught B, Sonenberg N. 1999. eIF4 initiation factors: effectors of
805		mRNA recruitment to ribosomes and regulators of translation. Annu Rev
806		Biochem 68:913-63.
807	26.	Merrick WC. 2004. Cap-dependent and cap-independent translation in
808		eukaryotic systems. Gene 332:1-11.
809	27.	Gamarnik AV, Andino R. 1998. Switch from translation to RNA replication in
810		a positive-stranded RNA virus. Genes Dev 12:2293-304.
811	28.	Barton DJ, Morasco BJ, Flanegan JB. 1999. Translating ribosomes inhibit
812		poliovirus negative-strand RNA synthesis. J Virol 73:10104-12.

813	29.	Yu IM, Gustafson CLT, Diao JB, Burgner JW, Li ZH, Zhang JQ, Chen J. 2005.
814		Recombinant severe acute respiratory syndrome (SARS) coronavirus
815		nucleocapsid protein forms a dimer through its c-terminal domain. Journal of
816		Biological Chemistry 280:23280-23286.
817	30.	Lo YS, Lin SY, Wang SM, Wang CT, Chiu YL, Huang TH, Hou MH. 2013.
818		Oligomerization of the carboxyl terminal domain of the human coronavirus
819		229E nucleocapsid protein. Febs Letters 587:120-127.
820	31.	Kuhn U, Pieler T. 1996. Xenopus poly(A) binding protein: Functional domains
821		in RNA binding and protein-protein interaction. Journal of Molecular Biology
822		256:20-30.
823	32.	Knoops K, Kikkert M, van den Worm SHE, Zevenhoven-Dobbe JC, van der
824		Meer Y, Koster AJ, Mommaas AM, Snijder EJ. 2008. SARS-coronavirus
825		replication is supported by a reticulovesicular network of modified
826		endoplasmic reticulum. Plos Biology 6:1957-1974.
827	33.	Brown CG, Nixon KS, Senanayake SD, Brian DA. 2007. An RNA stem-loop
828		within the bovine coronavirus nsp1 coding region is a cis-acting element in
829		defective interfering RNA replication. J Virol 81:7716-24.
830	34.	Chang RY, Hofmann MA, Sethna PB, Brian DA. 1994. A cis-acting function
831		for the coronavirus leader in defective interfering RNA replication. J Virol
832		68:8223-31.
833	35.	Raman S, Brian DA. 2005. Stem-loop IV in the 5' untranslated region is a
834		cis-acting element in bovine coronavirus defective interfering RNA replication.
835		J Virol 79:12434-46.
836	36.	Spagnolo JF, Hogue BG. 2000. Host protein interactions with the 3' end of
837		bovine coronavirus RNA and the requirement of the poly(A) tail for
838		coronavirus defective genome replication. J Virol 74:5053-65.
839	37.	Wu HY, Brian DA. 2007. 5'-proximal hot spot for an inducible
840		positive-to-negative-strand template switch by coronavirus RNA-dependent
841		RNA polymerase. J Virol 81:3206-15.
842	38.	Soto Rifo R, Ricci EP, Decimo D, Moncorge O, Ohlmann T. 2007. Back to
843		basics: the untreated rabbit reticulocyte lysate as a competitive system to
844		recapitulate cap/poly(A) synergy and the selective advantage of IRES-driven
845		translation. Nucleic Acids Research 35.
846	39.	Hong KY, Lee SH, Gu S, Kim E, An S, Kwon J, Lee JB, Jang SK. 2017. The
847		bent conformation of poly(A)-binding protein induced by RNA-binding is
848		required for its translational activation function. Rna Biology 14:370-377.
849	40.	Gross JD, Moerke NJ, von der Haar T, Lugovskoy AA, Sachs AB, McCarthy
850		JE, Wagner G. 2003. Ribosome loading onto the mRNA cap is driven by

