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respiratory syndrome coronavirus
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Abstract

Middle East respiratory syndrome coronavirus has been persistent in the Middle East region since 2012. Abundant

scientific evidence showed that dromedary camels are the primary host of the virus. Majority of human cases (i.e., 75% or

88%) are due to human-to-human transmission, while the others are due to camel-to-human transmission. Mathematical

modeling of Middle East respiratory syndrome coronavirus camel-to-camel transmission was lacking. Using the plug-

and-play likelihood-based inference framework, we fitted a susceptible-exposed-infectious-recovered-susceptible model

of camels to the reported human cases with a constant proportion of human cases from camels (i.e., either 25% or 12%).

We considered two scenarios: (i) the transmission rate among camels is time-varying with a constant spill-over rate from

camels to human or (ii) the spill-over rate is time-varying with a constant transmission rate among camels. Our estimated

loss-of-immunity rate and prevalence of Middle East respiratory syndrome coronavirus infections among camels largely

matched with previous serological or virological studies, shedding light on this issue. We recommended including

dromedary camels in animal surveillance and control of Middle East respiratory syndrome coronavirus in Saudi

Arabia which could help reduce their sporadic introductions to humans.
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1 Introduction

Since the first human case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection, identified in
Jeddah, Saudi Arabia in September 2012, 2040 laboratory-confirmed cases, including 712 deaths, have been
reported in 27 countries as of 12 July 2017.1 The virus circulated in the Arabian Peninsula, particularly in
Saudi Arabia. In May 2015, the Republic of Korea reported the largest outbreak outside the Middle East region.

Many external factors could possibly impact the transmission of MERS-CoV among camels and human.
In particular, Hajj and Umrah are two annual religious festivals that attract more than 10 million pilgrims
from 184 countries to Saudi Arabia. Hajj is considered a major pilgrimage and involves mass gathering that
lasts for six days during the 12th month of the Islamic calendar each year, whereas Umrah, a minor pilgrimage
which could be highly individualized, is made mostly during Ramadan, a period of 29 to 30 days during the 9th
month of the Islamic calendar.2 Several studies have demonstrated that these mass gatherings, which attracted
pilgrims worldwide, were potential for transmission of infectious diseases.3 Lessler et al.4 estimated the potential
incidence of MERS-CoV among pilgrims attending Hajj in Saudi Arabia in 2014 to be 6.2, 11.7, and 47.6 pilgrims
under the expected, high, and very high incidence scenarios, respectively. Furthermore, Poletto et al.5 suggested
that population movement and human mixing, which were common in Hajj and Umrah, played an important role
in MERS-CoV transmission. Besides population movement and human mixing during religious events, camel
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racing, closing and reopening of camel markets, as well as climatic factors could impact on the transmission of
MERS-CoV among camels, spill-over from camels to human and among human.

Reproduction number (R0), defined as the average number of cases generated by a typical case, quantifies the
intensity of transmission.6 Past research showed substantial variations on the estimate of reproduction number on
MERS-CoV epidemic, depending on a number of factors: the specific location (i.e., Middle East region or
Republic of Korea), the time period considered, mode of transmission, and the choice of mathematical
modeling techniques.5,7–11

Chowell et al.9 developed a dynamic transmission model that distinguished between the different routes of
MERS-CoV transmission. They found that zoonotic transmission was much more effective than human-to-human
transmission, with their R0 being 0.84 and 0.36, respectively. Breban et al.11 used Bayesian analysis to estimate the
pandemic risk of MERS-CoV. R0 generated for human-to-human transmission under the most pessimistic
scenario and the most optimistic scenario were 0.69 and 0.60, respectively. Their study also highlighted the
importance of reducing the rate of zoonotic introductions to the human populations. Poletto et al.5 used a
novel maximum likelihood approach to jointly estimate R0 and the rate of sporadic introduction of MERS-
CoV in the Middle East region. They found that R0 was 0.50 and the rate of sporadic introduction was 0.28
case per day. More recently, Poletto et al.10 used a stochastic modeling approach combined with the analysis of
imported cases out of the Middle East region. Their model, which assumed partial information on transmission
scenario, was a much better fit than the model that assumed complete information on transmission.
Their combined modeling approach was able to show that about 75% of the MERS-CoV cases were
human-to-human transmission. In other words, primary human cases that are acquired via camels or camel-
related products, accounted for 25% of all human cases. Cauchemez et al.12 developed a comprehensive
statistical framework to analyze the transmission patterns of MERS-CoV among human in Saudi Arabia
between January 2013 and July 2014. They found that the proportion of human cases from the reservoir was
12% (95% CI: 9%, 15%), and they also noted that the ratio could be 17% (95% CI: 13%, 20%) if only restricted
to passive surveillance cases only.12 Kucharski and Althaus7 modeled on MERS-CoV transmission in South
Korea. Their study showed substantial over-dispersion in transmission, which indicated there was a potential
for superspreading of MERS-CoV. Superspreading cases are primary cases which infect disproportionately more
secondary contacts than other primary cases of the same disease. Hsieh8 studied the South Korean MERS-CoV
outbreak using a Richard’s model and found that the turning point, which is the peak timing of an epidemic, took
place at 23 to 24 days after the onset of the index case. The estimated R0 ranged between 7.0 and 19.3. All of these
modeling studies on MERS-CoV had primarily focused on human cases.

In a review article by Zumla et al.,13 it was pointed out that camel-to-human transmission could
be due to indirect exposure, e.g., patients might be exposed to MERS-CoV virus via consumption of
unpasteurized camel milk, a practice which is not uncommon in Saudi Arabia. In a sero-prevalence study of
MERS-CoV by Muller et al.,14 the percentages of MERS-CoV-antibody positive in the general population,
camel shepherds, and slaughterhouse workers were found to be 0.15%, 2.3%, and 3.6%, respectively.
Sero-positive rates exceeding 74%, which indicates previous infections, were found among camels in Saudi
Arabia and its neighboring countries. The virus isolation rate was also high among camels, exceeding 7% but
they vary across localities and are higher among juvenile camels.15–20 Re-infections of MERS-CoV among camels
were also identified.21,22

In this work, we fit the weekly primary human cases of MERS-CoV with a susceptible-exposed-infectious-
recovered-susceptible (SEIRS) model for the dromedary camel population, with a constant proportion of primary
human cases from camels (i.e., either 25% or 12%). We considered two scenarios: (i) the transmission rate among
camels is time-varying while the spill-over rate is constant; (ii) the spill-over rate is time-varying while the
transmission rate is constant. Our aim is to find out whether simple epidemic models with largely biologically
plausible parameters can simulate the epidemics of MERS-CoV among camels. If yes, our objectives are to answer
the followings: (i) How prevalent is the MERS-CoV infection among camels? (ii) How fast does the immunity
decay among camels? (iii) Do these estimates match with those of earlier serological and virological studies?

2 Methods

2.1 Data

We obtained weekly MERS-CoV cases from the EMPRES-i Global Animal Disease Information System.23

Monthly percentages of MERS-CoV-infected camels from May 2014 to April 2015 in Saudi Arabia are
obtained from Sabir et al.24
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2.2 Mathematical Modeling

Our mathematical model is an SEIRS framework for camel-to-camel transmission. The model structure is depicted
in Figure 1. Here, S, E, I, and R represent the numbers of susceptible, exposed, infectious, and recovered, and C
represents the weekly laboratory-based human confirmations. The total population size of dromedary camels,
N ¼ Sþ Eþ Iþ R, is assumed to be constant at 270,00025,26 and the study period went from 1 January 2014 to 31
May 2016.