851		conformational coupling between eIF4G and eIF4E. Cell 115:739-50.
852	41.	Prevot D, Darlix JL, Ohlmann T. 2003. Conducting the initiation of protein
853		synthesis: the role of eIF4G. Biol Cell 95:141-56.
854	42.	Papadopoulos E, Jenni S, Kabha E, Takrouri KJ, Yi T, Salvi N, Luna RE,
855		Gavathiotis E, Mahalingam P, Arthanari H, Rodriguez-Mias R,
856		Yefidoff-Freedman R, Aktas BH, Chorev M, Halperin JA, Wagner G. 2014.
857		Structure of the eukaryotic translation initiation factor eIF4E in complex with
858		4EGI-1 reveals an allosteric mechanism for dissociating eIF4G. Proc Natl
859		Acad Sci U S A 111:E3187-95.
860	43.	Gingras AC, Raught B, Gygi SP, Niedzwiecka A, Miron M, Burley SK,
861		Polakiewicz RD, Wyslouch-Cieszynska A, Aebersold R, Sonenberg N. 2001.
862		Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev
863		15:2852-64.
864	44.	Wu HY, Brian DA. 2010. Subgenomic messenger RNA amplification in
865		coronaviruses. Proc Natl Acad Sci U S A 107:12257-62.
866	45.	Madhugiri R, Fricke M, Marz M, Ziebuhr J. 2016. Coronavirus cis-Acting
867		RNA Elements. Advances in Virus Research, Vol 96: Coronaviruses
868		96:127-163.
869	46.	Wu HY, Ke TY, Liao WY, Chang NY. 2013. Regulation of Coronaviral Poly(A)
870		Tail Length during Infection. PLoS One 8:e70548.
871	47.	Hofmann MA, Brian DA. 1991. The 5' End of Coronavirus Minus-Strand
872		Rnas Contains a Short Poly(U) Tract. Journal of Virology 65:6331-6333.
873	48.	Bost AG, Prentice E, Denison MR. 2001. Mouse hepatitis virus replicase
874		protein complexes are translocated to sites of M protein accumulation in the
875		ERGIC at late times of infection. Virology 285:21-29.
876	49.	Lerner RS, Nicchitta CV. 2006. mRNA translation is compartmentalized to the
877		endoplasmic reticulum following physiological inhibition of cap-dependent
878		translation. Rna-a Publication of the Rna Society 12:775-789.
879	50.	King B, Brian DA. 1982. Bovine coronavirus structural proteins. J Virol
880		42:700-7.
881	51.	Lapps W, Hogue BG, Brian DA. 1987. Sequence analysis of the bovine
882		coronavirus nucleocapsid and matrix protein genes. Virology 157:47-57.
883		
884	FIG	URE LEGENDS

885 Fig. 1. Coronavirus N protein binds to poly(A) tail with high affinity. (A)

886 Schematic diagram showing the position of the poly(A) tail in the coronavirus

887	genome. (B) E. coli-expressed coronavirus N protein (~65 kDa) stained with
888	Coomassie blue (left panel) or analyzed by immunoblotting (right panel). (C) EMSA
889	showing the binding specificity of the 65-nt poly(A) tail with N protein. Unlabeled
890	competitor was at 1-, 10- and 100-fold excess and non-specific yeast tRNA (0.1
891	mg/mL) were also performed. (D) and (E) Upper panel: EMSA showing binding
892	experiments using a fixed concentration of ³² P-labeled 65-nt poly(A) tail with
893	increasing amounts (0, 14, 71, 143, 286, 533 nM) of N protein (D) or PABP (E).
894	Complexes 1-4 in (D) were predicted to consist of 1-4 N proteins, respectively,
895	and ³² P-labeled 65-nt poly(A) tail, while complexes 1-4 in (E) were predicted to
896	consist of 1-4 PABPs, respectively, and ³² P-labeled 65-nt poly(A) tail. Lower panel: a
897	plot of a fraction of bound RNA against the protein concentration is presented for the
898	gel in the upper panel and fits the Hill equation for K_d determination. (F) RNA probes
899	used for determination of the binding affinity with N protein and PABP. (G) The K_{d}
900	value of RNA probes illustrated in (F) with N protein and PABP. Values in (D), (E)
901	and (G) represent the mean \pm SD (n=3) of three independent experiments.
902	
903	Fig. 2. N protein competes with PABP for binding to the poly(A) tail. (A) Upper
904	panel: <i>in vitro</i> analysis for preferential binding of the ³² P-labeled 65-nt poly(A) tail in
905	an environment containing various molar ratios of N protein to PABP by EMSA (lanes
906	2-14). Lane 1: ³² P-labeled RNA only. Gels were spliced for labeling purposes. Lower
907	panel: the relative binding percentage of N protein and PABP with the poly(A) tail
908	was determined according to the results shown in the upper panel. (B) Identification
909	of the binding of PABP and N protein with poly(A) tail in vivo. The ³² P-labeled 65-nt
910	poly(A) tail was transfected into cells followed by UV cross-linking and
911	immunoprecipitation using an anti-PABP (left panel) or anti-N protein (right panel)

912 antibody. The resulting products were analyzed by SDS-PAGE and autoradiographed.