The maximum lifespan of dromedary camels in captivity could reach 28.4 years.27 A number of studies showed
that calves that are younger than two years old with primary infections were more likely play a stronger
epidemiological role in MERS-CoV transmission compared to older camels that are two to four years old.
This is because infected calves have frequent viral shedding and demonstrate a lower rate of seroconversion
than older camels.28–33 Furthermore, a more recent study by Sabir et al.24 found that the evolution of MERS-
CoV has led to diverse lineages; they suggested that dromedary camels hosted this recombination event. Thus, we
suspect the duration of immunity protection induced by MERS-CoV infection could last for many years.
The infectious period for camels was in days,30 and we assume a latent period of two days and an infectious
period of four days.

We focused on weekly human cases in Saudi Arabia from 1 January 2014 to 31 May 2016. In our model
(Figure 1), q is the spill-over rate between camel cases and primary human cases. We assume that the primary
human cases are 1/4 of all human cases in any week, and we consider this ratio to be 12% as shown in the
Supplementary Materials. Thus we convert the reported weekly overall human cases to primary human cases by
multiplying 1/4 and round all numbers up to the next integer. Thus, we assume each MERS-CoV camel case leads
to roughly 4� human cases (i.e., both primary and secondary cases). The assumption of 1/4 is due to the
observation that 25% of human cases are likely primary cases. A minor change on this primary case ratio (e.g.,
from 1/4 ! 1/2) will change the estimate from �! ~�, but this will keep their product roughly constant, i.e.,
4� ¼ 2 ~�. Also, it will have a minor impact on the overall fitting and other parameter estimates. However, if the
primary case ratio is too small, (e.g., 1/4 ! 1/10), the estimated primary human cases will become 1 for almost
every week due to data transformation, thus we will lose the temporal pattern in the original data. In that case, we
need to seriously consider modeling for the human-to-human transmission. In our data, the primary case ratio is
not too small, the temporal patterns are largely kept. Human-to-human transmission is limited to close contacts
within a hospital ward or a household setting,34 all of which justify our simple transformation.

The model is as follows

_S ¼ �Nþ �R� �ðtÞSI� �S

_E ¼ �ðtÞSI� �E� �E

_I ¼ �E� �I� �I

_R ¼ �I� �R� �R

ð1Þ

Figure 1. SEIRS model structure.

1970 Statistical Methods in Medical Research 27(7)



where �ðtÞ is the transmission rate, � are the natural death and birth rates, N is the population size of camels, and r
and c are rates at which infected camels change status from exposed to infectious or from infectious to recovered.
Finally, � is the rate at which recovered camels lose immunity protection due to multiple factors, such as evolution
of the virus,24,35 natural loss-of-immunity,24,35, imports of susceptible juvenile camels, and exports or consumption
of recovered adult camels.36 Susceptible camels could also be exported and consumed for meat. We assumed that
the replenishment of susceptible camels to be immediate, i.e., the export and consumption of susceptible camels
will cancel out with the import of them, and these terms will not appear in the model equations. We also assumed
that there is no export or consumption of infectious camels, which is acceptable if the prevalence is less than 10%
during the study period.

Thus, the model simulated weekly number of primary human cases due to spill-over are

Zi ¼

Z
week i

��Idt ð2Þ

where I is the number of MERS-CoV camel cases at any time. We denoted Ci as the observed number of primary
human cases in ith week, and we assume it follows Negative-Binomial (NB) distribution (R version 2.15.2).

Ci � NB mean ¼ Zi, variance ¼ Zið1þ �ZiÞð Þ ð3Þ

where s is an over-dispersion parameter which will be estimated. When s¼ 0, the NB distribution is reduced to
Poisson distribution.

The log likelihood function is

l ð	Þ ¼
Xn
i¼1

logf ðCijC1:i�1, 	Þ ð4Þ

where 	 is the set of unknown parameters and f ðCijC1:i�1, 	Þ are the conditional densities for Ci given C1:i�1, which
will be numerically calculated via Sequential Monte Carlo.37

We use Partially Observed Markov Process (POMP) iterated filtering method38–42 within a plug-and-play
likelihood-based inference framework37 to generate the maximum likelihood estimates for 	 (R Package ‘pomp’
is available in literature43). A tool for maximum likelihood inference on partially observed dynamical system is the
iterated filtering algorithm. For parameter space exploration, stochastic perturbations to the unknown parameters
are introduced. Sequential Monte Carlo, i.e., the particle filter, is applied to the extended model and this will result
in selection of parameter values that are more consistent with the data. If these procedures are well constructed,
then iterated filtering with successively diminished perturbations will result in the convergence of the maximum
likelihood estimate. This approach is non-trivial. It is described in more detail in the Supplementary Materials,
technical documentation of R package43 and Wikipedia.44 Infectious disease modeling studies such as Ebola,
cholera, malaria, influenza, pertussis, HIV, measles, and polio virus have used this method.44 The merits of this
package are fivefold: (i) Only model simulation is required to compute the likelihood, with only a few lines of C
programming codes that describes the model equations. (ii) It can be implemented in the R software package
which is freely available, and where C programming codes can be executed. (iii) Hidden state variables are
calculated and are available in the output. (iv) One can assume a parameter to be time-dependent (such as a
cubic-spline function of time) and then estimate the flexibility. Flexibility is reflected by the number of nodes, or
degrees of freedom, in a time-dependent cubic spline function. If the number of nodes is very large, then the
parameters represented by the spline function could change very rapidly over time, or vice versa. This is an
advancement compared to previous models where constant parameters (or a particular function, such as an
exponential function) were frequently assumed. (v) The POMP package can be run on high performance
workstation in a parallel or a serial manner, which makes large-scale modeling selection feasible. POMP is
described in more detail in Supplementary Material S1.

Bayesian information criterion (BIC)45 is used for assessing the performance of different models

BIC ¼ �2l ð	̂Þ þNp lnNd ð5Þ

where Nd denotes the number of data points and Np denotes the number of free parameters. We use BIC rather
than Akaike Information Criterion because the former generally penalizes free parameters more strongly.
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We studied the following modeling scenarios: (i) we assumed only transmission rate is time-dependent and the
flexibility is determined by BIC; (ii) we assumed only transmission rate is time-dependent without restriction on the
flexibility; and (iii) we assumed only the spill-over rate is time-dependent and the flexibility is determined by BIC.

3 Results

Figure 2 shows the spatio-temporal patterns of MERS-CoV overall human cases in Saudi Arabia and worldwide,
monthly percentages of MERS-CoV infectious camels in Saudi Arabia,24 noting Hajj and Ramadan periods.
The top panel shows the distribution of confirmed cases of MERS-CoV infection worldwide, which are mostly
concentrated in the Middle East, followed by the Republic of Korea, and have spread to 27 countries. The bottom
panel shows the temporal patterns of MERS-CoV human cases and percentages of MERS-CoV camels cases.
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Figure 2. Spatio-temporal patterns of MERS-CoV human cases and percentage of MERS-CoV camels. The top panel summarizes the

cumulative global cases from September 2012 to May 2016. The bottom panel shows the weekly confirmed cases of MERS-CoV

human cases worldwide (red lines with circles) and in Saudi Arabia only (black lines with diamonds). Bold black curve shows monthly

percentage of MERS-CoV infectious camels during May 2014 to April 2015. There were three waves in the MERS-CoV camels which

were followed by three waves in the weekly human MERS-CoV cases. We also showed the period of religious events, Hajj (light grey

vertical dash line) and Ramadan (shaded bars). The map was made with R programming language, and the country borders were

downloaded from Sandvik B., World Borders Dataset, http://thematicmapping.org (2009).
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Major MERS-CoV waves peaked in May 2014, February 2015, June 2015 (South Korea), August 2015, and
March 2016. Most of them occurred mainly in Saudi Arabia, except that the third wave occurred mainly in the
Republic of Korea. The percentage of MERS-CoV infectious camels showed three waves in a year (May 2014 to
April 2015) which were followed by three waves in the weekly human MERS-CoV confirmations.
This phenomenon suggests that the waves in the human cases could be driven by the epidemic waves of
infections among camels.