913 Values in (A) represent the mean±SD (n=3) of three independent experiments.

914

915	Fig. 3. Molar ratio of N protein to PABP in subcellular fractions during infection.
916	(A-B) Upper panel: N protein and PABP immunobloting analysis for the cytosol (A)
917	or membrane (B). Middle and lower panel: molar ratio of N protein to PABP and
918	relative percentage between N protein and PABP, respectively. The amounts of N
919	protein and PABP were measured as follows. Different known concentrations of N
920	protein and PABP were identified by immunobloting using antibodies against both N
921	protein and PABP. The signals were scanned densitometrically and then plotted
922	against the concentration to obtain a standard curve for the quantitation of N protein
923	and PABP shown in upper panel. Values in (A) and (B) represent the mean \pm SD (n=3)
924	of three independent experiments. hpi, hour postinfection.
925	
926	Fig. 4. Translation inhibition of coronaviral RNA by N protein. (A) Diagram of
927	the BCoV genome, BCoV DI RNA and its derivative DI-EGFP. DI-EGFP was
928	employed for the following translation analyses. (B) Left panel: in vitro-synthesized
929	fusion protein (top) from 1 μ g of input DI-EGFP RNA transcript with the 65-nt
930	poly(A) tail (Ipt. DI.) (middle), which was preincubated first with 0, 2 and 4 μM of N
931	protein (bottom) and then subjected to in vitro translation in RRL. Right panel:
932	relative levels of in vitro-synthesized DI-EGFP fusion protein. The values shown are
933	relative to the amount of synthesis in the absence of N protein (i.e., 0 μM of N
934	protein). (C) Left panel: in vitro-synthesized fusion protein (top) from 1 µg of input
935	poly(A) tail-deficient DI-EGFP RNA transcript (Ipt. DI.) (middle), which was
936	preincubated with 0, 2 and 4 μM of N protein (bottom) and then subjected to in vitro
937	translation in RRL. Right panel: relative levels of in vitro-synthesized DI-EGFP
938	fusion protein. The values shown are relative to the amount of synthesis in the

Downloaded from http://jvi.asm.org/ on September 13, 2018 by guest

939

940	experimental procedures to determine the effect of N protein on the translation
941	efficiency of DI-EGFP (with 65-nt poly(A) tail) in vivo. Right panel: immunoblotting
942	showing the synthesis of the fusion protein from DI-EGFP in the presence of N
943	protein or His- β -actin at different times posttransfection. The levels of DI-EGFP RNA
944	and 18S rRNA were similar between the groups at the same time point as quantified
945	by RT-qPCR. (E) Relative levels of <i>in vivo</i> fusion protein synthesis based on the
946	results of the right panel in (D). The values shown are relative to the amount of
947	synthesis in the presence of His- β -actin at each time point. (F) Left panel: diagram
948	showing the experimental procedures to determine the effect of N protein on the
949	translation efficiency of BCoV nsp1 in vivo. Right panel: immunoblotting showing the
950	synthesis of BCoV nsp1 in the presence of N protein or His- β -actin at different times
951	posttransfection. The levels of viral genome (BCoV gRNA) and 18S rRNA were
952	similar between the groups at the same time point as quantified by RT-qPCR. (G)
953	Relative levels of BCoV nsp1 in vivo based on the results of the right panel in (F). The
954	values shown are relative to the amount of synthesis in the presence of His- β -actin at
955	each time point. Values in (B), (C), (E) and (G) represent the mean±SD (n=3) of three
956	independent experiments. *p<0.05, **p<0.01, ***p<0.001 by an unpaired Student t
957	test. RRL, rabbit reticulocyte lysate; Ipt. DI., input DI-EGFP RNA transcript; pt,
958	posttransfection; N, N protein; β, His-β-actin.
959	
960	Fig. 5. Translation inhibition of cellular mRNA by N protein. (A) Left panel: in
961	vitro-synthesized β -actin (top) from 1 μ g of input β -actin RNA transcript with the
962	65-nt poly(A) tail (Ipt. β -act.) (middle), which was preincubated first with 0, 2 and 4

absence of N protein (i.e., 0 µM of N protein). (D) Left panel: diagram showing the

- 963 µM of N protein (bottom) and then subjected to in vitro translation in RRL. Right
- 964 panel: relative levels of *in vitro*-synthesized β-actin. The values shown are relative to

M

	>	5
	5	3
	2	5
-	1	
	C	2
	1	
5	5	
1	1	
	÷	ŝ
	¢	2
	τ)

965	the amount of synthesis in the absence of N protein (i.e., 0 μM of N protein). (B) Left
966	panel: in vitro-synthesized β -actin (top) from 1 μ g of the input poly(A) tail-deficient
967	β -actin RNA transcript (Ipt. β -act.) (middle), which was preincubated with 0, 2 and 4
968	μM of N protein (bottom) and then subjected to <i>in vitro</i> translation in RRL. Right
969	panel: relative levels of <i>in vitro</i> -synthesized β -actin. The values shown are relative to
970	the amount of synthesis in the absence of N protein (i.e., 0 μ M of N protein). (C)
971	Effect of expressed N protein on translation of host mRNAs in vivo. After mock
972	transfection or independent transfection of His- β -actin and N protein RNA transcripts
973	into HEK-293T cells in the absence or presence of actinomycin D followed by
974	[³⁵ S]-methionine, equal amounts of cell lysate were analyzed by SDS-PAGE, which
975	was exposed to x-ray film (left panel) or stained with Coomassie blue (right panel).
976	The levels of host mRNA (represented by GAPDH mRNA) and 18S rRNA shown in
977	the left panel were quantified by RT-qPCR. (D) Relative levels of host protein
978	synthesis based on the results of the left panel of (C). The values shown are relative to
979	the amount of synthesis in the absence of transfection (i.e., mock transfection). Values
980	in (A), (B) and (D) represent the mean±SD (n=3) of three independent experiments.
981	***p<0.001 by an unpaired Student t test. RRL, rabbit reticulocyte lysate; Ipt. β-act.,
982	input β -actin RNA transcript.
983	
984	Fig. 6. Interactions between poly(A) tail, N protein and PABP. (A) Interactions of
985	the poly(A) tail with N protein and/or PABP in mock-infected or infected cell lysates.

986 Proteins from mock-infected or infected cell lysates interacting with a biotinylated

- 987 poly(A) tail were pulled down by streptavidin followed by immunoblotting using
- 988 $\hfill antibodies against PABP and N protein. The upper and lower asterisks in lanes 1, 9$
- 989 (from streptavidin pull-down samples of infected cell lysates) and 3 (from infected
- 990 cell lysates) indicate cellular PABP and coronaviral N protein, respectively; the

991

-			
-			
		2	
		2	
		2	
-			

Journal of Virology

992	asterisks in lanes 5 and 6 indicate E. coli-expressed N protein and PABP, respectively;
993	the asterisk in lane 7 indicates untagged N protein; the asterisk in lane 10 (from
994	streptavidin pull-down samples of mock-infected cell lysates) indicates cellular PABP.
995	(B) His-tagged PABP (left panel) and untagged N protein (right panel) were expressed
996	in E. coli, analyzed by SDS-PAGE and stained with Coomassie blue. (C) Pull-down
997	assay to determine direct binding between PABP and N protein. His-tagged PABP was
998	bound to Ni-NTA beads and mixed with untagged N protein. The pull-down materials
999	were detected by immunoblotting using an antibody against N protein (left panel) or
1000	PABP (right panel). (D) Pull-down assay using His-tagged N protein (left panel) or
1001	His-tagged PABP (right panel) to assess its interaction with PABP or N protein,
1002	respectively, in infected cell lysates. Bound proteins from lysates were analyzed by
1003	immunoblotting with an antibody against PABP (left panel) or N protein (right panel).
1004	The arrow indicates the position of PABP (left panel) and N protein (right panel). PD,
1005	pull down; IB, immunoblotting.
1006	
1007	Fig. 7. Interactions of $poly(A)$ tail and N protein with cellular eIF4G and
1008	coronavirus nsp9. (A) The poly(A) tail interacts with cellular eIF4G and coronavirus
1009	nsp9. Infected cell lysates were incubated with the biotinylated poly(A) tail and pulled
1010	down by streptavidin followed by immunoblotting with antibodies against eIF4G (left
1011	panel) and nsp9 (right panel). Coronavirus nsp9 (12 kDa) and cellular eIF4G (220
1012	kDa), indicated by an arrow in lane 1 of the left and right panels, respectively, were
1013	identified. (B) Ni-NTA beads pull-down assay using the His-tagged N protein
1014	followed by immunoblotting with an antibody against eIF4G to determine interaction

asterisk in lane 4 (from mock-infected cell lysates) indicates cellular PABP; the