The transmission rate, b, can be affected by climatic factors, as well as closing and reopening of markets during
general holidays or religious festivals. Thus, we used a cubic spline to model the transmission rate. We uniformly
distributed n� nodes over the time period, where n� is to be estimated. The cubic spline function was a smooth
function that passed through the n� nodes. We compared models with different number of nodes and found the best
model which attained the smallest BIC. We fixed the following parameters within biologically reasonable ranges: the
lifespan of camels at 14 to 20 years, the latent period at 2 days, and the infectious period at 4 days. The results are
shown in Figure 3. Figure 3(a) shows the case of the life span ��1 of 14 years, while Figure 3(b) shows that of 20
years. The inset panels on the left show the profile of the model BIC as a function of n�. In both cases, the smallest
BIC was attained when n� is 10. Therefore, in the main panels, we display the model fitting results with n� is 10. The
inset panels on the right show the profile of Maximum Log-likelihood (MLL) as a function of the spill-over rate q. In
both simulations, the models were able to capture the four major epidemic waves out of six waves during the period.
We found that the duration of immunity is about 1 year in both cases, or more specifically, 0.86 year (Figure 3(a))
and 1.14 year (Figure 3(b)). We found that the spill-over rate was about 0.00053 (95% confidence interval (CI):
0.00042, 0.0028) and 0.00065 (95% CI: 0.00044, 0.00268), respectively, which corresponded to the prevalence of
MERS-CoV infection among camels to be as high as 9%. This largely matched with the observed prevalence of
11%.24 A smaller spill-over rate implies a higher prevalence. Through computing the models’ profile MLL as a
function of ��1, we estimated the 95% CI of the duration of immunity to be (0.34 year, 5.82 years) (Figure 3(a)) and
(0.35 year, 7.09 years) (Figure 3(b)). The estimated mean Rcamels

0 were 2.71 and 3.34.
The above results used standard model selection approaches to achieve the optimal flexibility in the

transmission rate. Recall that the transmission rate could be affected by climatic factors and camels-related
activities, thus the real flexibility in the transmission rate could be higher than our model estimate. If we
choose a large n�, such as 17 or 19, we could achieve improved fitting as shown in Figure 4. Figure 4(a) shows
the fitting results with n� ¼ 17 and Figure 4(b) shows that of n� ¼ 19. In the inset panel, we show the model’s
profile MLL as a function of ��1. The MLL estimates of ��1 are 0.62 year (95% CI: 0.27 year, 3.07 years) and

(a) (b)

Figure 3. Model simulations versus observed MERS-CoV spill-over cases. Thin black curve represents reported spill-over cases,

bold red curve represents model generated median of 1000 simulations, shaded regions represent the 95% range of simulations, and

blue curve (with circles) represents the transmission rate (in units of R0). Inset panels on the left show the profile of BIC as a function

of the number of nodes in the transmission rate. Inset panels on the right show the profile of MLL as a function of the spill-over rate q,

while fixing n� ¼ 10.
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0.44 year (95% CI: 0.08 year, 3.23 years). Again, we found that the duration of immunity protection was short.
More importantly, the estimated maximum prevalence of MERS-CoV among camels was about 15% which is
consistent with a previous study.24 The estimated spill-over rates were about 0.00039 and 0.00033 respectively,
which were lower than those as shown in Figure 3. The estimated mean Rcamels

0 were 3.31 and 2.71.
So far, we have limited knowledge about the spill-over rate q, and we have assumed it to be constant. It was

possible that both transmission rate and spill-over rate could vary over time. However, if we assume both to be
flexible and then modeled them as cubic spline functions, the model would be too complex. Alternatively, we could

(a) (b)

Figure 4. Model simulations versus observed MERS-CoV spill-over cases. Thin black curve represents reported spill-over cases,

bold red curve represents model generated median of 1000 simulations, shaded regions represent the 95% range of simulations, and

blue curve (with circles) represents the transmission rate (in units ofR0). Inset panels show the profile of maximum log likelihood as a

function of the duration of immunity protection.