1015 between N protein and eIF4G. The arrow indicates the position of 220-kDa eIF4G. (C)

1016 Protein G beads pull-down assay followed by immunoblotting with an antibody

1017	against eIF4G to determine interaction between N protein and eIF4G. The arrow
1018	indicates the position of 220-kDa eIF4G. (D) Ni-NTA beads pull-down assay using
1019	the His-tagged N protein followed by immunoblotting with an antibody against nsp9
1020	to determine interaction between N protein and nsp9. The arrow indicates the position
1021	of 12-kDa nsp9. PD, pull down; IB, immunoblotting.
1022	
1023	Fig. 8. Interactions of the poly(A) tail and N protein with cellular eIF4E. (A)
1024	Interaction of the poly(A) tail-bound N protein with eIF4G and eIF4E in
1025	mock-infected cells. Lanes 1-6 in panels 1 and 2: A fixed concentration (25 nM) of
1026	biotinylated RNA consisting of 19 non-poly(A) nts followed by the 65-nt poly(A) tail
1027	was first incubated with increasing amounts (2, 4, 6 μM) of PABP (lanes 1-3) or N
1028	protein (lanes 4-6) and then with mock-infected cell lysates followed by a streptavidin
1029	pull-down assay and immunoblotting. Values in panels 1 and 2 represent the mean
1030	percentage of three independent experiments but SD is not shown. Lanes 1-6 in panels
1031	3 and 4: Detection of input PABP (panel 3) and N protein (panel 4) bound by
1032	biotinylated RNA. A fixed concentration (25 nM) of biotinylated RNA consisting of
1033	19 non-poly(A) nts followed by the 65-nt poly(A) tail was incubated with increased
1034	amounts (2, 4, 6 μM) of PABP (lanes 1-3) or N protein (lanes 4-6) followed by a
1035	streptavidin pull-down assay and immunoblotting. Lanes 1-6 in panels 5 and 6:
1036	Detection of eIF4G and eIF4E by immunoblotting from uninfected cell lysates used
1037	for the aforementioned streptavidin pull-down assay. Lane 7 in panels 1 and 2: The N
1038	protein was incubated with mock-infected cell lysates followed by an Ni-NTA bead
1039	pull-down assay and immunoblotting. Lane 8 in panels 1 and 2: Biotinylated RNA
1040	consisting of 19 non-poly(A) nts followed by the 65-nt poly(A) tail was incubated
1041	with mock-infected cell lysates followed by a streptavidin pull-down assay and
1042	immunoblotting. Lanes 7-8 in panels 5 and 6: Detection of eIF4G and eIF4E from

Journal of Virology

 \leq

1043	mock-infected cell lysates used for the aforementioned Ni-NTA bead (lane 7) or
1044	streptavidin (lane 8) pull-down assay by immunoblotting. (B) Interaction of the
1045	poly(A) tail with eIF4G and eIF4E in BCoV-infected cells. Panels 1-4: Lanes 3-6,
1046	biotinylated RNA consisting of 19 non-poly(A) nts followed by the 65-nt poly(A) tail
1047	was incubated with BCoV-infected cell lysates collected at 0, 8, 16 and 24 hpi
1048	followed by a streptavidin pull-down assay and immunoblotting. Lane 1, uninfected
1049	cell lysates only; Lane 2, infected cell lysates only. Lanes 7 and 8, the streptavidin
1050	beads were incubated with infected (lane 7) or uninfected (lane 8) cell lysates
1051	followed by a streptavidin pull-down assay and immunoblotting. Values in panels 1
1052	and 2 represent the mean percentage of three independent experiments but SD is not
1053	shown. Panels 5 and 8: Detection of N protein, nsp9, eIF4G and eIF4E by
1054	immunoblotting from uninfected or infected cell lysates used for the aforementioned
1055	streptavidin pull-down assay. PD, pull down; IB, immunoblotting. hpi, hour
1056	postinfection.
1057	
1058	Fig. 9. Proposed model for the regulation of gene expression in coronaviruses. (A)
1059	The poly(A) tail of the coronavirus genomic RNA binds to PABP followed by eIF4G
1060	and eIF4E, leading to translation. (B) N protein can bind to the poly(A) tail of
1061	coronavirus genomic RNA and interact with eIF4G but not with eIF4E, leading to
1062	translation inhibition.

Downloaded from http://jvi.asm.org/ on September 13, 2018 by guest

1063

 \leq

Journal of Virology

Journal of Virology

Α

D

F

55nts+65A

55nts+45A

55nts+25A

BCoV-65nts

actin-65nts

55nts

65A

25A

ORF 1a

BCoV genome (32 kb)

S

[N] nM

N+ ³²P-RNA

free RNA

fraction bound

1.0

0.8

0.6

0.4

0.2·

0.0

-<u>Б</u>_м_

AAAAAA(65) + N protein

K_d=28.4±3.9 (nM)

100 200 300 400 500 [N] nM

55 nts

55 nts

55 nts

55 nts

65 nts

65 nts

AAAAAA(65)

AAAAAA(65)

AAAA(45)

AA(25)

AA(25)

Ν

An

AAAAAAAA..(65)

3'-poly(A) tail

В

kDa

250

130

100-

70

55

40-

35

complex 4

complex 3

complex 2

complex 1

G 200

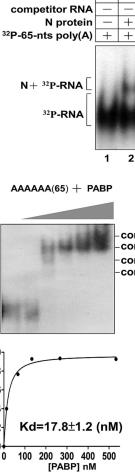
Kd (nM)

150

100

50

0.


М Ν IB

Ν

С

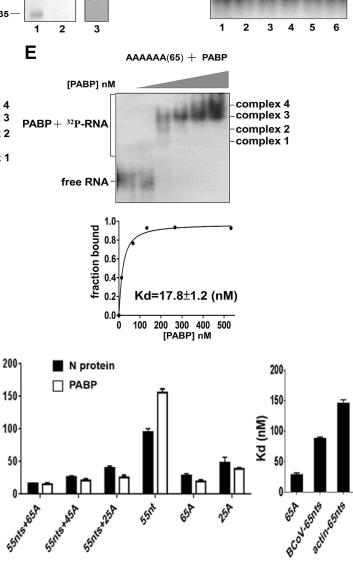
tRNA

³²P-RNA

AAAAAA(65) + N protein

++

+++

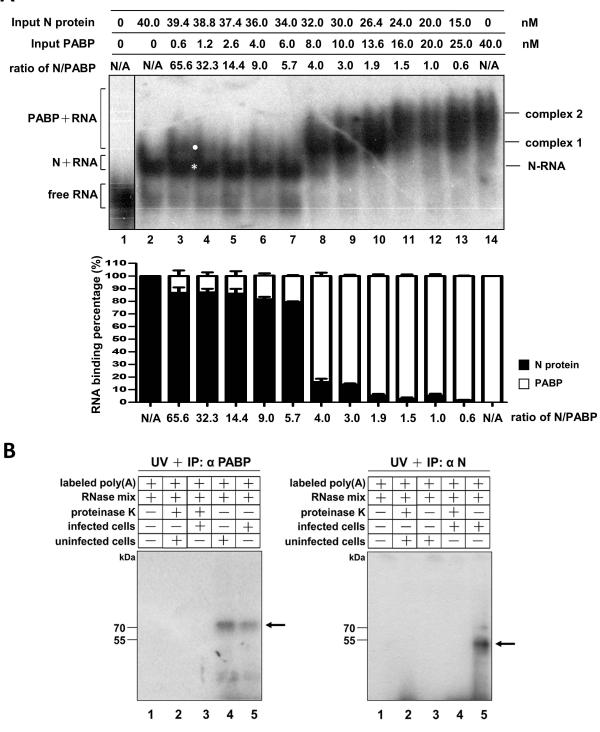

++++

competitor RNA

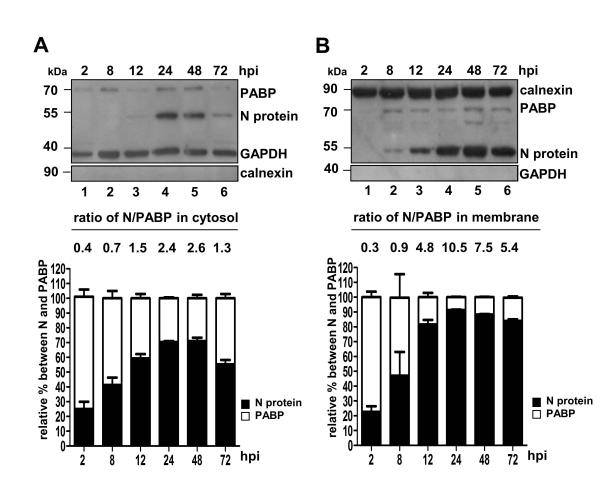
+

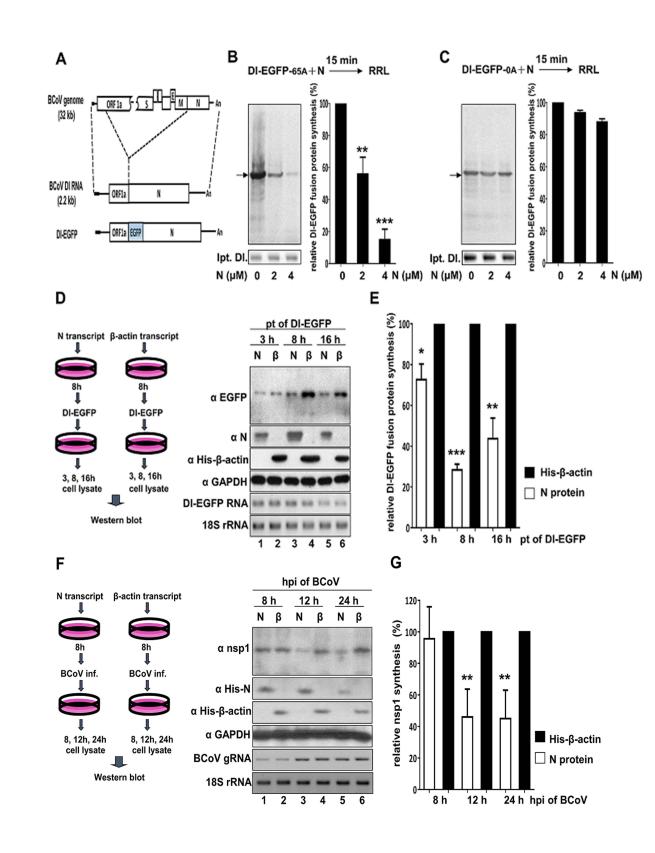
+

+

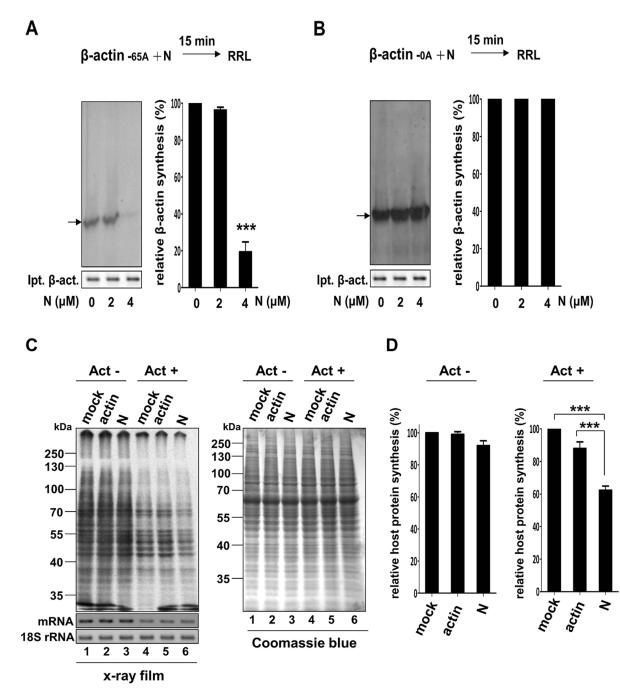


 \leq


Journal of Virology



Downloaded from http://jvi.asm.org/ on September 13, 2018 by guest