(a) (b)

Figure 5. Model simulations versus observed MERS-CoV spill-over cases. Thin black curve represents reported spill-over cases,

bold red curve represents model generated median of 1000 simulations, shaded regions represent the 95% range of simulations, and

dashed blue curve represents the spill-over rate. Inset panels show the profile of BIC as a function of the number of nodes in the spill-

over rate.
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assume the transmission rate to be constant and then allowed the spill-over rate to vary. We repeated the fitting as
shown in Figure 3, but assumed constant b and time-varying q. We showed the results in Figure 5. The BIC is
worsened by 4.13, and the difference is marginally significant. The estimated ��1 is still short, and the results were
consistent. The prevalence of MERS-CoV among camels is now lower than 0.04. Thus we rejected this scenario. In
reality, the observed patterns in the spill-over cases could be due to variations of other factors, and the estimated
spill-over rate was about 0.00053 and 0.00056, which were comparable to that in Figure 3. The estimated Rcamels

0

were 3.67 and 3.88 (Table 1).

4 Discussion and Conclusions

We used a mechanistic model and likelihood-based inference framework to investigate the transmission pattern of
MERS-CoV among dromedary camels in Saudi Arabia from 1 January 2014 to 31 May 2016. To our knowledge,
our methodology in studying MERS-CoV is novel. Previous mathematical modeling studies on MERS-CoV had
primarily focused on human-to-human transmission.5,7–12 Our work was largely motivated by the serological
findings in Sabir et al.24 which showed that there were high and fluctuating prevalence of MERS-CoV among
camels. We noted that the fluctuation of the MERS-CoV camels matched with the waves in the weekly human
confirmation, although this comparison was done for only one year (May 2014 to April 2015).24 For the best-
fitting model, the changes in transmission rate compared to the other models were not very dramatic.
We considered three modeling scenarios. We found short immunity duration or high replenishment rate of
camels. This is in-line with previous serologically studies. For instance, Meyer et al.35 found that serum from
6 of 11 calves had completely lost their neutralizing activity after 56 months. We also found high prevalence of
MERS-CoV infections among camels which matches with the results from previous virological studies. Finally,
Rcamels

0 � 3 or 4 is biologically reasonable and in-line with that of severe acute respiratory syndrome, which also
belonged to the same virus family as MERS-CoV.

Many external factors could impact the transmission of MERS-CoV among camels, from camels to human, and
among humans. The transmission rate of MERS-CoV could vary over time, so did the spill-over rate from camels
to human, and transmission rate among human. In this work, we attempt to address the transmission of MERS-
CoV among camels and also from camels to human (spill-over). In the future, we could include human-to-human
transmission into our framework. The reason we did not include this part in current work is due to lack of detailed
data. Since the R0 among human is substantially less than 1, the transmission among human was limited in
hospital setting and in household transmission, we believe that the transmission among camels played the key
role to form the observed temporal pattern in human cases.

In the main text, we assume that the infection from reservoir was 1/4 because this number was used in WHO
reports.34 In the Supplementary Material S2, we show the results when this ratio is 12%.12 Our main conclusions

Table 1. Summary of parameter settings and estimates in Figures 3 to 5.