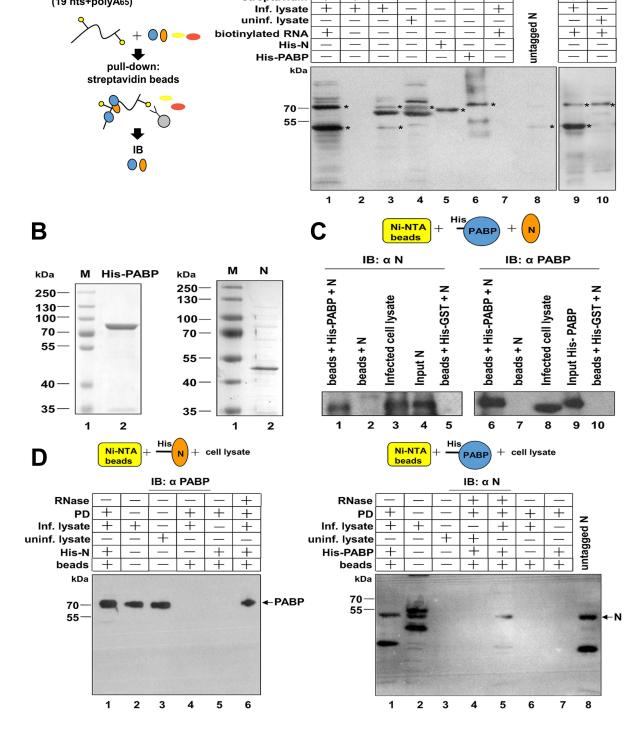


Downloaded from http://jvi.asm.org/ on September 13, 2018 by guest

Fig. 4

 \sum

Journal of Virology



Α

biotinylated RNA

(19 nts+polyA65)

cell lysate

PD

streptavidin

+

+

+

+

+

IB: α PABP and N

+

+

+

+

+

 \sum

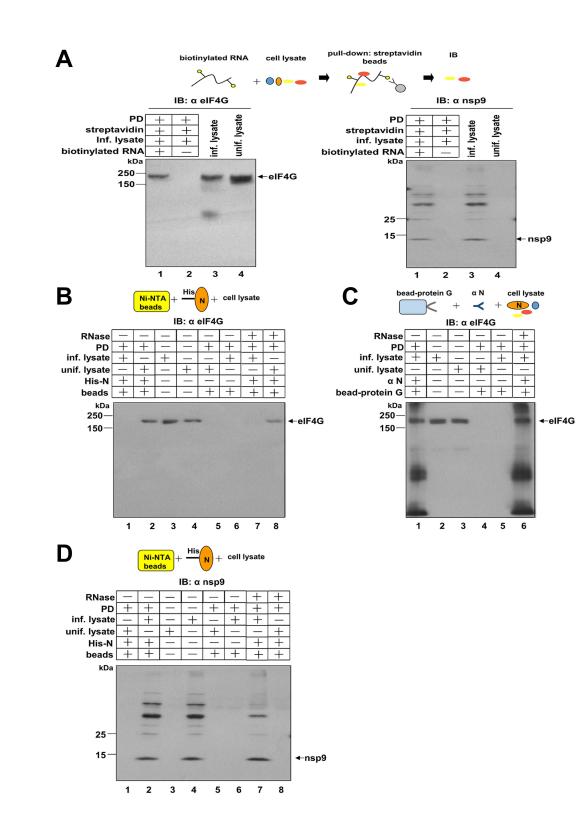
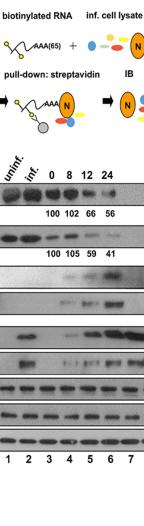



Fig. 7

hpi

1

2

3

4

5

6

7

8

9

8

≞

PD+IB

 \bigcirc

uning Ĵ.

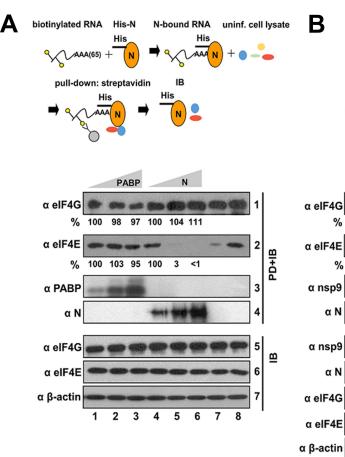
%

%

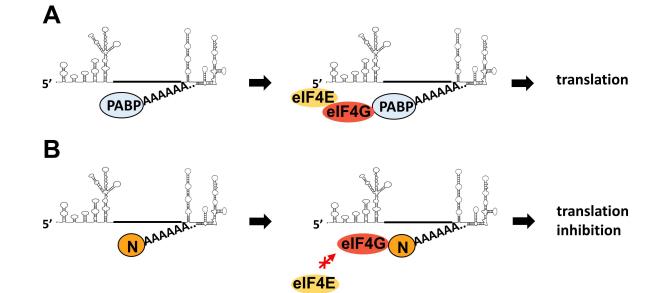
α nsp9

α nsp9

α elF4E


2

1


αΝ

αN

Β