Parameter Figure 3(a) Figure 3(b) Figure 4(a) Figure 4(b) Figure 5(a) Figure 5(b)

��1 (years) 14 20 14 14 14 20

��1 (years) 0.86 1.14 0.62 0.44 0.78 0.83

n� 10 10 17 19 8 8

�
� �

247.01 305.05 301.95 247.65 342.55 363.63

Rcamels
0 2.707 3.343 3.309 2.714 3.754 3.985

�h i 0.000531 0.000653 0.000387 0.000331 0.000542 0.000576

S 0.003375 0.003784 0.002881 0.004018 0.007507 0.007338

S:0 0.79508 0.593464 0.971608 0.980595 0.196026 0.184083

E:0 0.003552 0.002307 0.001719 0.001047 0.000521 0.000499

I:0 0.003552 0.002307 0.001719 0.001047 0.000521 0.000499

R:0 0.197815 0.401921 0.024954 0.017312 0.802933 0.814919

MLL �219.18 �219.1 �211.49 �210.89 �226.06 �225.89

BIC 501.03 500.86 514.57 523 505.14 504.81

BIC: Bayesian information criterion.

Note: The mean basic reproductive number is defined as R0 ¼ �
� �
=�, where �h i is the time average. S:0, E:0, I:0, and R:0 are initial conditions. In

Figures 3 and 4, q is assumed constant and �ðtÞ is time-dependent, whereas these are reverse in Figure 5. Camel population size N¼ 270, 000. ��1 ¼ 2

days. ��1 ¼ 4 days.
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largely hold. In particular, we observed high rate of loss-of-immunity (and replenishment of susceptible pools), low
spill-over rate (i.e., high prevalence among camels) and reasonable Rcamels

0 .
We proposed a one-host (camel) model in the main text. In the Supplementary Materials, we extended it into a

two-host (i.e., camels and human) model and presented some preliminary findings. These results have led to similar
conclusions as in a crude one-host model. We considered possible impact of climatic factors (air temperature and
absolute humidity) and showed preliminary analyses in the Supplementary Materials. There were no evident
correlation between MERS-CoV outbreaks and the timing of Hajj.

We compared the monthly prevalence of MERS-CoV infections among camels with weekly human cases for a
year in Figure 1. The waves in camel cases were followed by the waves in human, which implies that camel cases
have led to human cases. Longer surveillance among camels and phylogenetic work are needed to further
clarify this issue. Nevertheless, our results will motivate modeling work on the transmission of MERS-CoV
among camels. In the Supplementary Materials, we illustrated how a simple two-host model could be realized.
Our modeling work could be improved if data on primary and secondary human cases are available.
Our framework could be extended to incorporate two time series. We assumed constant camel population size,
which could be varying indeed. We expected that our fitting could still be robust if the population size changed
mildly during a year or over the study period. The changes in the population size in a susceptible pool can be
translated into changes in the transmission rate.46 It is challenging but worth trying to model the estimated
transmission rate using actual factors such as climate, closing and reopening of markets, holidays, or evolution
of the virus and come up with a mechanistic model of these driving forces.

The major strengths of our study are that we had used a simple epidemic model to study the prevalence of
MERS-CoV among camels, and that our estimates are biologically reasonable. However, our study was still
subject to limitations. First, since current animal health surveillance did not routinely report MERS-CoV cases
among dromedary camels, we could only assume that primary human cases were at a ratio to camel cases (i.e.,
constant or time-varying spill-over rate). These assumptions were appropriate when cases were predominantly
zoonotic and that the propensity for MERS-CoV to cross species boundaries did not change over time. In the
future, more detailed epidemiological information on human cases could improve the accuracy of estimating
weekly primary cases. Animal surveillance and control of MERS-CoV in Saudi Arabia should also target
dromedary camels. This could help reduce sporadic introductions to humans. Effective measures to identify,
diagnose, and isolate infected dromedary camels were much needed. Preventive measures should be undertaken
at the animal/human interface to reduce zoonotic transmission of MERS-CoV.
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